This is an area that really needs mock screenshots to figure out whether the application is going to meet users’ needs. These requirements could be met in lots of different ways, some of which would be completely unacceptable because the UI wasn’t comprehensible.
Temporal Queries Use Cases and Requirements

The use cases only include specifying the query. They should include executing the query, too.
	Use Case Name
	Temporal Query – Base + Offset

	Use scenario
	1. A banker wants to query for biospecimens which were collected when patients were over the age of 30.

	Use Case ID
	caTISSUE_Suite_UC_TQ_1

	Primary Actor
	Banker

	Brief Description
	Define a query using an unknown
base date plus some defined temporal offset

	Trigger
	Actor navigates to the Advanced Search page

	Pre-conditions
	Successful navigation to the Advanced Search page

	Flow of Events
	1. The actor initiates the formulation of a new query by

a. Specifying the object whose date is to be used
(base)
b. Specifying the object expressing the offset (ex. calendar event point
)

c. Specifying the operation between the base and the offset (typically ‘+’ or ‘-‘
)

d. Specifying a predicate
.

	Post Conditions
	Success Condition: the query is formulated.

Error Condition: Invalid object (base)

Error Condition: Invalid object (offset)

Error Condition: Invalid operation – the operation is not compatible with the operands

Error Condition: Implausible predicate – predicate does not make sense (comparing the difference between two dates to an absolute date for example).

	Branch Points

	If a validation error
occurs, the system throws an exception, displays an error message and re-displays page for data entry.

a. Invalid Base Object: respecify base object (return to step 1a)

b. Invalid Offset Object (object type is not compatible with operation): Respecify base object (return to step 1b)

c. Invalid Operation: Respecify operation (return to step 1c). Both base object and offset object should have data types that are compatible with the chosen operation.

d. Implausible predicate: Respecify predicate (return to step 1d) or respecify operation (Return to step 1c)

	Related Use Cases
	

Biospecimen resource staff and scientists often need to obtain information about participants, specimens, or other data elements in the context of time. For example, there may be a need to find specimens collected from breast cancer patients under the age of forty, regardless of their actual absolute dates of birth or specimen collection. Similarly, users may wish to find specimens that have been collected or manipulated within a certain span of time (e.g. serum specimens from the same patient collected at least 1 year apart), regardless of absolute dates.

	Use Case Name
	Temporal Query – Base + Base

	Use Scenarios
	· Find all specimens that are to be collected today. (Requires calculation involving registration date and calendar event point)

· Obtain a patient sample that is more than one year after end of therapy but less than 2 years

	Use Case ID
	caTISSUE_Suite_UC_TQ_2

	Primary Actor
	All approved users

	Brief Description
	Define a query using an operation on two absolute (but unknown) dates

	Trigger
	Actor navigates to the Advanced Search page

	Pre-conditions
	Actor is a valid user of the system.

Successful navigation to the Advanced Search page

	Flow of Events
	1. The actor initiates the formulation of a new query by

a) Specifying the first object whose base date is to be used (base1)
b) Specifying the second object whose base date is to be used (base2)
c)
Specifying the operation between the base and the offset (typically ’-‘)
d) Specifying a predicate. The predicate is based on comparisons between two absolute quantities (for example minutes, hours, or days). ???

	Post Conditions
	Success Condition: the query is formulated.

Error Condition: Invalid base object

Error Condition: Invalid offset object

Error Condition: Invalid operation

Error Condition: Implausible predicate

	Branch Points

	If a validation error occurs, the system throws an exception, displays an error message and re-displays page for data entry.

a. Invalid Base Object (object type incompatible with operation): Respecify base1 object (Return to step 1a)
b. Invalid base2 object (object type incompatible with operation): Respecify base2 object (return to step 1b)

c. Invalid Operation - Respecify operation (return to step 1c). Both base1 and base2 should have data types that are compatible with the chosen operation.
d. Invalid predicate – Respecify predicate (return to step 1d) or respecify operation (return to step 1c)

	Related Use Cases
	

Requirements

	ID
	Summary
	Requirements

	TQ_01
	Predicate between attributes of different objects

	It must be possible to specify (possibly computed) predicates between temporal attributes of two? different objects
For example: specify a predicate between participant date of birth and specimen collection event

	TQ _02
	Temporal computations between two absolute dates
	Temporal computations between two absolute dates should produce coherent results. The subtraction of an absolute date from another should result in a certain positive number of time units if the minuend occurs later than the subtrahend, and should result in a negative number if the minuend occurs before the subtrahend.
Addition of two absolute dates is semantically nonsensical.

	TQ_03
	Temporal computations between an absolute date and a number representing time units
	The result of this computation is always an absolute date. The addition of N time units to an absolute date should produce an absolute date later than the original (offset by N time units). A subtraction should produce an absolute date earlier than the original (offset by N time units). In the case of subtraction, N is always the subtrahend.

	TQ _04
	Minimal time unit
	The minimal time unit for temporal computations shall be the minute. The user interface, however, should allow the expression of time in other units (months, weeks, days, etc.) when specifying queries, as deemed appropriate.

	TQ _05
	Temporal predicates
	The system must distinguish temporal predicates
and treat them as such based on data type. For example, using the ‘<’ operator to compare two dates infers that the first operand occurs earlier than the second if the condition is true.

	TQ_06
	Computed values displayable
	Values computed as a result of an operation (for example computing the difference between two dates) should be displayable in a column in the results

	TQ_07
	Generic ordinal values
	Although requirements (TQ_01 – TQ_06) discuss temporal values specifically, the functionality herein should be extensible to arbitrary ordinal
values.

�Please insert a requirement that the other requirements apply to dates and numbers in "dynamic" as well as "static" objects. This will need to be tested.

�Using the + sign here is a bad idea, since the use case involves calculations that are not always addition. Also, what the heck is "base"? Is it oversimplifying to call it something like "time between two dates"?

�I thought this was the other case -- the difference between two dates (birth date and collection date). I don't understand why this is provided as the example for the offset case.

�Unknown to the user, I guess, right?

�So in the case of looking for participants who were younger than 40 at the time of collection, what object is this? There is no “BirthDate” object, though there is an attribute on Participant.

�The offset can be a point? I thought it would always be an interval: 40 years, 30 mins…

�But in your first example, <

�What's a predicate? A unit of time? That seems to be the only thing not mentioned, unless "the offset" is both number and unit.

�There should be an overall requirement that the error messages are expressed in language that is meaningful to an end user. (I know you didn't intend to imply that the actual displayed error message would be "Invalid object (base)")

�This sounds more like date + offset (date + N days)

�Again, the use of the word 'object' is confusing me. In the case of an event object, or a lab annotation, we are asking about the date attribute of that object (whatever it may be called -- is the system going to be smart enough to recognize date/time attributes no matter what they're named?) However, in the case of age, the object is the Participant and it has at least 2 date attributes, birthDate and deathDate. Same thing for the Treatment annotations, with a begin and end date. What is the person forming the query specifying?

�Add a requirement that the steps in advanced query (specify it, change the view, execute) will be the same for temporal queries as for all other queries?

�I don't know what this means.

�This requirement seems like it's saying that the rules of standard date arithmatic must apply. I appreciate that you're not making any assumptions, but this might be overkill. How would I test this? Is the requirement really that the query UI must be such that the minuend is displayed on the left or the top and the subtrahend on the right or the bottom because that's how people in the English-speaking world expect to see it? (i.e. that it must be clear to the user what's being subtracted from what)

�This is true, but the operation won't always be minus, will it? If you wanted to specify that one date occured before another you could specify that Date1 < Date2. Or is that a different use case? If minus is the only legitimate operator, you should just say that.

�by whom, and when? Will all of the units always be available? Saying 'as deemed appropriate' sounds like the system might be trying to figure out the unit that's appropriate for a given query/calculation.

�??

�number AND unit, or just number? How is the heading of the column determined? Can the user sort on that column? Can the user export the values in that column along with everything else in a view? Is this column available for selection and deletion in "Define view"?

�I think you mean cardinal values: 1,2,3.5, etc. Ordinals are first, second, one-hundred-fiftieth, etc.

�There may be cases where a user tries to compare annotation attributes with numerical values without recognizing that the values have different units. For example, what if the dose of one agent in a treatment annotation is grams and one is milliliters? (The annotation allows the user to fill in the unit.) I don't think you want to make the application responsible for recognizing cases like this, so I'd put in a "requirement" or assumption that it is NOT the responsibility of the system to ensure that the query compares like units. That is the responsiblity of the user.

