

Table of Contents

- Acknowledgements
- Optic Customers
- SCSi Mirrors
- Manufacturing Processes
 - Procurement and Rapid Removal
 - Machining Methods
 - Patented and/or Proprietary Processes
- Test Results
- SCSi Properties
- Additional Applications

Acknowledgements

MCCARTER

Frank Anthony Analytical Scientist St.Patricks Day 2003

- In memory of and appreciation for quantifying our successful machining methods, teaching us to frit bond, authoring our 5 technical papers and donating his 45 years of his library collection to McCarter.
- A graduate of MIT, Anthony had 46 years of thermal structural experience. He worked at Boeing for 6 years as a consultant, and Bell Aerospace for 35 years a Program Manager and Technical Director for silicon laser mirror and developmental contracts.

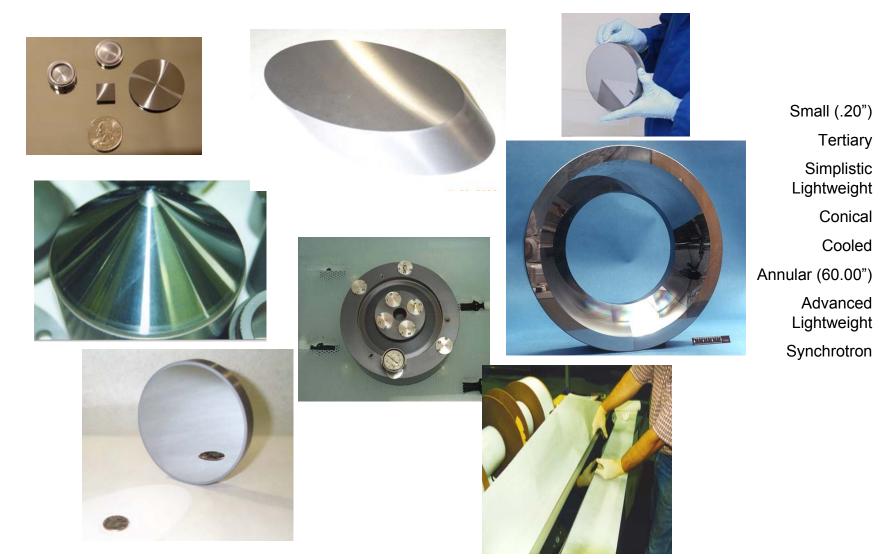
Welcome to Dr. Roger Paquin

Advanced Materials Consultant

Dr. Roger Paquin

- A graduate of Stevens Institute of Technology, Dr. Paquin is a Fellow of SPIE and IOES, as well as a member of ASM International.
- Dr. Paquin is world renowned Material Scientist who has developed processes and procedures that enabled the manufacturing of Mirrors and Telescopes that are currently in use and production.
- At McCarter, Dr. Paquin will review, guide and assist our effort to implement single crystal Silicon, in place of Beryllium. He will also be our consultant in the High Energy Laser SCSi Mirrors and High Performance Cooled SCSi Mirror Programs

SCSi Optic Customers since 1993



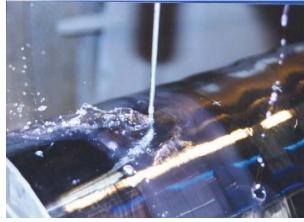
- Northrop Grumman Space Technology
- Raytheon Missile Systems
- Raytheon Elcan
- Goddard Space Flight Center
- Argonne National Lab

SCSi Mirrors Manufactured by McCarter

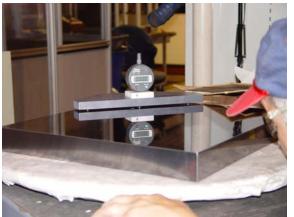
Manufacturing Processes

- Zero-D Material Procurement
- Rapid Removal Equipment and Customized Tooling
- Cuts Manufacturing Time from 21 days to 3 days
- Proven and Repeatable

Machining Processes


Slicing

Grooving



Turning

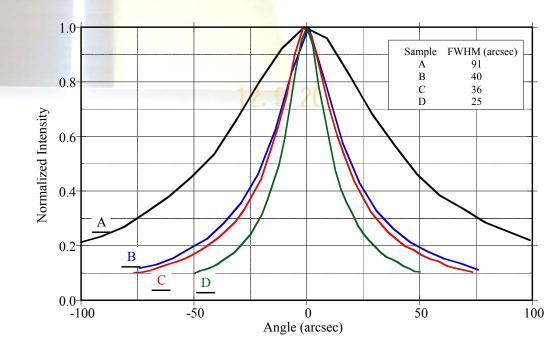
Drilling

Proprietary and/or Patented Processes

Superfinished and Frit bonded

Frit Bonding Preparation

Etching and Cleaning

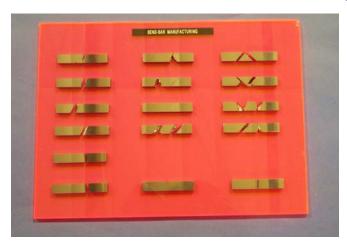


Metal Inserts in SCSi

SSD Removed by McCarter Superfinish

Test Results –

Normalized rocking curves of the four samples. The insert shows their Full Width Half Height values. A -400 grit B -600 grit C -800 grit D - McCarter Superfinish


Awarded US Patent 6,443,817 for Superfinish Process

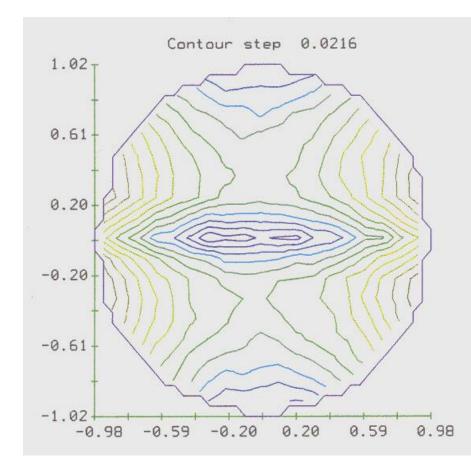
Test Results – Frit Bonding Allows Complexity

Strength Test Results

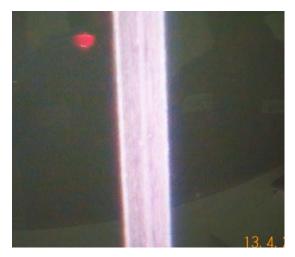
MCCARTER

Silicon Frit Bonded Bend Bars

4-Point bend strength measured of three types of bars per MIL_STD 1942

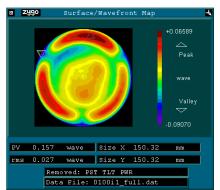

- Silicon (not shown)
- Bonded Silicon
- Cryocycled Bonded Samples (not shown)

Type of Bar	Number	Average Strength	Standard Deviation	Standard Deviation	
		(psi)	(psi)	Average (psi)	
Silicon	5	14711	2891	0.1965	
Bonded Silicon	10	13350	3086	0.2312	
Cryocycled	7	12480	2423	0.1942	
Bonded Silicon	8	16092	3136	0.1949	

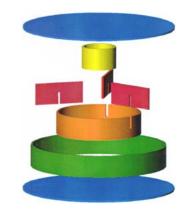

4-Point Bend Strength Test Performed at Alfred University

Test Result – Optical Polishing over Frit Bond Joint

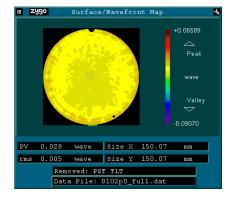
Polished to λ/17rms


No Discontinuity

3-plank polished plate


Test Result – Light-Weight SCSi Mirror Print through Removal

After 1 iteration After 2 iterations Initial Figure zygo 4 B Zygo zygo Surface/Wavefront Map Surface/Mavefront May 4 Surface/Wavefront Map 23 +0.34470 +0.34470 +0.34470 wave wave wave -0.35132 248 -0.35132 -0.35132 244 247 mm mm mm 244 mm 243 96 mm 247 Size X 150.3 0.696 Size X 150.3 ΡV 0.118wave ΡV 0.028 Size X 150.1 ΡV wave mm mm wave mm Size Y 150.3 Size Y 150.3 Size Y 150.1 rms 0.025 wave mm rms 0.005 rms 0.207 wave mm wave mm Removed: PST TLT Removed: PST TLT Removed: PST TLT

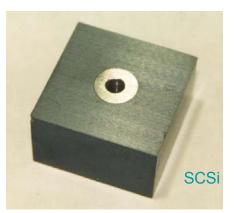

Initial figure (with "power" removed) shows "print through" of support structure.

67 minutes

10 minutes

Schematic showing the general structure of the McCarter Single Crystal Frit-Bonded Silicon Lightweight Mirror

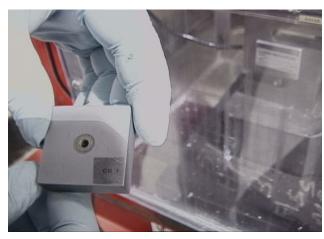
Final figure shows no "print through" of support structure.


MCCARTER

Test Result – Insert Process Adds Modularity

Sequence	Name	Description	Location on Tape	Failure Point lbs	
1	GK-2	Si-39Ni	0:00:11	771	
2	GK-3	Si-39Ni	0:01:06	551	
3	SiC	SiC-39Ni	0:01:40	1239	
4	GJ-3	Si-39Ni	0:03:40	281	
5	GJ-2	Si-39Ni	0:04:40	Bolt Bent	
6	GJ-2	Si-39Ni	0:07:00	1220	
7	Tangent Flange	SiC-39Ni	0:07:25	1042	

All strengths are verified by McCarter video tape.


- Silicon tends to fail before the frit-bonded joint fails.
- The initial quality control in selecting zero-d material is critical.
- In addition all subsequent processing operations can either enhance or defect the material strength.

Insert Process

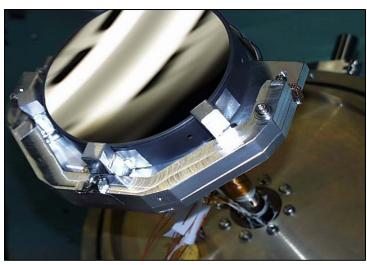
Fatigue Testing after Cryo

Confirmed by Video

SCSi Block w/ 39NiFe Insert

Post Rupture Reveals Excellent Frit Adhesion to Insert

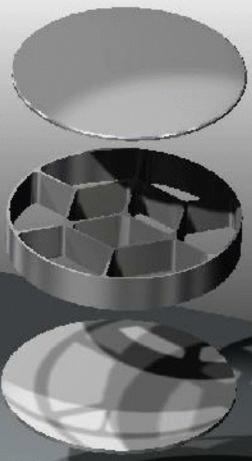
Before Cryo 398lb/sq in


After Cryo 772lb/sq in

Cryostability of Lightweighted SCSi Mirror

"The quoted NGST/ISIM wave front requirement is 58nm stability, but for the first time we have a lightweight cryo optic (38nm) that is in that range."

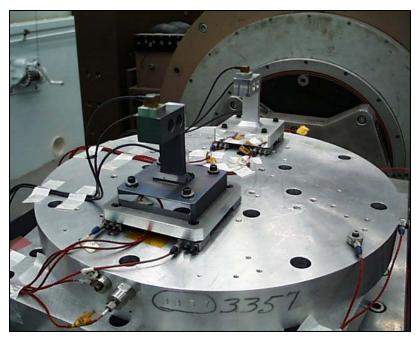
Dr. Dave Content


McCarter 12.5 cm SILICON SPHERICAL MIRROR						
100% (full) a	piston/ tilt removed					
subtraction	PV	RMS	PWR			
cold - (pre cold) warm	0.436	0.071	-0.047			
cold - (post cold) warm	0.598	0.071	-0.053			
80% (clear)	piston/ tilt removed					
subtraction	PV	RMS	PWR			
cold - (pre cold) warm	0.345	0.057	0.068			
cold - (post cold) warm	0.325	0.053	0.066			
post cold - pre cold	0.094	0.014	0.001			

Test Results --Courtesy of Dr. Dave Content MCCARTER AIMgF2 Coating Stress on Lightweighted SCSi Mirror

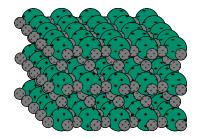
- Coated a lightweight Si mirror (exploded view at R)
 - Coating of AIMgF2 as per FUV Hubble optics
 - Applicable to many UV missions, and similar to others (e.g. AlLiF)
 - Measured wavefront before and after coating
 - Upper limit of wavefront change is 10 nm rms
 - Used this small lightweight sandwich mirror as substitute for the Kodak mirror

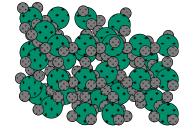
waves @633nm	before		af	fter	difference		
	rms	pv	rms	pv	rms	pv	
full aperture	0.079	0.457	0.067	0.391	0.015	0.128	
90% aperture	0.067	0.332	0.063	0.301	0.013	0.084	
Note: .015 wave = 9.6nm							


Test Results – Shake/Tap Test at GSFC and ManTech

Sili San	Aluminum Sample			
Pre	Pre Test			
Hz	10.8	Hz		3.4
V	19.9	V		-33.3
Post	Post Test			
Hz	10.9	Hz		-4.1
V	19.8	V		-37.3
Varia	Variation			
Hz	0.1	Hz		7.5
V	0.1	V		4

All measurements in arc seconds

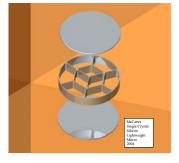

MANTECH Advanced Systems International



SCSi Properties

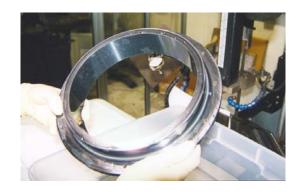
SCSi Cubic Structure

Polycrystalline Silicon Structure


According to Dr. James Boyle, co-founder of Silicon Crystals, Inc., growing polycrystalline silicon or depositing polycrystalline silicon onto a substrate "introduces grain boundaries [...] resulting in critical performance deficiencies [and] wide variations of producibility".

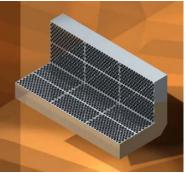
Mirror Material	Thermal Expansion Coefficient	Thermal Conductivity	Density	Specific Heat	Elastic Modulus	Poisson's Ratio	Figure of Merit
	α(10 ^{-6/°} C)	k(W/cm-°C)	ρ(g/cm)	Cp (J/g-°C)	E(10 ⁶ psi)		α/k (cm/MW)
Single Crystal Silicon	2.10	1.53	2.33	0.753	24.5	0.26	1.37
CVD fine grain polycrystalline silicon	2.67	0.84	2.335	0.177	23.3	0.24	3.18

Additional Applications



Mirrors with Differing Aerial Densities

- Robust- Solid
- Semi-robust -
- .750-.875 webbing
- Lightweight -
- .035-.055 webbing
- Featherweight -
- .008-.010 webbing


Silicon Carbide Flange with McCarter Superfinish

Complex Geometries

