
Argonne National Laboratory

Argonne, IL 60439

ANL/CGC-007-0401

The Model Coupling Toolkit

by

J. Walter Larson,1 Robert L. Jacob,1 Ian Foster,1 and Jing Guo2

Mathematics and Computer Science Division

Climate and Global Change Series

No. ANL/CGC-007-0401

April 2001

1Argonne National Laboratory, Mathematics and Computer Science Division, 9700 S. Cass Ave., Argonne, IL

60439, USA

2Data Assimilation O�ce, NASA Goddard Space Flight Center, Greenbelt, MD 20771, USA

This work is part of the Accelerated Climate Prediction Avant Garde project and is supported by the

Department of Energy, O�ce of Biological and Environmental Research, under Field Work Proposal

66204, KP1201020, under Contract W-31-109-Eng-38.

c
Springer-Verlag

Contents

Abstract 1

1 Introduction 1

2 The Community Climate System Model Next-Generation Coupler 2

3 The Model Coupling Toolkit 4

3.1 Description and Underlying Assumptions . 5

3.2 Toolkit Components . 5

4 Usage 7

5 Performance 7

6 Conclusions and Future Work 10

Acknowledgments 10

References 10

iii

The Model Coupling Toolkit

J. Walter Larson, Robert L. Jacob, Ian Foster, and Jing Guo

Abstract

The advent of coupled earth system models has raised an important question in parallel

computing: What is the most e�ective method for coupling many parallel models to form a

high-performance coupled modeling system? We present our solution to this problem|The

Model Coupling Toolkit (MCT). We explain how our e�ort to construct the Next-Generation

Coupler for NCAR Community Climate System Model motivated us to create this toolkit.

We describe in detail the conceptual design of the MCT and explain its usage in constructing

parallel coupled models. We present preliminary performance results for the toolkit's parallel

data transfer facilities. Finally, we outline an agenda for future development of the MCT.

1 Introduction

In recent years, climate modeling has evolved from the use of atmospheric general circulation models

(GCMs) to coupled earth system models. These coupled models comprise an atmospheric GCM, an

ocean GCM, a dynamic-thermodynamic sea ice model, a land-surface model, and a
ux coupler

that coordinates data transfer between the other component models and governs the overall execu-

tion of the coupled model (Figure 1). Coupled models present a considerable increase in terms of

computational and software complexity over their atmospheric model counterparts.

The
ux coupler typically serves the following functions: overall command and control of the

coupled model, including syncronization, error/exception handling, and intitialization and shutdown

of the system; communication of data between component models; time averaging and accumulation

of data from one component for use in subsequent transmission of data to other components; com-

putation of interfacial
uxes for a component given state data from other components; interpolation

of
ux and state data between the various component model grids; and merging of
ux and state

data from multiple components for delivery to yet another component.

The computational demands of each of the component models are su�cient to require message-

passing parallelism (and in some cases hybrid parallelism) in each component model to achieve high

performance on microprocessor-based distributed-memory computers. This creates a formidable

challenge in coupling these models. The challenge manifests itself in a potentially high degree

of computational and software complexity in the
ux coupler. The coupler must be aware of all

the component models, the grids on which they present and require data, and their repsective data

1

decompositions. The coupler must be able to handle all of this information and serve the information

required by the component models in a timely fashion, lest it cause the coupled system to hang.

Various coupled model and coupler architectures have been created in the attempt to meet these

challenges. A general diagram for coupled model architecture is given in Figure 2, which shows

the main parts of a coupled model with four component models as a wheel: the synchronization

and command/control apparatus (the rim of the wheel); the coupler computatonal core (the hub

and spokes of the wheel); the component models (e.g., atmosphere, ocean, sea ice, and land); the

component model-coupler interfaces.

There are �ve main architectural approaches for coupled models:

1. A single-executable event loop coupled model, in which a single pool of processers is used

for the coupled model, with each of the component models and the coupler running in turn.

Execution of the model under this architecture can be viewed as a sweep second-hand revolving

around the wheel diagram in Figure 2. An example of this architecture is the Parallel Climate

Model (PCM).

2. A single-executable asynchronous coupled model, with each of the component models and

coupler running simultaneously and exchanging data as needed.

3. A multiple-executable asynchronous coupled model, with each of the component models and

coupler running simultaneously and exchanging data as needed. An example of this architec-

ture is the current version of the NCAR Community Climate System Model (CCSM).

4. A single-executable asynchronous model in which the functions of the
ux coupler are dis-

tributed among the various component models. In terms of Figure 2, the
ux coupler (the

hub and the spokes of the wheel) disappear. An example of this coupling strategy is the Fast

Ocean-Atmosphere Model (FOAM).

5. A multiple-executable asynchronous model in which the functions of the
ux coupler are dis-

tributed among the various component models.

We took as our primary coupler design requirement the ability to support each of these �ve

coupled model architectures.

2 The Community Climate System Model Next-Generation

Coupler

The problem that motivated the creation of the model coupling toolkit was the Accelerated Cli-

mate Prediction Initiative (ACPI) Avant Garde project, whose goal is the creation of a modular,

performance-portable CCSM. One major task in this project is the design and implementation of a

modular, extensible, high-performance Next-Generation Coupler (NGC) for the CCSM.

A full statement of the requirements for the NGC is given at the Web site

2

Figure 1: Schematic of a coupled earth system model, showing the component models and examples
of the
ux and state data they exchange.

Command and
Control

Component
Models Coupler

Computational
Core

Coupler
Interfaces

Figure 2: Schematic of a coupled modeling system, with four component models.

3

http://www.cgd.ucar.edu/csm/models/cpl-ng/#requirements

Two types of requirements were identi�ed|scienti�c requirements and computational function-

ality requirements. The scienti�c requirements outline the coupler's role in the coupled modeling

system, and a list of the core functions the coupler must provide. The computational functionality

requirements outline the programming language(s) to which the coupler must provide interfaces,

and portability and performance issues.

Analysis of the two groups of requirements yielded a layered design. The layers (Figure 3),

ranked lowest level to highest level are as follows: vendor utilities, which include standard libraries,

vendor implementations of the Message Passing Interface (MPI) library, and shared-memory prim-

itives (e.g., SHMEM); parallel environment utilities, which include the Data Assimilation O�ce's

Message Passing Environment Utilities (mpeu) library and LBL's Message-Passing Handshaking

(MPH) utilities; basic coupler classes and methods, which include low-level MCT objects such as

the internal data representation and data decomposition descriptors; derived coupler classes and

methods, which include the MCT datatypes and routines to support interpolation (implemented as

sparse matrix-vector multiplication), time averaging, and computation of
uxes from state variables;

and coupler applications, which are the coupler computational core and component model-coupler

interfaces built by using MCT components, as well as facilities for converting component model

datatypes and domain decomposition descriptors into MCT components.

mpi, blas, shared-memory primitives
vendor utilities
mpeu -- error handling, resource input, etc.
parallel environment utilities

base coupler objects

derived coupler objects

flexible datatype, data decomposition

accumulators, sparse matrices, parallel data transfer

applications requiring knowledge of other components’ datatypes

coupler applications

MCT

* Model Coupling Toolkit

*

Next Generation Coupler Design Layers

Figure 3: Layered design for the CCSM Next-Generation Coupler.

3 The Model Coupling Toolkit

The model coupling toolkit is a set of software components that ease the programming of paral-

lel coupled modeling systems. The main services provided by the toolkit are data decomposition

4

descriptors; a
exible, extensible, indexible �eld storage datatype; support for time averaging and

accumulation; data �eld interpolation implemented as sparse matrix-vector multiplication; and in-

tercomponent communications and parallel data transfer.

3.1 Description and Underlying Assumptions

The MCT is highly modular and implemented in Fortran 90. All the toolkit functions feature explicit

INTENT declarations in their interfaces and extensive argument and error checking. Toolkit modules

and routines have prologues that can be processeed by using the tool ProTeX to create LaTeX

documentation. Further information regarding the toolkit, including complete documentation, is

available at the MCT Web site:

http://www.mcs.anl.gov/~larson/mct

The MCT relies on the following underlying assumptions: each component has its own MPI

communicator; each component has a unique integer ID; each component is on a distinct set of

processors; interpolation is implemented as sparse matrix-vector multiplication; and components can

exchange only real and integer data as groups of vectors. The MCT user must supply a consistent

numbering scheme for grid points for each component model grid, and the interpolation matrix

elements. Once the user has satis�ed these requirements, the MCT allows the user to link any number

of component models, using any grid, any domain decomposition, and any number of processors per

component model.

3.2 Toolkit Components

The low-level components in the MCT are the internal data �eld representation and data decom-

position descriptors. The high-level components in the toolkit are a component model registry,

time-averaging and accumulation registers, sparse matrix storage, the grid geometry description,

and the communications scheduler. The high- and low-level components are presented in Table 1.

Fields are represented in the MCT in its own internal data structure called an attribute vector

and is implemented in the AttrVect component. The AttrVect is used extensively in the toolkit's

interpolation, time-averaging, and parallel data transfer functions. The AttrVect component is

de�ned as a Fortran 90 derived type:

Type AttrVect

type(List) :: iList

type(List) :: rList

integer, dimension(:,:), pointer :: iAttr

real, dimension(:,:), pointer :: rAttr

End Type AttrVect

5

The List components iList and rList list the integer and real attributes (�elds) of the AttrVect,

respectively. A List is a string, with substrings delimited by colons. Suppose we wish to store the

real �elds for surface zonal and meridonal winds and temperature in an AttrVect component. We

�rst de�ne string tags for each �eld: us for surface zonal wind; vs for surface meridional wind; ts

for surface temperature. For this example, the rList component would be rList = 'us:vs:ts'.

These �elds can be accessed by using an AttrVect inquiry, and by supplying the string tag to

reference the desired �eld.

The AttrVect is a fundamental data type in the toolkit. In addition to its use for �eld storage, it

is used for time averaging and accumulation registers in the Accumulator component, sparse matrix

element storage in the SparseMatrix component, and grid point coordinate and area/volume weight

storage in the GeneralGrid component.

The MCT has two basic types of domain decomposition descriptors: the GlobalMap, which de-

scribes a simple, one-dimensional data decomposition, and the GlobalSegMap, which describes a

segmented data decomposition capable of describing multidimensional decompositions of multidi-

mensional grids and unstructured grids. The GlobalMap type is a special, simple case of the more

general GlobalSegMap. Users of the MCT must translate their domain decompositions into either

the GlobalMap or GlobalSegMap form.

A simple example of how the decomposition of a two-dimensional grid is stored in a GlobalSegMap

is shown in Figure 4.

The MCT provides numerous facilities for manipulating and exchanging the GlobalMap and

GlobalSegMap domain descriptor components, including intercomponent exchanges of maps, and

global-to-local index translation, and local-to-global index translation.

Figure 4: Illustration of the GlobalSegMap domain decomposition descriptor component.

A full description of the higher-level components of the MCT is beyond the scope of this paper,

and we have summarized the components and their methods (excluding the create and destroy

methods) in Table 1.

The one high-level portion of the MCT we will describe here is parallel data transfer. Parallel data

transfer is accomplished by creating a communications scheduler called a Router from the domain

descriptors of the source and target component models. An example of how a Router is created is

6

shown in Figure 5. Once the appropriate Router is created, the parallel transfer is e�ected by calling

the routines MCT Send and MCT Recv() on the source and target component models, respectively.

The only arguments to these transfer routines are a Router to coordinate the parallel send (receive),

and an AttrVect to store the input (ouptut) data.

Table 1: Components of the Model Coupling Toolkit

Service Component Methods

Data Storage AttrVect Indexing

Sorting

Gather, Scatter, Broadcast

Domain Decomposition GlobalMap Indexing

GlobalSegMap Exchange

Time Average/Accumulation Accumulator Accumulate

methods from AttrVect

Interpolation SparseMatrix Multiplication

methods from AttrVect

Grid Description GeneralGrid Area/volume integrals

methods from AttrVect

Component Registry MCTWorld Component identi�caiton

process address translation

(i.e., from local communicator

to MPI COMM WORLD

Communications Scheduling Router Parallel transfer routines

MCT Send() and MCT Recv()

4 Usage

Programming of
ux couplers and component model-coupler interfaces is accomplished by directly

invoking components of the toolkit. A complete example of how the MCT is used to create a coupled

model is beyond the scope of this article. Instead, we shall focus on the MCT unit tester, which

implements the simple example of an atmosphere coupled to an ocean via a
ux coupler (Figure 6).

5 Performance

Performance characterization of the toolkit has just begun, but some preliminary results concern-

ing the most crucial component|the parallel data transfer routines MCT Send and MCT Recv|are

available. Performance of the parallel transfer is highly sensitive to a number of variables, including

7

Figure 5: Illustration of the Router communications scheduler component.

Figure 6: A simple atmosphere-ocean coupled model built using the MCT.

the number of MPI processes in the sending and receiving component models, the complexity of

the source and target as measured by the numbers of segments in their respective GlobalSegMap

descriptors, and the complexity of the interrelationship and overlaps between the source and target

domain decompositions. We present performance results for the transfer of sixteen T42 (128 longi-

tudes by 64 latitudes) atmospheric grid �elds between the atmosphere and
ux coupler. We present

results for two examples that are meant to capture the extremes of the governing performance fac-

tors cited above: (1) a simple example in which the number of MPI processes on the atmosphere

and coupler are identical, as are their domain decompositions of the atmosphere grid; and (2) a

complicated example in which the atmosphere has many more MPI processes than the coupler, and

the atmosphere and coupler domain decompositions are not related in any simple fashion.

Case (1) has atmosphere and coupler decompositions as shown in the left and center panels of

Figure 7. The performance of MCT Send and MCT Recv, as measured on an IBM SP3 (375 MHz), is

shown in the right panel of Figure 7. The performance for this simple case is as expected: transfer

time decreases as the message size decreases and the number of processors assigned to each model

is increased.

The domain decompositions for case (2) are shown in the left and center panels of Figure 8. The

Router between these two decompositions was automatically determined by MCT. Timing data

are shown in right panel of Figure 8. The number of coupler nodes was varied for each of three

8

Figure 7: Atmosphere and Coupler component models with identical domain decompositions.

cases: with the atmosphere on 8 (black), 16 (red), and 32 (blue) nodes. The poor scaling may be an

unavoidable result of doing a parallel data transfer between two very dissimilar decompositions. Still,

the overall transfer time is very small compared with the time the full model will spend computing

10 timesteps; moreover, the user/developer is relieved of the burden of determining the complex

data transfer pattern.

Figure 8: Atmosphere and coupler componentmodels with di�ering numbers of processes and domain

decompositions.

Future versions of the toolkit will o�er explicit support for dynamic load balancing of component

models, assuming the number of MPI processes per component model is held �xed. Accomodating

this feature will require the study and optimization of a number of toolkit component methods, in-

cluding the initializationmethod for the Router component, initializationmethods for the GlobalMap

and GlobalSegMap components, and domain decomposition descriptor exchange methods.

9

6 Conclusions and Future Work

A modular Model Coupling Toolkit has been described, and its usage and performance have been

discussed. Future development of the MCT includes numerous enhancements: support for on-

line interpolation matrix element generation; performance optimization and inclusion of OpenMP to

implement hybrid parallelism; upwards abstraction of data types to greater simplify the construction

of
ux couplers and component model-coupler interfaces; support for higher-dimensional data storage

classes; support for higher-dimensional data decomposition descriptor classes; extension to support

dynamically load balanced component models (but with �xed process pool sizes); and extension

to support dynamically load balanced component models (with dynamically varying process pool

sizes).

Acknowledgments

We thank many people for the informative and inspiring discussions that helped guide this work:

Tom Bettge, Tony Craig, Cecelia Deluca, Brian Kaufman, and Mariana Vertenstein of the National

Center for Atmospheric Research; and John Michalakes and John Taylor of the Mathematics and

Computer Science Division of Argonne National Laboratory.

References

[Jones, 1999] Jones, P. W. (1999). First- and Second-Order Conservative Remapping Schemes for

Grids in Spherical Coordinates. Monthly Weather Reveiw, 127:2204{2210.

10

