






# **GLAST Large Area Telescope**

# Next Steps, First Ops, and Summary

**Bill Atwood** 

Next Steps Presentation 6 of 6



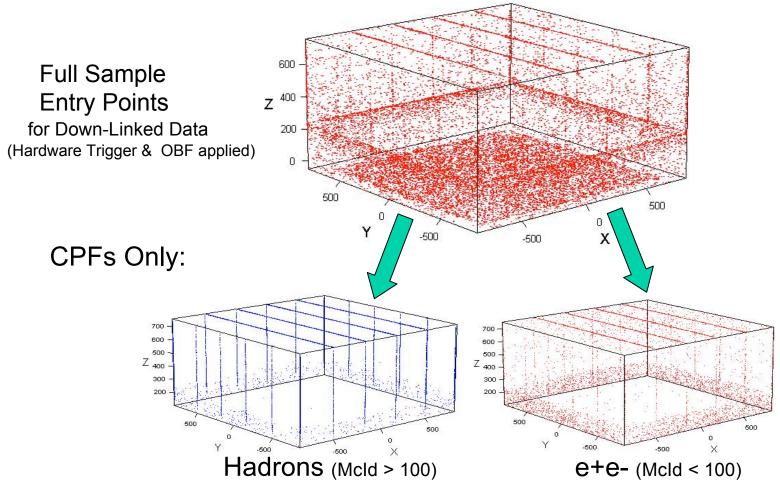
# **Analysis Iteration Prior to Launch**

#### Context:

• For DC2 four iterations on the Event Analysis were made, each showing improvement of its predecessor

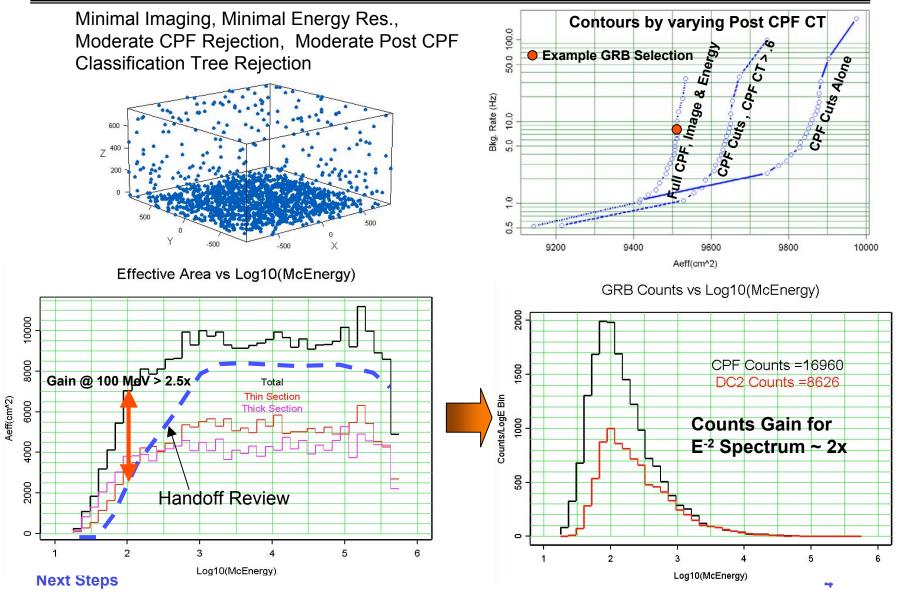
- Final DC2 results showed that Irreducible backgrounds dominated the residuals
- Presence of irreducible backgrounds corrupts the development of a background rejection analysis from making "cuts" to training Classification Trees
- All previous background rejection passes binned the events in energy this leaves artifacts in the resulting acceptances.

## Pass 5 Underway:


- Identify and remove the irreducible component from background flux.
- Divide analysis up along general event features
- Charged Particles within the Field-of-View (CPFs)
- Initial Shower Topology, Full Shower Topology
- Re-assess Event Classification according the Science Topics

•GRB, Galactic plane Sources, High-latitude Sources, Diffuse




# A First Step: CPF Analysis

Goal: Hermitically Seal the LAT from Charged Particles entering the Front (This is essentially an ACD analysis - with minimal usage of Tracker Information)





## **Example GRB Selection**



Presentation 6 of 6



## Getting Ready for Data: Operations & Science Prep.

**Operations:** Instrument Science Operations Center (ISOC) located at SLAC - Manger Rob Cameron (SLAC) Oversees the day-to-day operation of the LAT

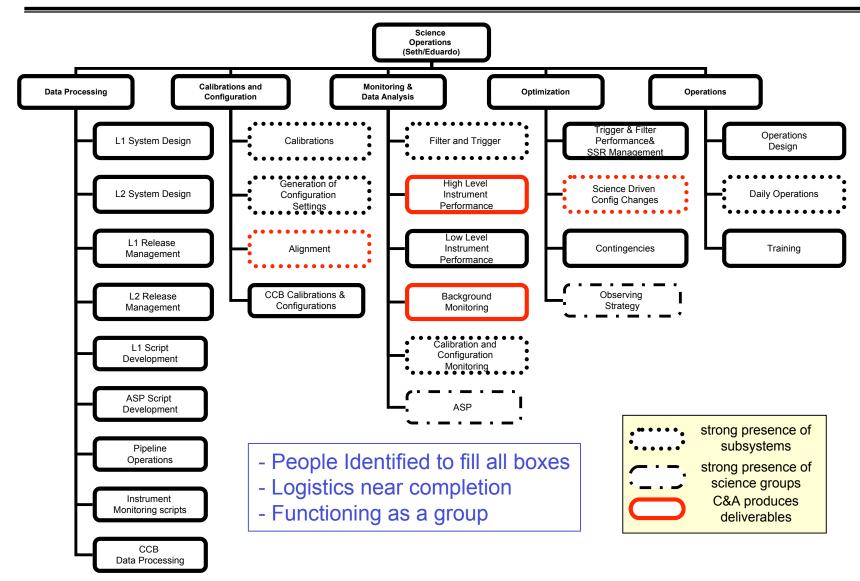
- Control & Command of the LAT Instrument
- Processing of down-linked data
- Monitoring of Instrument Performance
- Participation from across the collaboration

## Science Prep.: LAT Science Groups

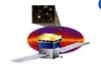
Overall analysis co-ordinator - Julie McEnery (GSFC)

| Groups | Ş | Blazars & Other AGNs<br>Calibration & Analysis Methods<br>Catalogs<br>Dark Matter & New Physics<br>Diffuse & Molecular Clouds |
|--------|---|-------------------------------------------------------------------------------------------------------------------------------|
|        | Ţ | Dark Matter & New Physics                                                                                                     |
| ບ<br>ດ |   | Gamma Ray Bursts                                                                                                              |
| 0,     |   | Pulsars, SNRs, & Perions                                                                                                      |
|        |   | Sources in the Solar System                                                                                                   |
|        |   | Unidentified Sources, Pop. Studies, & Other Galaxies                                                                          |

## Prepare for Data with Data Service Challenges


Next Steps Presentation 6 of 6

February 2, 2007: SWG Review




# **\$**

## **ISOC** Organization



Next Steps Presentation 6 of 6



# **Overview of ISOC Tests and/or Workshops**

- The Science Operations Team of the ISOC will participate in a series of tests with real data and Monte Carlo simulations to ensure readiness prior to launch
- □ End to End Tests (1 to 6)
  - interface tests between the observatory and the GLAST Ground System which is composed of all elements that are needed to support the Observatory from the ground during its mission lifetime
    - real data from LAT will be used to address data processing, implement and test operations tools and procedures used in the control room at SLAC
    - First test scheduled for mid-February
- □ Service Challenges (1 to N)
  - interface between science working groups, science analysis software groups and the ISOC.
    - simulated data from LAT will be used to address monitoring, data processing and data analysis related functions
    - First test November 2006
- □ ISOC Ops tests (1 and 2)
  - Simulate complete operations between Science and Flight Operations
    - detailed scope yet to be defined but will combine elements of End-to-end tests and Service Challenges
    - First test scheduled for summer 2007



# **Service Challenges**

- Sequence of simulations, of varying degrees of fidelity to flight data to exercise our capabilities.
- Now that we have met the requirements, how are we to maximize the science return?
- □ What is coming:
  - Series of 1 year Quick Simulation (1<sup>st</sup> one in Nov. 2006)
    - Astrophysical source updates: GRB models, pulsars (noise, phase dependent spectra, more sophisticated GRBs, etc)
    - Quantify how different astrophysics models interact (e.g. blazar luminosity function on EBL studies or Galactic diffuse model on SNR studies)
    - Develop analysis requiring long datasets
    - Exercise catalog pipeline
  - 55 day full detector simulation
    - Updated sky model
    - Improved treatment of residual background in high level analysis
    - Exercise and test ASP\* and Catalog pipelines, flow resulting data to the GSSC.
    - Some detector/observatory imperfections exercise ISOC monitoring and explore the effects of these on the science results (and test communication between SO and the science groups).



# **Service Challenge**

- □ What is coming (cont)
  - Series of downlink (3hr) sized full detector sims in a variety of detector and observation configuration. Simulations produced in very low-level raw format.
    - Fully exercise level 1 pipeline
    - Exercise and develop all operations monitoring software (I.e. find and characterize instrument configurations and problems)
    - Practice ISOC science ops (duty scientist shifts etc)
  - One year full detector simulation (June 2007)
    - This will provide the most realistic simulation dataset to practice and develop science analysis.
    - Final iterations of instrument performance and IRFs.
    - Develop analyses that require long integration times (extragalactic and Galactic diffuse, dark matter searches etc)
  - In parallel with these large organized simulations, the science groups are also generating smaller sets of simulated data for specific studies
    - Populations of GRB, grids of point sources with systematically changing properties etc.



# First ~60 days On-Orbit

#### TASK\*

- initial background flux assessments
- onboard filter tuning
- tuning and monitoring onboard science algorithms
- searches for subtle instrument problems and hardware system performance trending

Initial LAT Operations

Initial Science Observations

- initial mechanical alignment calibration between LAT and spacecraft (see GLAST Calibration Plan document)
- initial science performance checks
- first-light science

\*See outlined in SVAC plan, LAT-MD-00446

| Task                                                                                 | Duration                                                              | Comment                                                                                                                                                                                                                                      |
|--------------------------------------------------------------------------------------|-----------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Power-on, boot, configuration,<br>command/communication<br>checks                    | 5 days                                                                | Done in contact with the ground to maximum extent possible.                                                                                                                                                                                  |
| Optional STRs*                                                                       | 2 days                                                                | Additional ground contacts possibly needed.                                                                                                                                                                                                  |
| Charge injection runs                                                                | 2 days                                                                | Additional ground contacts needed for data dumps.                                                                                                                                                                                            |
| Initial trigger and rate tests                                                       | 5 days                                                                | Monitor trigger rates in near<br>realtime as frequently as possible.<br>Three or more orbits with filter in<br>pass-through mode (see text);<br>otherwise, nominal data<br>downlinks. Observatory pointing<br>optimized for ground contacts. |
| Optional STRs                                                                        | 2 days                                                                | Additional ground contacts possibly needed.                                                                                                                                                                                                  |
| Sensor checks and coarse<br>internal alignment; first-light<br>pointed observations. | 14 days plus 7<br>days of optional<br>scheduled STRs<br>interspersed. | Day 1 and day 7 inertially pointed;<br>the rest is pointed with limb<br>avoidance or two-target mode<br>(TBD). The same data can be used<br>for all these analysis purposes.                                                                 |
| Early sky survey tuning                                                              | 14 days,<br>including STRs                                            | Nominal operations.                                                                                                                                                                                                                          |

**Summary Timeline** 

\*STR: Special Test Request



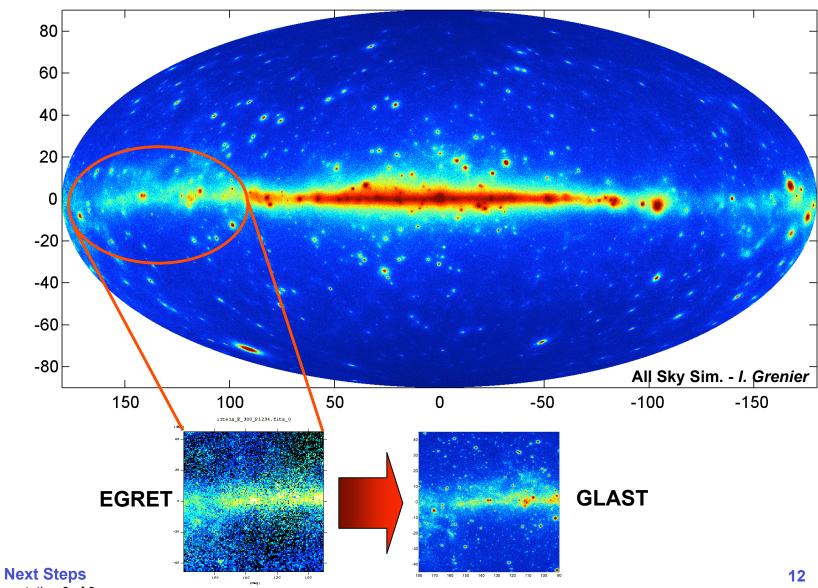

# **First Light**

#### **Use Bright Pulsars as in Flight Calibration Sources**

- Ephemeris Identification (we can be certain what we are looking at!)
- Large Photon Stats: determine on-orbit instrument response
- Timing analysis: Calibrates Clocks, orbit location determination
- Provides alignment between the LAT and Star-tracker
- Gamma-ray pulsars have hard spectra with sharp, measurable cutoffs
  - verify that the location of the spectral feature is consistent with previous measurements
  - science bonus: produce the best determination of the location and shape of the spectra
- Slew to the secondary target when the primary target is occulted by the Earth will also perform a continuous inertial pointed observation of the primary target, allowing the Earth to enter the FoV. Allows gamma-albedo in the front of the LAT and charged particles in the back to better determine the nature of the backgrounds



Present Candidate: Vela, Crab, & Geminga Secondary Target PSR 1706 (Galactic center also in the FoV)




February 2, 2007: SWG Review

**GLAST LAT Project** 



## First Year Scan - All Sky Survey



Presentation 6 of 6





## **Key Level 2 Science Performance Requirements Summary**

| Parameter                                    | SRD Value                                            | Current Best Estimate                            |
|----------------------------------------------|------------------------------------------------------|--------------------------------------------------|
| Peak Effective Area (in range 1-10 GeV)      | >8000 cm <sup>2</sup>                                | ~ 9000 cm <sup>2</sup>                           |
| Energy Resolution 100 MeV on-axis            | <10%                                                 | ~ 10%                                            |
| Energy Resolution 10 GeV on-axis             | <10%                                                 | < 6%                                             |
| Energy Resolution 10-300 GeV on-axis         | <20%                                                 | < 8%                                             |
| Energy Resolution 10-300 GeV off-axis (>60°) | <6%                                                  | ~ 5%                                             |
| PSF 68% 100 MeV on-axis                      | <3.5°                                                | < 3.2°                                           |
| PSF 68% 10 GeV on-axis                       | <0.15°                                               | <.1°                                             |
| PSF 95/68 ratio                              | <3                                                   | < 3                                              |
| PSF 55º/normal ratio                         | <1.7                                                 | <1.5                                             |
| Field of View                                | >2sr                                                 | >2sr                                             |
| Background rejection (E>100 MeV)             | <10% diffuse                                         | See Discussion                                   |
| Point Source Sensitivity(>100MeV)            | <6x10 <sup>-9</sup> cm <sup>-2</sup> s <sup>-1</sup> | < 4 x 10 <sup>-9</sup>                           |
| Source Location Determination                | <0.5 arcmin                                          | < 0.5 arcmin                                     |
| GRB localization                             | <10 arcmin                                           | < 5 arcmin                                       |
| Instrument Time Accuracy                     | <10 μsec                                             | <<10 $\mu$ sec (current 1 $\sigma$ = .7 $\mu$ s) |
| Dead Time                                    | <100 µsec/evt                                        | 26.5 μsec/evt nominal                            |
| GRB notification time to spacecraft          | <5 seconds                                           | Design meets requirement                         |