

Earth Science Enterprise Technology Planning Workshop Intelligent Distributed Spacecraft Infrastructure

Mark Schoeberl (Co-Chair) - GSFC John Bristow (Co-Chair) - GSFC Carol Raymond (Facilitator) - JPL

23-24 January 2001

ESE Tech - 1

Earth Science Enterprise Technology Planning Workshop Intelligent Distributed-Spacecraft Infrastructure

Agenda

<u>Topic</u> Small Satellite Challenges/Sensorweb Miniature GPS-based multi-function Instrument for Autonomy of Spacecraft Constellations Sounding	<u>Presenter</u> M. Schoeberl - GSFC T. Yunck - JPL
Leonardo	W. Wiscombe - GSFC
Global Precipitation Mission	D. Folta - GSFC
Tandem/multi Synthetic Aperture Radar	S. Madsen - JPL
Control Architechture	R. Carpenter - GSFC
Control of Distributed Spacecraft	J. How- MIT
Remote Agent Model for Planning and Scheduling	R. Washington-ARC R. Morris - ARC
Observations for Many Satellites Simultaneously	
Constellation Operations	A. Barrett - JPL
Formation Planning, Control, and Reconfiguration Algorithms Agent-based Autonomy	M. Campbell - U.Wash
GPS/Formation Flying	Srinivasan - JPL
Communications	P. Stadter - JHU/APL
Airborne testbed	T. Balch- CMU
TaskOst 04 Fine Control	

ESE Tech - 2

Participants

- Chandra Mirchanani LM/GSFC
- John Bristow GSFC
- David Folta GSFC
- David Breskman Lockheed
- Jonathan How MIT
- Brian Williams MIT
- Chris Kucera Booze Allen&Hamilton
- James Paul House SC
- George Davis Commerce One
- Derek Surka Princeton Satellite
- Jorge Tierno Honeywell
- Ed Howard NOAA
- Tucker Balch CMU
- John Carl Adams Lockheed
- Michael Huhns U of SC
- Costas Tsatsoulis U of KS
- Jon Agre JPL
- Soren Madsen JPL

- Victor Lesser U of MA
- Les Gasser U of IL
- Mark Campbell U of WA
- Pete Klupor AFRLVS
- Tony Barrett JPL
- Reid Simmons CMU
- Rich Washington AMES
- Andrew Howard USC
- Daniel S. Katz JPL
- Stephen J. Talabac Commerce One
- Patrick A. Stadter JHU/APL
- Wayne Devereux Veridian Eng.
- Kurt R. Smith GSFC/ESTO
- Sam Hollander NRL
- Joan Dunham CSC/GSFC
- Robert Morris NASA/Ames
- Tom Yunck JPL
- Robert B. Lee III LaRC

Intelligent distributed spacecraft systems

Vision:

A spatially distributed intelligent network of multiple space assets, collaborating as a collective unit, exhibits a common system-wide capability to accomplish shared objectives

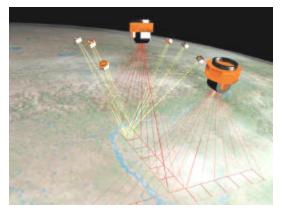
Goal:

Develop and adopt advanced technologies for distributed spacecraft missions that enable New Earth science measurement concepts

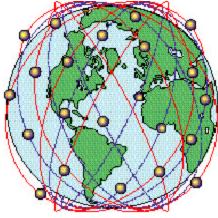
Intelligent Distributed Spacecraft Infrastructure

Component Technologies

Communications


- Acquisition, tracking and pointing algorithms
- Protocols, networking
- Ranging
- Command & control
- Data handling & processing

Micro/Nano Spacecraft


- Advanced solar arrays/batteries
- Micro star trackers
- Micropropulsion
- Mission design/testing tools

Autonomy

- High level planning & scheduling
- Fault Diagnosis and Recovery
- Command & control
- Low level navigation & pointing
- Instrument control
- Science data processing
- Distributed control
 - Relative navigation
 - Collision avoidance
 - Collective pointing
 - Collective Planning

Leonardo, an advanced concept using a virtual platform approach to measure the bi-directional reflectance distribution function

ATOMS, a constellation to measure atmospheric temperature and tropospheric water vaopr using GPS sounding and microwave crosslinks

Measurement Approach

- Synthetic Aperture Radar
- Multi-angle radiometry
- GPS Sounding
- Hyperspectral Imaging
- Solar Occultation
- Microwave crosslinks

Science Needs

High Spatial Resolution:

- Land Imaging
- Multiple-Angle Viewing
- Surface Hydrology & Precipitation
- Ocean Salinity
- Vegetation Recovery
- Atmospheric Chemistry
- Surface Deformation
- Tropospheric water vapor
- Event-driven data collection

Summary of Capability Needs

Identified two major classes of distributed spacecraft science missions:

- "Accretionary" formations
 - Opportunistic, passive trains (at present)
 - Require modular, open architecture to allow flexibility in adding and replacing formation components
- Deliberate multi-spacecraft architecture
 - Exhibit many formation control needs
 - > Loose (GPM)
 - > Virtual platform (Leonardo)
 - > Precision formation flying (SAR/GRACE)
 - Swarms
 - > Radio Occultation
 - > Magnetic fields

Identified some future science goals:

- Multi- or tandem-spacecraft Synthetic Aperture Radar
- Virtual Platform for radiative flux (Leonardo)
- Loose clusters for coverage (GPM)
- Radio Occultation GPS constellation for atmospheric temperature and moisture (ATOMS)
- Dedicated swarms for high temporal resolution measurements

Summary- Notional Missions

Tandem SAR:

2-5 spacecraft (homogeneous)
100 kg class
baseline tolerance to 10-50m
relative pointing 0.02° (X-band) 0.2° (L-band)
position 0.1-1m

Radio Occultation GPS:

6-100 spacecraft (homogeneous) 30 kg class

Leonardo:

6-12 spacecraft (heterogeneous) 30-100 kg class pointing control/knowledge to 0.5°/0.1°

Global Precipitation:

3-9 spacecraft (formation)1 spacecraft (core)50 kg/150 kg

Requirements for Intelligent Distributed Spacecraft Infrastructure

Science and measurement requirements:

•High Spatial/Temporal Resolution:

- Hyperspectral Land Imaging
- Severe Storm Prediction
- Surface Hydrology & Precipitation
- Tectonic Hazard Prediction
- Ozone Monitoring
- Atmospheric water vapor
- Multiple Angle Viewing
 - Bidirectional Reflectance Distribution Function (BRDF)
 - Vector surface deformation (hazard prediction)

Relevance to Future ESE Mission

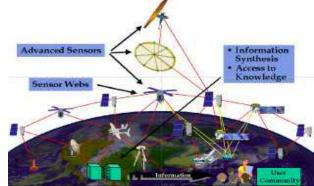
- Global Precipitation Mission
- Leonardo (BRDF measurement concept)
- Soil Moisture and Ocean Salinity
- Time-Dependent Gravity Field Mapping
- Vegetation Recovery
- Topography and Surface Deformation
- GPS Atmospheric Sounding Constellation
- Sensorweb Vision

Description of Technology Autonomy

Planning & Scheduling
Navigation & Pointing
Intelligent Execution
Reconfiguration and control

Sensor Webs

•Science event alert •Collective Pointing

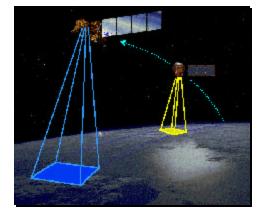

Communications

- •Ad hoc networking
- Protocols
- •Commanding & data handling

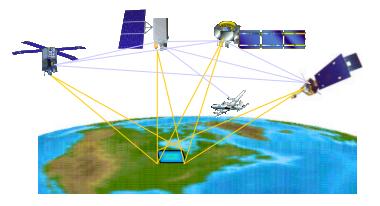
•Micro/Nano Spacecraft

Micro star trackers
Advanced power systems
Multi-frequency crosslinks

Illustration of Technology



Distributed Spacecraft & Sensor Webs ESE Tech - 8


State of the Art for Intelligent Distributed Spacecraft Infrastructure (Autonomy)

State of the art for the Technology

Major Technology Elements and Current TRL


- Component Autonomy
 - Deployment
 - Maneuver Planning & Execution (5)
 - Planing and Scheduling (5)
 - Fault Detection and Isolation (5)
 - Spacecraft Pointing
 - Safehold

Technology Development

- Capability Needs
 - Develop high level autonomy that enables multiple spacecraft missions in cost and capability
 - Collective planning and scheduling
 - Ad hoc networking of satellites
 - Collective pointing
 - Relative navigation with collision avoidance
 - Collective fault detection isolation and recovery

State of the Art for Intelligent Distributed Spacecraft Infrastructure (Microspacecraft)

Nanosats <25 kg 25 kg< Microsats <100 kg (50 watts)

Major Technology Elements and Current TRL

- Autonomous Formation Flying for constellation autonomy -TRL 5
- Multifunctional Structures
- Miniature low-power X-band transponder
- Autonomous ground operations
- MEMS attitude adjustment
- Li-Ion batteries
- Low impulse bit thrusters

Technology Development

- Passive or cell phone communication
- Strongly integrated technology
- Master/Slave control
- Micro star trackers
- Micro reaction wheels
- Micro propulsion
- Advanced solar arrays
- High density energy storage

Validation Plans for Intelligent Distributed Spacecraft Infrastructure

Flight Validation Rationale

- Major Implementation Shift
 - New spacecraft commanding paradigm
 - Build confidence and provide path to spacecraft fleets
- Validation of the most critical subsystem is possible only from space:
 - -Behavior
 - -Collective operation of independent spacecraft
 - -Effects of orbital dynamics on formation control and collective operation
 - -Virtual platform demonstration

Top-Level Development and Flight Schedule

- Automated subsystems

 Flight validation in 2004/05
- Fully integrated autonomy in flight software –Flight validation in 2006
- Ready for science mission launch in 2009

Expected benefits

•Enables new science

- Supports simultaneous multiple-angle viewing
- Enables co-observing
- Detect and characterize events that occur on Earth and its surrounding atmosphere
- Manage ground contacts of multiple close spacecraft
- •Benefits Operations
 - Reduces Mission Costs
 - Supports lights out autonomy
 - Enables "fire and forget" scenarios
 - Uniform and consistent commanding interface
 - Easier verification of command sequences
 - Eliminates most upload errors
 - Enables executing complex multiple spacecraft mission sequences with less skilled ground-based operators

Accommodation Requirements

- Processing power
- Memory

Validation Plans for Intelligent Distributed Spacecraft Infrastructure (Micro/Nanospacecraft)

Description/Justification of Flight Validation

- 2 spacecraft cooperating (or 1 s/c in preplanned and duplexed operations with existing spacecraft)
 - -Active and passive communications
 - -Cooperative pointing
 - -Adaptive reconfiguration
 - -Crosslinks
- Major Implementation Shift
 - New manufacturing paradigm
- Validation of the system-level interactions is possible only from space:
 - -Pointing
 - -Slave operation of dependent spacecraft
 - -Effects of orbital dynamics on formation control and collective operation
 - -Virtual platform demonstration

Accommodation Requirements

- Means to measure pointing accuracy and orbit control
- Possible cooperating non-NMP spacecraft

Expected Benefits

- Low-cost reliable platforms for multi-spacecraft architectures
- Validation of manufacturing and testing paradigms
- Performance model of position, attitude and pointing knowledge and control of cooperating, and/or hierarchical constellation

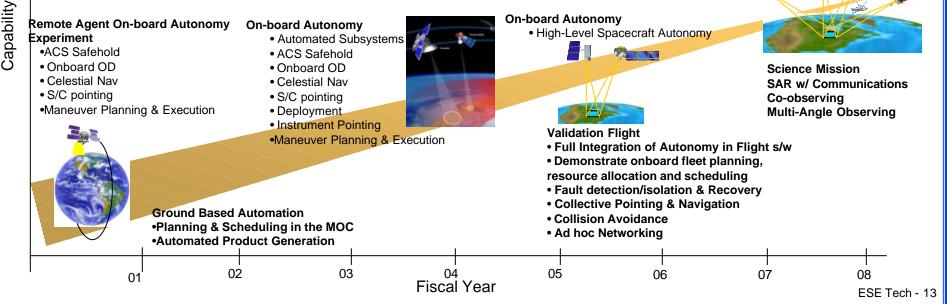
Top-Level Development and Flight Schedule

- Refine needs of flight validation 2002-2003 -Choose validation flight experiment
- Identify partners to leverage existing spacecraft as cooperating members
- NMP flight validation in 2006
- Support science mission in 2009

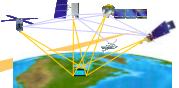
Autonomy Roadmap for Intelligent Distributed Spacecraft Infrastructure

Concept: Distributed Network of Intelligent Satellites Operating Collectively

Science Driver: Enables High Spatial-Temporal Resolution Data Collection


- Characterizing and Understanding Complex Dynamic Processes
- Event Driven Science Data Collection

Technology Drivers


- Fleet Autonomy
- Ad Hoc On-Orbit Networking
- Reduced Weight, Volume and Cost
- Increased Reliability
- Upgrading Instruments by Replacing Elements of Fleet
- Event Alert Capability

Validation Rationale

- Multiple spacecraft behavior and flight dynamics effects can be demonstrated only in space
- Validation of collective pointing and maneuvering is possible only from space over very large ranges
- Collaborative network creation and inter-spacecraft communication can only be demonstrated in space

On-board Autonomy Fleet Spacecraft Autonomy

Validation Plans for Intelligent Distributed Spacecraft Infrastructure -On-orbit Autonomy Testbed (Part 1 of 2)

Problem Statement:

Multiple approaches to autonomy exist and multiple elements of spacecraft autonomy require flight validation to address paradigm shifts, verify behavior, develop confidence and ensure safety

Examples include:

- Autonomy required for single and distributed spacecraft :
 - Fully integrated autonomy in flight software
 - Providing a reusable core for future missions
 - Fault detection and recovery
 - Event detection and notification
 - Planning and scheduling with resource allocation
 - Adaptive planning/scheduling
- Autonomy required for distributed spacecraft only:
 - Formation control
 - Collective pointing of separate spacecraft
 - Communications, Ad-hoc networking of space assets
 - Collision avoidance
 - Fault Detection and correction across the fleet
 - Cooperative planning and schedule

Validation Plans for Intelligent Distributed Spacecraft Infrastructure -On-orbit Autonomy Testbed (Part 2 of 2)

Proposed Path for Development:

- On-orbit testbed environment which provides hardware-in-the-loop 6-DOF Interactions in Microgravity
 - Enables direct comparisons of multiple approaches to autonomy for example:
 - Fuzzy Logic Control (GSFC)
 - Remote Agent (Ames/JPL)
 - Supports Development and Validation of Autonomous Subsystems
 - S/C Pointing, Instrument Pointing, Formation Navigation, OD, etc.
 - **Provides Environment for Multiple S/C Development/Validation**
- Potential Environments
 - Single S/C
 - Advantages True Space Environment, 6 DOF
 - Drawbacks Expensive, No Fleet Validation, Cannot Refurbish, Difficult to do Multiple Experiments
 - Multiple S/C
 - Advantages True "Fleet" Test Environment, 6 DOF
 - Drawbacks Very Expensive, Cannot Refurbish, Timeline Could Be Short for Multiple Experiments
 - MIT Spheres Program offers a testbed on ISS that provides for refurbishment and customization
 - Advantages Affordable, Multiple Vehicle, Can Reconfigure, Refuel, Refurbish, Specialized Equipment Could be Tested, Unlimited Timeline
 - Drawbacks Still Pressurized Environment, Not True Spacecraft

Example: MIT Spheres Program Benefits

Leverage ISS-based free-flyers already under development:

- Personal Satellite Assistant (ARC; in development)
- AERcam (JSC; Shuttle flight heritage)
- SPHERES (MIT; already manifested on ISS 10/02 launch)

AERCam

Offers Flexibility:

SPHERES

PSA

Autonomy and control researchers could propose experiments and flyoffs Uploadable algorithms

ISS Crew act as proxy researchers

- Refurbish and upgrade resources
- Virtual presence for researchers