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S(t) survival function
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Abstract

Decompression sickness (DCS) is a complex multivariable problem. A mathematical description

or model of the likelihood of DCS requires a large amount of quality research data, ideas on how to

define a decompression dose using physical and physiological variables, and an appropriate analytical

approach. It also requires a high-performance computer with specialized software since thousands of

exposure records with tens of variables are now available. I have used published DCS data (from hypo-

baric decompressions of humans in altitude chambers) to develop my decompression doses, which are

variants of equilibrium expressions for evolved gas plus other explanatory variables. The analytical

approach I have chosen is survival analysis, where the time of DCS occurrence is modeled. I chose this

approach because a log logistic survival analysis is a powerful method by which to test competing

hypotheses as well as to develop probability models about hypobaric DCS. My conclusions can be

applied to simple hypobaric decompressions – ascents lasting from 5 to 30 minutes – and, after minutes

to hours, to denitrogenation (prebreathing). My conclusions are applicable to long or short exposures,

and can be used whether the sufferer of DCS is at rest or exercising at altitude. Ultimately I would like

my models to be applied to astronauts to reduce the risk of DCS during spacewalks, as well as to future

spaceflight crews on the Moon and Mars.



Introduction

Scientists have been challenged to
understand and prevent hypobaric decompression
sickness (DCS) ever since humans were taken high
into the atmosphere following development of the
jet engine. DCS, in all of its myriad forms and
manifestations, is fundamentally linked to evolved
gas in the body. A fundamental axiom about DCS is
that a transient gas supersaturation, also called over-
pressure or pressure difference (∆P), exists in a
region of tissue. The sum of all gas partial pressures
there is greater than the ambient pressure opposing
the release of the gas. The metastable condition
may resolve with a phase transition (in the presence
of micronuclei), and some of the excess mass
(moles) of gas in the form of bubbles may be
accommodated by the tissue and cause no
symptoms. The likelihood or probability that DCS
increases as the evolved gas dose increases is a
necessary but not sufficient condition in the
mechanical view of DCS. We do not yet know all
of the complex biophysical processes responsible
for evolved gas in the tissue. We know even less
about the linkage between evolved gas and
subsequent signs or symptoms of DCS.

What we do know is that because of the
complex and dynamic biophysical, biochemical, and
physiological processes associated with living tissue,
micronuclei and later bubbles may or may not form
given the same experimental conditions. Even when
bubbles grow, symptoms may or may not develop
under the same experimental conditions. It is
therefore better (or appropriate) to consider DCS as
a probabilistic rather than a deterministic event.1,2

By this I mean that the presence or absence of
symptoms — for the same individual and under
identical experimental conditions — may or may
not be observed from one day to the next. So, a
quantitative description of DCS requires a large
number of quality research data,3 ideas on how to
define a multivariable decompression dose, and
analytical approaches that maximize the available
information. A log logistic survival analysis
provided me with a powerful method to test
competing hypotheses about DCS as well as to
provide DCS probability models.4–7

Methods

Selecting the Appropriate Hazard Function

Since the survival function S(t), cumulative
distribution function (cdf) F(t), hazard function h(t),
cumulative hazard function H(t), and probability
density function (pdf) f(t) are different expressions
of the same survival analysis, it is possible to derive
all of them by just knowing one of them.7,8,9 The
survival function is defined as S(t) = 1 – F(t). Since
the probability density function, f(t) = dF(t) / dt, is
related to the hazard function, h(t) = f(t) / S(t), the
functional form of h(t) may be revealed given Fn(t)
from a plot of DCS data, where Fn(t) is the
empirical representation of F(t). An equivalent
definition of h(t) is dF(t) / dt / (1 – F(t)). The
mathematical relationship between h(t) and F(t) is
clearer with this form. I will discuss my approach in
terms of h(t) because an a priori rationale exists for
determining h(t) for hypobaric DCS.

The hazard function h(t) defines the
instantaneous failure rate at a specific time, given
that the subject survived to at least that specified
time point without a response. It is expressed in
hour–1 in my application. Lee9 states, “h(t) gives the
conditional failure rate; the probability of failure
during a small time interval, assuming that the
individual has survived to the beginning of the
interval, or as the limit of the probability that an
individual fails in a very short interval, t to t + ∆t
per unit time, given that the individual has survived
to time t.” In my case, h(t) gives the probability of
decompression sickness P(DCS) per unit time during
the altitude exposure given that the individual has
survived to time T while at altitude. The
instantaneous failure rate for hypobaric DCS
eventually goes to zero; indeed, some subjects
never get DCS at a lower pressure, assuming that
the lower pressure is greater than about 2.5 psia
since hypoxia and ebulism prevent humans from
going to a vacuum. If humans remain at the lower
pressure long enough — say, for 48 hours — they
will come into a new equilibrium with that
environment and are not at risk for DCS unless they
once again ascend to an even lower ambient
pressure. This situation differs from the lifetime of
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light bulbs, for example. Eventually all light bulbs
in a random sample will fail, so h(t) will never be
zero for light bulbs. A new type of survival analysis,
which is called “cure models,” may improve my
current methods; these models properly address the
reality that some subjects will never have DCS.

The function h(t) to describe DCS failure time
might be selected based on a list of available
functions, an understanding of the underlying
failure process, a study of the cumulative
distribution of the failure time Fn(t), or
combinations of all three. The function may
increase, decrease, remain constant, or have a
complex form due to an underlying complex
process.9 Many variables interact to define the
failure time (or survival time depending on
preference). The distribution of failure time for
hypobaric DCS in a large data set from different
tests is skewed to the right. Figure 1 shows 1574
cases of DCS in the hypobaric decompression
sickness databank (HDSD)3 partitioned into 

0.2-hour intervals. This figure is a histogram
representation of f(t), in which the symbol fn(t) is
used to signify the empirical representation of f(t).
The solid curve is the histogram smoothed with the
normal density function. The inset shows the same
information replotted after a natural log
transformation of failure time. This distribution
appears normal. There were some severe tests, and
symptoms were reported prior to or immediately on
arrival at the test altitude. These symptoms actually
developed during ascent to altitude, and the few
cases that developed were assigned a 1-minute
failure time in the HDSD since the convention was
to start exposure time upon arrival at the test
altitude. This convention accounts for the few cases
seen at the left of the otherwise normal log
distribution. Figure 2 shows the cumulative DCS
failure distribution of the 1574 cases of DCS
described in Figure 1. The inset shows an expanded
view of the failure time over the first hour to better
visualize the shape of F(t) near time = 0.

3

Figure 1. The histogram shows the proportion of 1574
cases of DCS as a function of time at altitude. The
histogram is the empirical probability density function
fn(t). The inset shows the natural log transformation of
the skewed distribution into a normal distribution.
These data show that DCS, under a variety of different
test conditions, is manifested early; that is, within the
first 2 hours of exposure.

Figure 2. The empirical cumulative distribution Fn(t)
for 1574 cases of DCS out of 3895 exposures. F(t) is
the cumulative distribution of failure time divided by
the total number of records in the tests. The inset
shows the same data, but the time axis is limited to
the first hour after reaching the test altitudes. The
changing slope is easier to see on this expanded time
scale, and this slope is important to the selection of an
appropriate survival model.
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There are several observations about DCS
that help us to define an appropriate h(t). First,
the rate at which DCS occurs is a function of
time, so the exponential distribution of failure
time is not considered here. The exponential
distribution defines h(t) as a constant, so the time
at alti-tude has no relation to the failure rate. If
h(t) was constant, the cumulative distribution of
failure time, approximating the F(t), would be an
increasing exponential defined as: 1 – exp(–k * t),
where k is a constant. The function S(t) would be
a decreasing exponential defined as: exp (–k * t).
The natural log transformation of S(t) yields ln
S(t) = –k * t, which is a linear function of time. It
is easy to reject that the failure times come from
an exponential distribution since a plot of ln S(t)
against time in Figure 2 is not a straight line,
with the slope k being the constant hazard rate.
Second, observations of failure times and
symptom intensity also help to define h(t). The
onset of a symptom is not instantaneous, and the
risk of having a symptom increases with time.
But, it is unlikely that a person will develop a
symptom if he/she survives past some critical
time since breathing 100% oxygen (O2) (as is
usually done at altitude) will ultimately reduce
the nitrogen (N2) pressure in the tissues. Also,
some subjects with Type I (pain-only) symptoms
report that the intensity of pain reaches a peak
before it subsides; and that, in some cases, the
pain is completely gone before the end of a test.
Third, observations about venous gas emboli
(VGE) are helpful to define h(t) for DCS since
evolved gas is fundamentally linked to a
subsequent report of pain or other signs and
symptoms.6,10 The two types of data share a
common underlying etiology. Figure 3 shows the
cumulative VGE failure distribution for 536 of
1401 records in the HDSD. Not all tests
produced VGE.

Therefore in hypobaric decompressions, the
instantaneous risk of DCS may increase with
time, but only up to a certain point. The observed
pattern of DCS and VGE failure time and the
intensity of symptoms lead me to conclude that the
incidence of DCS from hypobaric decompressions

would be described well with an h(t) that rises to
a peak before it decreases with time. The log
normal or log logistic survival models are good
candidates for this, since both provide for a non-
monotonic h(t). Unfortunately, the functions F(t)
and S(t) for both models may be “S”-shaped. 
It is at the level of h(t) and f(t) that the two
distributions are distinguishable. The log logistic
model does not provide a slow increase of h(t)
and f(t), but the log normal model does provide
for this. The log normal is slightly better in most
cases, due in part to its ability to describe this “lag”
component of h(t); but the log logistic model is
easier to implement. Details about the log logistic
survival model are shown in Appendix A.

Data
Analyses presented here are based on

results from documented hypobaric chamber tests
and approaches11 that account for failure and
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Figure 3. The empirical function Fn(t) for 536 cases of
VGE out of 1401 exposures. The inset shows the data
up to 1 hour. VGE are detected noninvasively with
Doppler ultrasound technology. The pulmonary artery
is insonated with the ultrasound beam, and the
presence of moving bubbles on the way to the
pulmonary circulation is noted. Figure 2 has a similar
shape, which suggests that VGE and DCS share a
common etiology.



censored times. Investigators in the U.S. Navy
have also exploited information about DCS
failure time in divers.12 In my application, failure
time is defined as elapsed time from the
beginning of a test after the decompression to the
first report of a DCS symptom. Censored time is
defined as elapsed time from the beginning of a
test after the decompression to the scheduled end
of the test, also called right censored time. I
define h(t) in terms of several variables — P1N2,
P2, the presence or absence of exercise at P2,
time at P2, the presence or absence of VGE, etc.
— and I use the notation h(t; z) = ƒ(time, P2,
P1N2, exercise, VGE, etc.) to denote the hazard
function for a decompression dose model, where
t is time and z represents various combinations of
variables and constants. Appendix B lists some of
the variables and their definitions in the HDSD
that were used to model DCS.

The HDSD is a computerized repository of
information that was reported in the literature*
about DCS experienced in hypobaric chambers.3

The HDSD currently contains information from
456 altitude tests. A test is a collection of altitude
exposures where one or more subjects were used
to evaluate a particular test condition. The total
number of exposures in 456 tests is 131,399.
Twenty-seven tests had 117,422 exposures; none
of the results reported here contain information
from these 27 tests. A subset of the 456 tests
provided detailed information for each subject in
the test, such as height, weight, age, gender,
failure time to first detection of VGE, etc. There
were 211 tests with 3895 exposures; the data in
these tests were used in this report. The outcome
or response variable is the presence (coded as 1)
or absence (coded as 0) of any DCS sign or
symptom — excluding paresthesia when it was
the only symptom — plus the failure time to the
report of the first symptom.

*The literature represents a sample of DCS research
done from the year 1940 to the present.

Management of O2 Prebreathe

Prebreathing 100% O2 or O2-enriched
mixtures prior to a hypobaric decompression is an
effective and often-used technique to prevent DCS.
It is therefore necessary to account for the use of
O2-enriched mixtures prior to decompression to
use the majority of information in the HDSD.

The N2 partial pressure in a tissue is an
important variable in any mechanistic model
about DCS. Equation (1) defines how P1N2 is
calculated by approximating the more complex
process of dissolved N2 kinetics in living tissue
by a first-order kinetics. Following a step-change
in N2 partial pressure in the breathing medium,
such as during a switch from ambient air to a
mask connected to 100% O2, the N2 partial
pressure that is reached in a designated tissue
compartment after a specific time is:

P1N2 = P0 + (Pa – P0) * (1 – exp–k * t), (1)

where P1N2 = the N2 partial pressure in the tissue
after t minutes, P0 = initial N2 partial pressure in
the compartment, Pa = ambient N2 partial
pressure in breathing medium, exp = base of
natural logarithm, and t = time at the new Pa in
minutes. The tissue rate constant k is related to
the tissue N2 half-time (t1/2) for N2 pressure in a
compartment, and is equal to 0.693 / t1/2, where
t1/2 is the 360-minute tissue N2 partial pressure
half-time, and 0.693 is the natural log of 2. Half-
time is the time taken for N2 pressure to increase
or decrease to one-half of the difference between
the initial and final values. About 94% of this
difference is achieved within four half-time
periods. A half-time of 360 minutes is used
because Type I altitude DCS and VGE have been
shown to correlate well with long half-times,
using 100% O2 in altitude chamber flights
eliminates faster compartments as potential
contributors to DCS, and long half-times also
govern the return of divers from saturation
exposures. The initial, equilibrium N2 pressure
(P0) in the tissue at sea level is taken as 11.6 psia
instead of an average alveolar N2 pressure of 11.0
psia. The use of dry-gas, ambient N2 pressure as

5



equilibrium tissue N2 pressure (P0), and as the N2

pressure in the breathing mixture (Pa) makes the
application of Eq. (1) simple. The ratio of P1N2 to
P2 is the tissue ratio (TR), where P1N2 is the
calculated N2 pressure just prior to ascent to altitude
and P2 is the ambient pressure after ascent. The
importance and implication of TR as an expression
of evolved gas is developed elsewhere.6,13

I have described the logic that led me to
select an appropriate h(t), have briefly described
my source of response and explanatory variables,
and will now provide an example of the analyt-
ical steps that gained me a better understanding
of hypobaric DCS.

Analytical Process

The hazard function h(t) for the log logistic
survival model7 is:

h(t) = λ * (tλ–1) * ρλ / [1 + (t * ρ)λ], (2)

where λ and ρ are index (unitless) and scale
(hour–1) parameters to be estimated, respectively,
and t is time in hours in this application. When l > 1,
h(t) has a maximum and resembles a bell shape.

The cumulative hazard function H(t) is
obtained by integrating h(t). Thus:

t
H(t) = ∫ h(x) dx, (3)

0

where x is the dummy variable of integration.
Note that h(t) may not vary with time, as with the
exponential model, but the integral of h(t) will
give H(t) in terms of the starting and ending time
at P2. A combination of Eq. (2) and Eq. (3) yields:

H(t) = ln [1 + (t * ρ)λ], (4)

where ln is the natural logarithm. Since the
survival function S(t) is also defined as:

S(t) = e – H(t), (5)

I obtained the following expression for S(t) from
Eq. (4) and Eq. (5) for the log logistic model:

S(t) = 1 / [1 + (t * ρ)λ]. (6)

The probability density function f(t) is:

f(t) = h(t) * e–H(t), (7)

which may be expanded as follows from Eq. (2)
and Eq. (4) for the log logistic model:

f(t) = λ * (tλ–1) * ρλ / [1 + (t * ρ)λ]2. (8)

Now P(DCS) given failure time T ≤ the
exposure time t becomes:

P(DCS T ≤ t) = 1 – e– H(t). (9)

In order to account for variables other than
time that influence P(DCS), I expand the hazard
function h(t) but retain its functional form as
given by Eq. (2). The gas phase contribution to
h(t) could be as simple as 1 / P2, or as complex
as (((P1N2 + c1) / P2) – 1)c2, but the exercise
contribution is always in the form (1 + (c3 *
exercise)), where exercise at P2 is one or zero,
and c1, c2, and c3 are estimated parameters. The
modified h(t; z) for the log logistic model that
includes P2 and exercise is:

h(t; z) = λ * (1 / P2)c2 * [1 + (c3 *exercise)] * (tλ–1) * ρλ

/ [1 + (1 / P2)c2 * [1 + (c3*exercise)] * (t *ρ)λ]. (10)

The function H(t; z) from Eq. (3) and Eq.
(10) becomes an expression of decompression
dose as a function of three variables associated
with DCS plus the fitted parameters that maxi-
mize the agreement between dose and response:

Dose = H(t; z) 

= [ln (1 + (1 / P2)c2

* [1 + (c3 * exercise)] * (t * ρ)λ)], (11)

and P(DCS) given failure time T based on P2,
exercise, and time t at P2 becomes:

P(DCS T ≤ t) = 1 – e–Dose. (12)

Parameter Estimation 
by Maximum Likelihood

Maximum likelihood is the preferred
method to optimize unknown parameters in a
probability model where the response variable is

6



dichotomous and the predicted value is a
probability. The maximum likelihood method
provides the probability that y = 1 (the response)
given a value for x (the dose). This has been
clearly explained by others.2,8,14 The likelihood
function for a set of data containing (d + n)
elements with some right censored times has two
components, one for the failure times (subset d)
and the other for the censored times (subset n).
Denoting the failure times by ti , i = 1, 2, … , d,
and the censored times by ti , i = d + 1, d + 2, … ,
n, the likelihood function (L) is:8

d n
L = ∏ f(ti) * ∏ S(ti). (13)

i = 1 i = d + 1

A subject with DCS contributes a term f(ti)
to the likelihood, the density of failure at ti. The
contribution from a subject whose survival time
is censored at ti is S(ti), the probability of
survival beyond ti.

The log likelihood (LL) is:

d n
L = Σ ln f(ti) + Σ ln S(ti). (14)

i = 1 i = d + 1

The SYSTAT (ver. 5.03) Nonlin module15

was used to estimate unknown parameters in the
models. Estimation by maximum likelihood was
accomplished by specifying the negative LL in
the LOSS statement:

LOSS = – ln (ESTIMATE), (15)

where ESTIMATE is a number from one to zero
from the LL function, as explained below. The
LL function structured in SYSTAT for the log
logistic model, as an example, is:

LL = [DCS * λ * (tλ–1) * ρλ / [1 + (t * ρ)λ]2] 
+ [(1 – DCS) * 1 / (1 + (t * ρ)λ)]. (16) 

f(t) or f(t; z) S(t) or S(t; z)

The computer evaluates Eq. (16) for the
first row of hundreds of rows of data. The first
row contains values for the observed DCS (1 or 0),

P1N2 (psia), P2 (psia), exercise (1 or 0), and time
(hours): failure time when DCS = 1, or censored
time when DCS = 0. When DCS is one, f(t; z) is
evaluated, and when DCS is zero, S(t; z) is
evaluated. The numerical result, between zero
and one in each case, is called ESTIMATE,
which is evaluated with initial values of the
unknown parameters in the model and is used in
Eq. (15). The LL calculation from Eq. (15) is
repeated over all rows, and the LL is summed
over all rows. The summed LL is then minimized
using the Quasi-Newton algorithm.15 Iterations
continue for parameters in the model until a
predetermined convergence criterion is reached.

Results

Table I is a compilation of a number of log
logistic survival models for DCS, expressed as
h(t; z), included in two of my reports.4,5 This
table shows a progression from simple to more
complex models. The complexity comes as I
attempt to describe evolved gas with
combinations of variables and constants
associated with evolved gas, and with my notions
of how pain is per-ceived as tissues are deformed
by evolved gas (see Appendix in ref. 6). Also,
some information — such as the VGE
information, which when added to the model
improves the description of DCS failure time —
in the complex models is strictly correlative with
DCS. Values and other details of the fitted
constants are not reproduced here. Equation (17)
identified prebreathe (P1N2), the final altitude
pressure (P2), the presence of exercise at altitude,
and the length of the exposure as important
variables to describe the DCS failure time in
1075 exposures. Figure 4 summarizes my three
main conclusions that, for a given calculated N2

pressure in the 360-minute half-time compartment,
DCS risk increases (1) as P2 decreases (any
vertical line through the curves), (2) as time at P2
increases (two filled circles along the 4.3 psia
curve), and (3) if exercise is performed at P2
(two filled circles at 4 hours exposure on the 4.3
psia solid and dashed curves).
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An important conclusion is that for the same TR,
in this case 1.65, the risk of DCS is greater at a
lower P2 for a given exposure time and exercise
condition (two filled circles on the 4.3 psia and
6.0 psia curves at 4 hours exposure). The fitted
constant c1 in the numerator of Eq. (17) is
responsible for this result. Other ways of
accommodating the constant did not provide as
good a fit of the model to the data. I suspect that
the importance of the constant is its linkage to
metabolic gases in the evolved gas.13,16

Once the best model from a family of models
is determined, it is still not clear whether there is a

good fit of the best model to the data. The
likelihood ratio test9,17 defines when no further
improvement is possible by adding more degrees
of freedom (parameters to fit) to the model.
However, the test offers no absolute goodness-of-
fit summary such as is provided by the coefficient
of determination (ρ2) in a least-squares regression.
There are few available analytical tools, outside of
a Statistics Department, to assess goodness-of-fit of
a survival model. I use graphical approaches to
“visually” assess goodness-of-fit. Figure 5 shows
the predicted vs. the observed group incidence of
DCS in 66 tests; i.e., the tests that provided the

8

Table I.  Various Log Logistic Survival Models for DCS

Model Parameters

log logistic survival model (null model)

h(t) = λ * (tλ–1) * ρλ / (1 + (t * ρ)λ) 2 (λ, ρ)

log logistic hazard function with additional variables and constants (accelerated model)

h(t; z) = [λ * zn * (tλ–1) * ρλ] / [1 + zn * (t * ρ)λ]

z1 = 1 / P2 2

z2 = P1N2 / P2 2

z3 =(P1N2 / P2) – c 3

z4 =(P1N
2

/ (P2 + c1)) – 1.0 3

z5 = ((P1N2 + c1) / P2) – 1.0 3

z6 = (((P1N2 + c1) / P2) – 1.0) * (1 + (c3 * exercise)) 4

z7 = ((P1N2 / (P2 + c1)) – 1.0)c2 * (1 + (c3 * exercise)) 5

z0 = (((P1N2 + c1) / P2) – 1.0)c2 * (1 + (c3 * exercise)) 5 Eq. (17)

z8 = z0 * [1 + (c4 * vge)] 6

z9 = z0 * [1 + (c4 * vge)] * {1 + [c5 * (1 / vgetm)]} 7

z10 = z0 * [1 + (c4 * mvge)] * {1 + [c5 * (1 / vgetm)]} 7

z11 = z0 * [1 + ( mvgec4)] * {1 + [c5 * (1 / vgetm)]} 7

z12 = z0 * [1 + (c4 * vgeI,II)] * [1 + (c5 * vgeIII)] * [1 + (c6 * vgeIV)] 8

z13 = z0 * [1 + (c4 * vgeI)] * [1 + (c5 * vgeII)] * [1 + (c6 * vgeIII)]

* [1 + (c7 * vgeIV)] 9 

z14 = z0 * [1 + (c4 * vgeI,II)] * [1 + (c5 * vgeIII)] * [1 + (c6 * vgeIV)] 
* {1 + [c7 * (1 / vgetm)]} 9 Eq. (18)



1075 decompression records. A perfect description
of the data by my model would require that all tests
fall along the identity line. I have also validated
this model in a set of data not used to optimize the
model.4 I conclude that Eq. (17) (expressed
through Eq. (12)) describes reasonably well both
the DCS and the no DCS cases in 1075 exposures,
and could be used prospectively.

Figure 6 is a simulation based on Eq. (18)
(expressed through Eq. (12)) where data about
VGE were available in 1322 records that would
improve the estimate of DCS failure time. The
figure shows that the presence of Grade IV VGE
increases the risk of DCS compared to all lesser
grades. Additional information about the
simulation is provided in the description of the
figure. Although it can be argued that any
information on VGE used to describe DCS is
invalid — since both DCS and VGE are
responses to decompression — the intensity and

time course of VGE are information that relate
(correlate) to a subsequent DCS symptom.10

I conclude that the inclusion of VGE
information into my basic model (Eq. (17)) was
beneficial, and it also improved the goodness-of-fit.
Figure 7 is a visual representation of goodness-of-
fit for Eq. (18). This presentation differs from Fig.
5 in that each subject in the 1322 exposures had a
unique P(DCS) since no two subjects necessarily
had identical VGE information. As before, I
conclude that Eq. (18) describes reasonably well
the DCS and no DCS cases in 1322 exposures.

Equation (17) and Eq. (18) were attempts to
develop useful hypobaric DCS probability
models. Like other researchers,18 I explored using
survival analysis to test a specific hypothesis. I
was curious about the linkage between evolved
gas in a tissue and the report of a DCS symptom.
Often elegant and complex models about bubble
growth in tissue neglect this aspect of the

9

Figure 4. The P(DCS) at either 3.5, 4.3, or 6.0 psia
with (solid line) or without (dashed line) exercise at a
particular time after decompression. The ratio of P1N2

to P2 (TR) in Eq. (17) was 1.65 for each curve, but
notice the P(DCS) increases as P2 decreases at any
particular time after decompression. The 95%
confidence interval is provided for the curve specific to
the 4.3 psia exposure that included exercise.
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Figure 5.  Predicted vs. observed DCS incidence in 66
groups used to fit Eq. (17). The area of a circle is
proportional to the number of subjects in a group. The
three filled circles are results from NASA tests at 4.3
psia with TRs between 1.60 and 1.65 where exercise
is (the two circles above identity line) and is not (the
circle below identity line) part of the test. The model
neither over- nor underestimates the entire data set,
but it did overestimate the incidence of DCS in several
small groups that reported no symptoms.



problem. The published report6 develops the
rationale about how a power term fitted to my
simple equations of evolved gas may link
evolved gas to the P(DCS). Conceptually, as the
intensity of a symptom increases (as a power) the
P(DCS) increases to a certainty. Figures 8 and 9
show the dramatic improvement in describing the
DCS failure times in 1085 exposures simply by
including a power term in a simple expression
(∆P) of evolved gas.

The solid curve on Fig. 8 from a model
without a power term does not pass near the
majority of group DCS incidence data as compared
to the curve on Fig. 9. I was motivated to evaluate
this concept based on an earlier analysis by Nims.19

Figure 10 shows that my survival model as a
probability density function f(t; z) gave results
similar to Nims’s results, but my statistical
methods differed greatly from the deterministic
methods used.

Although the shape, if not the magnitude, of
the two curves is similar, Nims did not explicitly
use a power term in the expression of DCS dose.
My observation that different methods lead to
similar results reinforced my belief that conclusions
from hypothesis testing with incomplete models
should be verified with experimental data.

Conclusions

I have used survival analysis with
maximum likelihood optimization as the basis of
my description of the failure time for DCS under
a variety of decompression conditions tested in
hypobaric chambers. My first goal was to
identify an appropriate hazard function. This was
based on a survey of DCS and VGE data that
were contained in a computerized databank as
well as on descriptions and observations on how
DCS symptoms progress through time (Figs. 1–3).
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Figure 6. The P(DCS) vs. time at altitude from Eq. (12),
given by Eq. (18) in Table I, for a simulated decom-
pression at a TR of 1.65 (7.1 P1N2 / 4.3 P2), all with
exercise, with a VGETM of 1 hour, and with the
presence of VGE at Grades I and II, III or IV, and the
absence of VGE (Grade 0). Review Appendix B for the
definition of the variables used in this analysis.

Figure 7.  A bar graph to show the observed incidence
of DCS in 10 intervals compared to the predicted P(DSC)
from Eq. (12), given by Eq. (18) in Table I. The 1322
records were first divided into 10 probability intervals
based on the P(DCS) from Eq. (12) for each record.
The number of DCS cases in the interval were then
divided by the total number of cases in the interval 
to give the incidence of DCS. Equation (12) did not
systematically under- or over-predict the observed
incidence. It did under-predict the observed incidence
in intervals from 0.60 to 0.90, however.
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For my purposes, the exponential survival model
was clearly inappropriate; and while the log normal
model was slightly better than the log logistic, it
was more difficult to implement. I also evaluated
other models for failure time distribution, but the
log logistic model proved to be the best overall
for my applications.

My efforts over the past few years have
been directed toward developing probability
models for DCS that have accounted for major
physical and physiological variables (Figs. 4–7).
I have not completed analyzing several variables
known or suspected to influence the risk of DCS.
Age and gender differences continue to be discussed
as modifying factors for DCS. While it is difficult
to include age and gender in a deterministic
(theoretical) model of DCS, it is simple to include

these in a statistical model. I am always surprised
to find that one long half-time compartment
(about 6 hours) is adequate to describe the results
from the variety of hypobaric tests at my disposal.
I have brought empirical models into better
agreement with bubble models by including a
term to account for the presence and consequence
of metabolic gases in total evolved gas.

My second use of survival analysis was to
test a hypothesis about the inclusion of a power
term into simple expressions of evolved gas 
(Figs. 8–10). My goal was to understand a
mechanism about the perception of pain. An
exciting area to explore with research and
modeling is the biophysical linkage between
evolved gas and perception of pain. The future for
hypothesis testing and developing better predictive
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Figure 8.  A scatter plot that shows the observed
incidence of DCS in a group and the calculated
decompression dose with Dose 1 = ln [1 + (P1N2 –
P2)α * (t * 0.04728)0.922], where α = 1, and P1N2 is
from the 360-minute half-time, plus a curve from Eq.
(12). The position of each circle along the vertical axis
depends on the value of Dose 1 for each group.
Superimposed on the circles is a solid curve from Eq.
(12), given f(t; z) on the figure, that is the P(DCS) as a
function of Dose 1. The area of a circle is proportional
to the number of subjects in a group; the smallest
circle represents a test with 2 subjects and the largest
circle represents a test with 77 subjects.

Figure 9.  A scatter plot that shows the observed
incidence of DCS in a group and the calculated
decompression dose with Dose 2 = ln [1 + (P1N2 –
P2)α * (t * 0.00001517)1.491], where α = 8.44, and P1N2

is from the 91-minute half-time, plus a curve from Eq.
(12). The horizontal positions of the circles are the
same as in Fig. 8, but the vertical positions have
changed owing to the recalculation of decompression
dose. The goodness-of-fit was improved by estimating
the half-time, but the greatest improvement came 
from estimating α. The circles are positioned more
symmetrically around the curve than in Fig. 8, and the
LL improved from –1026 in Fig. 8 to –714 in this figure.
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models for DCS is good because new and better
data are being collected and shared. New variables
such as adynamia†20,21 and exercise during pre-
breathe22 are now being tested. Future models that
include these variables will have application to
astronauts during spacewalks, or when spaceflight
crews are walking on planets with reduced gravity
such as is found on Mars.

Applications for DCS probability models will
increase since these are available tools and, if
properly applied, can provide useful information. It
is possible, for example, to lose cabin pressuriza-
tion in the T-38 aircraft.23 What is not known is
whether, when pressurization is lost, an emergency
landing is needed to avoid DCS. I applied Eq. (17)
(expressed through Eq. (12)) under two scenarios
for the T-38.23 The DCS risk for the loss of pressure
during a normal flight is seen in Fig. 11; the DCS
risk for loss of pressure during a high-altitude
flight is seen in Fig. 12.

†Adynamia is a concept about how gravity is a variable
in DCS, particularly how walking in a gravitational
field influence micronuclei that in turn influence the
likelihood of DCS.
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Figure 10.  The resulting f(t; z) for the average ∆P of 6.0
psia from the f(t; z) equation on Fig. 9 where α = 8.44,
ρ = 0.00001517, λ = 1.491, and t1/2 = 91 minutes. The
f(t; z) resembles the shape of the curve from Nims19

(Fig. 40 in ref. 19) in a test with ∆P = 8.4 psia.
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Figure 11.  The approximate flight envelope (solid
near-vertical lines) of the T-38 and the resulting cabin
pressure (dashed line) under nominal flight conditions.
Transposed over the flight envelope are 12 DCS
isoincidence isopleths for the condition where the crew
is not physically active. The proper way to determine
the risk is to select a time of exposure and the altitude
of the exposure and then to interpolate between the
isopleths. For example, the dot at the intersection of 1
hour and 30,000 ft falls directly on the 20% DCS
isopleth; this is the best estimate of risk. There is no
risk of DCS if cabin pressure is maintained. However,
a loss of cabin pressure for even brief periods of time
can expose a crew to a high risk of DCS. The
likelihood of very serious DCS symptoms is greater as
the risk of any DCS symptom increases.

The T-38 can fly high, but only for a short
duration. Altitude, duration, prebreathe, and
exercise at altitude are variables in Eq. (17). I
assumed a limited use of O2 during the flight
(defined in ref. 23) and the aviators were not
physically active during flight. Figure 11 shows the
P(DCS) given that the aviator was exposed to a
certain decompression for a certain time. Notice
that below a normal cabin altitude of 18,000 ft, it is
unlikely that DCS will occur. However, a 1-hour
exposure to 30,000 ft puts the aviator on the 20%
DCS isopleth (solid point). During high-altitude
flight, the cabin altitude can increase to 22,000 ft,
but the flight time is limited to just over an hour.
Figure 12 shows the lowest cabin pressure (22,000
ft) with the T-38 at the highest operating altitude



(50,000 ft); this pressure is associated with a risk of
DCS between 1% and 5%. The information in Figs.
11 and 12 can help managers make flight rules that
would prevent a loss of cabin pressure in a T-38
leading to the loss of an aircraft and its crew.
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Appendix A:
Two Forms of the Log Logistic Survival Model

A common form of the log logistic survival function S(t) is:

S(t) = 1 – [ 1 / ( 1 + exp(–ω))], (A1)

where: ω = [ln(t) – β(2)] / β(1).

The distribution is specified as a two parameter distribution generalized to include the 

effects of covariates on survival times. The generalized log logistic is called an accelerated 

life model where the logarithm of survival time is a linear function of the covariates:

ω = [ln(t) – β(2) – βx1 * x1 – … – βxn * xn ] / β(1). (A2)

Other functional expressions of the model are:

h(t) = f(t) / S(t) (A3)

f(t) = exp[–(ln(t) – β(2)) / β(1)] / [(1 + exp(–(ln(t) – β(2)) / β(1)))2 * β(1) * t] (A4)

h(t) = f(t) / [1 – ( 1 / ( 1 + exp(–((ln(t) – β(2)) / β(1)))))], (A5)

and of the accelerated life model are:

f(t; z) = exp[–(ln(t) – β(2) – βx1 * x1 – … – βxn * xn ) / β(1)] / 

[(1 + exp(–(ln(t) – β(2) – βx1 * x1 – … – βxn * xn ) / β(1)))2 * β(1) * t] (A6)

h(t; z) = f(t; z) / [1 – ( 1 / ( 1 + exp(–((ln(t) – β(2) – βx1 * x1 – … – βxn * xn ) / β(1)))))] (A7)

where: β(1) = scale parameter

β(2) = index or location parameter

βxn = parameter from regression for variable n

xn = value for the nth variable

t = time

An alternate form7 of the log logistic survival model used in my analysis is:

S(t) = exp [–ln(1 + (t * ρ)λ)]. (A8)

It is expanded to include covariates as:

S(t; z) = exp [–ln(1 + (c1 * x1) * … * (cn * xn) * (t * ρ)λ)]. (A9)

The h(t) expression of the log logistic model is:

h(t) = λ * (tλ – 1) * ρλ / (1 + (t * ρ)λ), (A10)
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and the accelerated h(t) is:

h(t; z) = λ * (c1 * x1) * … * (cn * xn) * (tλ – 1) * ρλ / 

(1 + (c1 * x1) * … * (cn * xn) * (t * ρ)λ) (A11)

where: ρ = scale parameter

λ = index or location parameter

cn = parameter from regression for variable n

xn = value for the nth variable

t = time

16



Appendix B:
Variables in the Hypobaric Decompression Sickness Database

Dependent Variables

DCS: presence (1) or absence (0) of any sign or symptom of decompression sickness
(DCS), excluding paresthesia when it was the only symptom.

DCSTM: failure time to the first sign or symptom of DCS or censored time to the end of the
test in those without DCS (hours).

Independent Variables

P1N2: calculated nitrogen pressure (psia) from Eq. (1) to account for all denitrogenation
procedures.

P2: ambient pressure after ascent (psia).

EXERCISE: presence (1) or absence (0) of repetitive exercise planned for the test.

VGE: presence (1) or absence (0) of any grade of VGE.

MVGE: maximum Grade of VGE (0–4) detected during the exposure.

VGEI: presence (1) or absence (0) of Grade I VGE as the maximum grade of VGE recorded
during a test.

VGEII: presence (1) or absence (0) of Grade II VGE as the maximum grade of VGE recorded
during a test.

VGEIII: presence (1) or absence (0) of Grade III VGE as the maximum grade of VGE
recorded during a test.

VGEIV: presence (1) or absence (0) of Grade IV VGE as the maximum grade of VGE
recorded during a test.

VGETM: failure time to the first VGE detected or censored time to the end of the test in those
without VGE (hours).

ALTTM: scheduled duration of the test or the time t at P2 in a simulation (hours).
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