1 2

3

POWER CALCULATIONS for the Traditional (Radioactive) LLNA

4 Introduction

- 5 During their review of the LLNA: BrdU-ELISA test method, some members of the
- 6 ICCVAM LLNA expert peer review panel requested information on statistical power vs.
- 7 number of animals used for this assay. They wanted know how many animals would be
- 8 adequate for detecting the associated threshold stimulation index for a positive response
- 9 (e.g., SI > 3). Dr. Joe Haseman (a consultant biostatistician for ILS, Inc., the NICEATM
- 10 support contractor) subsequently conducted power calculations for each nonradiolabeled
- 11 method as well as the traditional (i.e., radiolabeled) LLNA to determine the number of
- 12 animals needed to demonstrate statistical significance between control and treatment
- 13 groups. The results of this analysis
- 14 (<u>http://iccvam.niehs.nih.gov/restrict/llnapanel/docs/HasemanReport14Feb08FD.pdf</u>)
- 15 provided the adequate number of animals to achieve an $SI \ge 3$ (and a number of
- 16 alternative SI thresholds) for each method.
- 17 An assumption made in the original analysis was that any "treatment effect" produced
- 18 would have essentially the same SD (on a log-transformed scale) as the control data (i.e.
- 19 that the treatment will change only the mean response and not the variability). Therefore,
- 20 a follow-up analysis (described herein) was conducted to test this assumption. Dr.
- 21 Haseman was provided vehicle control and corresponding treatment group data
- 22 (disintegrations per minute) from five to seven different traditional LLNA studies from
- 23 three different laboratories in order to establish the variability among control and treated
- animals. The power calculations were based on a one-sided p<0.05 Student's t test
- 25 applied to the log-transformed data (just as in the previous power calculations). Dr.
- 26 Haseman's analysis follows:
- 27

Supplemental InformationFebDraft Statistical Report: Power Calculations for the Traditional LLNA

	Test Substance	Original Scale		Log Scale		
Experiment		Mean	SD	Mean	SD	Laboratory
1A	Veh	443.4	233.86	5.976	0.5531	1
	Oxy	2145.0	621.21	7.625	0.3671	1
	Veh	410.2	100.30	5.994	0.2421	1
1B	Dino-4	8073.6	3155.55	8.942	0.3603	1
	Dino-10	14235.5	3725.77	9.538	0.2649	1
	Veh	462.2	172.26	6.078	0.3874	1
1C	Q-C-33	2949.8	551.49	7.974	0.1998	1
	C-C1100	6160.8	1242.31	8.709	0.2104	1
	Veh	397.8	92.64	5.968	0.2092	1
1D	Tri-33	3181.0	697.81	8.040	0.2616	1
	Tri-100	7941.0	2912.59	8.933	0.3335	1
15	Veh	466.8	154.26	6.104	0.3262	1
IE	НСА	1906.6	376.37	7.538	0.1938	1
1F	Veh	352.6	118.53	5.826	0.3211	1
	Form	1589.2	878.33	7.223	0.6381	1
1G	Veh	333.0	167.74	5.702	0.5336	1
	KCr2	1278.8	779.84	6.969	0.7357	1
	Veh	487.8	164.01	6.142	0.3649	2
2A	KCr2-0.1	2194.4	1583.04	7.461	0.7852	2
	KCr2-0.5	6188.2	5764.00	8.658	0.8541	2
	Veh	729.2	314.07	6.496	0.5214	2
2B	Form-5	2739.9	902.44	7.866	0.3636	2
	Form-10	7724.2	1226.35	8.941	0.1719	2
2C	Veh	586.6	279.96	6.296	0.4252	2
	HCA-10	2720.8	523.28	7.894	0.1939	2

27 Table 1 Data for Summary Statistics

February 27, 2008

Supplemental Information	February 2
Draft Statistical Report: Power Calculations for the Traditional LLNA	

Experiment	Test Substance	Original Scale		Log Scale		
		Mean	SD	Mean	SD	Laboratory
	HCA-30	10548.9	4527.28	9.193	0.4408	2
2D	Veh	618.4	103.27	6.416	0.1644	2
	Oxy	3033.3	438.87	8.010	0.1379	2
	Veh	487.4	80.26	6.178	0.1585	2
2E	Dino-4	12558.2	2403.34	9.421	0.2161	2
	Dino-21	7007.8	(n=1)	8.855	(n=1)	2
	Veh	304.1	208.62	5.402	0.9937	2
25	Tri-7	1811.5	915.09	7.328	0.7646	2
۷r	Tri-33	9136.3	3307.04	9.054	0.4322	2
	Tri-100	22884.4	3115.72	10.031	0.1372	2
	Veh	309.4	110.19	5.686	0.3512	2
2G	Q-C-33	3298.6	1079.53	8.054	0.3521	2
	Q-C-100	6275.1	2180.15	8.688	0.3924	2
2 ٨	Veh	330.5	145.26	5.706	0.5184	3
3A	НСА	3394.9	851.67	8.104	0.1147	3
3B	Veh	288.5	229.15	5.338	1.0113	3
	Form	1449.4	947.98	7.086	0.7575	3
	НСА	1017.2	673.94	6.752	0.6697	3
3C	Veh	152.5	31.78	5.008	0.2275	3
	Form	1932.5	16334.1	7.205	1.0508	3
	НСА	1103.1	451.06	6.939	0.4102	3
3D	Veh	296.2	126.07	5.604	0.4820	3
	НСА	2219.9	914.30	7.635	0.4271	3
3Е	Veh	215.3	149.44	5.104	0.9148	3
	Form	2519.7	224.81	7.829	0.0899	3
	НСА	2055.6	1031.49	7.384	0.9743	3

28 Abbreviations: SD = Standard deviation; Veh = Vehicle

Supplemental Information Feb Draft Statistical Report: Power Calculations for the Traditional LLNA

Laboratory	Test	Origina Avei	al Scale rages	Log-transformed Scale Averages		
	Substance	Mean	SD	Mean	SD	
1	Veh	409.4	148.51	5.950	0.3675	
	Rx	4946.1	1494.10	8.149	0.3565	
2	Veh	503.3	180.05	6.088	0.4256	
	Rx	7008.7	2151.24	8.532	0.4032	
3	Veh	256.6	136.34	5.352	0.6308	
	Rx	1961.5	828.67	7.367	0.5618	
All 3	Veh	403.8	156.93	5.843	0.4582	
	Rx	5102.3	1597.95	8.121	0.4291	

29 Table 2 Summary Statistics

30 Abbreviations: Rx = Treatment groups; SD = Standard deviation; Veh = Vehicle 31

32 Discussion and Conclusion

Overall, these are not subtle effects being detected. Although there are some ratios close to 3, the average ratio seen in these data is approximately 12 to 13, with some as high as 75. All of these effects detected by the ratio rule would also have been detected as

36 significant (p<0.05) by a simple Student's t test applied to the logged data.

For each of the three labs (and overall), the SD's for the treated groups (on a log scale)
track very closely those for the vehicle controls, confirming the assumption that we made
in the power calculations that although the chemical may increase the mean response, it

40 does not increase the (logged) variability. Frankly, I was surprised to see how closely the

does not increase the (logged) variability. Frankly, I was surprised to see now closely the

- 41 average (logged) SD's agreed for the control and treated groups (see table above). Lab 3
 42 was more variable than Labs 1 and 2 for the treated groups, just as they were for the
- 43 controls.

One potential problem with the Ratio Rule is that it ignores the underlying variability inthe data, and I had speculated that the responses for certain chemicals may be estimated

46 more accurately than for others. To check this out, I did a simple one-way ANOVA on

47 the logged SD's. The overall difference among chemicals was marginally significant

48 (p=0.064). Looking at the data, it does indeed appear that some chemicals (e.g., KCr2

- 49 with SD's of 0.7357, 0.7852, and 0.8541) have more variability associated with the
- estimation process than do other chemicals (e.g., oxyfluorfer [0.3671, 0.1379], dinocap
 [0.3603, 0.2649, 0.2161, and Q-C [0.1998, 0.2104, 0.3521, 0.3924]). This difference in
- 52 variability among chemicals would have been statistically significant, were it not for the
- highly variable results observed for FORM [ranging from 0.0899 to 1.0508], which itself
- 54 may be of interest.

55 These latest calculations support the earlier power calculations by validating one of the 56 key assumptions made. It also provides further evidence that a formal statistical test may Supplemental InformationFebrDraft Statistical Report: Power Calculations for the Traditional LLNA

- 57 be superior to the "Ratio Rule" for evaluating the data, at least from the standpoint of
- 58 power.
- 59 Joe Haseman
- 60 2-23-08