CU-HTK Fast System Description

Gunnar Evermann, Do Yeong Kim, Lan Wang, Phil Woodland + Rest of the HTK STT team

May 19th 2003

Cambridge University Engineering Department

45

Rich Transcription Workshop 2003

Evermann, Kim, Wang, Woodland et al.: CU-HTK Fast System Description

Overview

- Introduction
- System structure for 10xRT
- Review of previous 10xRT CU-HTK systems
- 10xRT system development
- 2003 system results
- Conclusions

Introduction

- Recently increased interest in making state-of-the-art eval systems fast and thus feasible for practical use
- time (Primary condition for RT02) Several sites have had systems for 10xRT BN and unlimited CTS for some
- RT04/05 will be much more difficult with limits on CTS and <5xRT BN
- CTS is harder, due to higher task & system complexity
- Prepare for future evals and concentrate on appropriate techniques
- Build and submit prototype systems (10xRT CTS in RT02 & RT03)

Evermann, Kim, Wang, Woodland et al.: CU-HTK Fast System Description

System combination

2003 System structure 10xRT BNE

Automatic segmentation

GI

MPE triphones, HLDA, 59k, fgint03

ВІ

CN 1-best

Segmentation

Lattice

- Speaker clustering
- All models use MPE, HLDA
- P2:gender-/bandwidth-specific MPron
- P3:
- SAT for wideband
- SPron for M/F and NB/WB
- 3-way system combination

Cambridge University Engineering Department

Rich Transcription Workshop 2003

49

Evermann, Kim, Wang, Woodland et al.: CU-HTK Fast System Description

2003 System structure 10xRT CTS

Segmentation

Lattice

 $\mathcal{C}_{\mathcal{S}}$

1-best

- Automatic segmentation
- Use new models from full system
- All models use MPE, HLDA
- P2: MPron models for latgen
- Use lattice MLLR and full-variance
- Selected most effective 2-way combination (SAT & SPron)

Previous work

10xRT 1998 BN CUHTK-Entropic system:

- Single branch, two pass system, no lattice rescoring
- Automatic segmentation, speaker clustering
- Purpose-built acoustic models

10xRT 2002 CTS CUHTK system:

- Simple three pass system, built in a few of days based on full 320xRT system.
- Used models from full system (incl. 4 year old Pass 1 models!)

No system combination

Engineering Department Cambridge University

Rich Transcription Workshop 2003

51

Evermann, Kim, Wang, Woodland et al.: CU-HTK Fast System Description

How to make it run fast

- All decoding parameters were carefully chosen to stay in compute budget
- Important to limit worst-case behaviour (max model beams, lattice pruning)
- Simplify adaptation, e.g. use 2 speech transforms instead of 4
- Buy many fast computers! For eval and, more importantly, experiments. CUED compute infrastructure:
- cluster of IBM x335 dual Xeons
- SunGrid batch queuing system (400k jobs since Nov'02)
- for eval runs: keep all data local, use 20 fastest single CPUs (2.8GHz) turn around for 6 hour CTS set: 3 hours
- Avoid excessive overhead (e.g. reading LMs) by running on large subsets complete BN shows or sets of several CTS sides

CTS: Development results on eval02

23.3	25.8	23.5	19.9	final
24.0	26.6	24.3	20.4	P3.3-cn
23.7	26.1	24.0	20.4	P3.1-cn
26.6	29.8	26.8	22.4	P2
35.5	40.2	36.3	28.7	P1
Total	Cellular	Swbd2	Swbd1	

% WER on eval02 (automatic segmentation) for 2003 10 xRT system

- The system ran in 9.17 xRT
- The confidence scores have an NCE of 0.295

Cambridge University Engineering Department

Rich Transcription Workshop 2003

53

Evermann, Kim, Wang, Woodland et al.: CU-HTK Fast System Description

CTS: Final results on eval03

final	P3.3-cn	P3.1-cn	P2	P1		
25.5	26.3	26.0	29.4	39.0	Swbd	
18.4	18.9	18.8	20.9	29.7	Fisher	
22.1	22.7	22.5	25.3	34.5	Total	

%WER on eval03 for 2003 10xRT system

- The system ran in 9.21 xRT
- The confidence scores have an NCE of 0.318

CTS: Progress over last year

CUED internal aims were:

- Automate running of 10xRT system
- Outperform last year's full 320xRT system in 10xRT
- Narrow gap between full and fast systems

				ì	
+7%	23.3	25.8	23.5	19.9	10×RT 2003
	21.7	23.7	22.3	18.6	190×RT 2003
+14%	27.2	31.0	27.7	22.3	10×RT 2002 [†]
	23.9	27.0	24.3	19.8	320×RT 2002 [†]
Cellular Total fast gap	lotal	Cellular	Swbd2	Swbd1	

%WER on eval02 for full and fast systems

 † : using manual segmentation

gap on eval03 is 7%, on the progress set it is 5%.

Cambridge University Engineering Department

Rich Transcription Workshop 2003

55

Evermann, Kim, Wang, Woodland et al.: CU-HTK Fast System Description

BN: Development results on bndev03

11.6	final
12.1	P3.3-cn
12.0	P3.1-cn [†]
12.8	P2.fgintcat-cn
13.1	P2.fgintcat
15.9	P1
WER	

%WER on bndev03 for 2003 10xRT system † wideband only, narrowband from P3.3

The confidence scores have an NCE of 0.393

BN: Final results on eval03

10.7	final
11.4	P3.3-cn
11.4	P3.1-cn [†]
11.6	P2.fgintcat-cn
11.9	P2.fgintcat
14.6	P1
WER	

%WER on eval03 for 2003 10xRT system † wideband only, narrowband from P3.3

- P1 ran in $0.88 \times RT$ submited as contrast, not an optimised $1 \times RT$ system!
- The full system ran in 9.10 xRT
- The confidence scores have an NCE of 0.412

Cambridge University Engineering Department

Rich Transcription Workshop 2003

57

Evermann, Kim, Wang, Woodland et al.: CU-HTK Fast System Description

BN: System combination

- Combination in BN system is more complicated than CTS, as we had no BN narrow-band SAT models
- Employ 3-way combination (P2, SAT, SPron) for wideband, 2-way (P2, SPron) otherwise.
- Mismatch of posterior distributions due to lattice sizes (P2 are much bigger than P3)
- Ongoing work: Investigate mapped posteriors, system weights etc.

Conclusions

- BN: rebuilt setup and constructed state-of-the-art 10xRT system
- CTS: good improvements over RT02 systems
- Narrowed gap between $100+ \times RT$ and $10\times RT$ considerably
- Infrastructure for quick-turnaround system tests (vs. single model experiments)

Future Work

- Optimise models (HMMs and LMs) for fast systems
- Fast versions of VTLN and MLLR
- Adaptive optimisation of decoding parameters & structure

Rich Transcription Workshop 2003