An AP210-based PCA/PCB DFx analysis tool

A. Seth, D. Mukhopadhyay, D. Tang, P.M. Ferreira, University of Illinois at Urbana-Champaign T. Thurman, Rockwell Collins, Inc.

J. Stori, SFM Technology, Inc.

NASA-ESA PDE 2007 May 4, 2007

Background

- DFx tool resulted from a research relationship between RCI and UIUC
 - AP210 viewer, geometry library, and rule-based analysis
 - System simulation and control
 - Package modeler (funded by NIST)
- SFM Technology, Inc. acquired a license from UIUC to commercialize the DFX technology in Fall '05
 - Supporting the pilot and production deployment of the tool at RCI
 - Generalizing and enhancing the capabilities for use by RCI and others

Related UIUC Research – System Modeling, Planning, and Control

- Hierarchical synthesis of systems for planning, simulation, and control
- Hybrid supervisory control of discrete event systems

NASA-ESA PDE 2007

Related UIUC Research – AP210 Package Modeler

- Support the creation of an AP210 packaged component library using a commercial CAD tool.
- Parametric model definition for rapid reconfigurability
- Population of body and lead geometry, seating plane, component footprint, etc.

NASA-ESA PDE 2007

Why DFX?

- Industry trends towards increasing PCA/PCB complexity, product customization, decreased development cycle times, and cost pressures
 - Low-volume production further increases challenge
- It has been estimated that:
 - 60% of overall product cost is determined by decisions made early in the design process
 - 75% of manufacturing cost is determined by design drawings and specifications
 - 70-80% of all product defects are directly related to design issues

Motivation

- Develop a flexible tool for high-value DFX analysis
 - Leveraging Rockwell Collins / UIUC research efforts and strengths of the AP210 representation
 - Build on expertise in manufacturing, geometric computation, process planning
 - Adopt open standards and software technologies (Java, JSDAI, XML, webservices)
 - Provide an accessible interface for a wide-range of application end-users (designers, test and producibility engineers, quality and management personnel)
- Scope
 - DFA (Component analysis, Fiducials, Padstack analysis, Solder paste)
 - DFM (Minimum etch spacings, Solder mask analysis, Holes, vias, microvias)
 - DFT (ICT and FP Test pad selection, Orientation, Inspection)

DFX analysis based on open standards

- Compliant with the STEP-AP210 international (ISO) standard for product data exchange and representation
- What is STEP?
 - ISO 10303 is an International Standard for the computerinterpretable representation of product information and for the exchange of product data.
 - The objective is to provide a neutral mechanism capable of describing products throughout their life cycle. This mechanism is suitable not only for neutral file exchange, but also as a basis for implementing and sharing product databases, and as a basis for archiving.

STEP Application Protocols (APs) include:

- AP202 Associative draughting
- AP203 Configuration controlled 3D design
- AP209 Composite and metallic structural analysis and related design
- AP210 Electronic assembly, interconnect and packaging design
- AP212 Electrotechnical design/installation
- AP214 Automotive mechanical design processes
- AP232 Technical data packaging
- AP233 Systems engineering
- AP239 Product life cycle support (PLCS)
- AP219, 224, 238, 240 ... Manufacturing ...
- AP215, 216, 218 ... Ship ...
- Others: Building, Piping, Furniture, Oil&Gas, ...

AP 210 Domain

Configuration Controlled Design and Use of Electronic Assemblies, their Interconnection and Packaging

AP 210 Scope

Functional Models

- Functional Unit
- Interface Declaration
- Network Listing
- Simulation Models
- Signals
- Test Bench

Assembly Models

- User View
- Design View
- Component Placement
- Material product
- Complex Assemblies with Multiple Interconnects

Design Control

Geometric Dimensioning
 and Tolerancing

Requirements Models

- Design
- Constraints
- Interface
- Allocation

Rules Models

- Design
- Manufacturing
- ...

Configuration Mgmt

- Identification
- Authority
- Effectivity
- Control
- Net Change

Component / Part Models

- Analysis Support
- Package
- Material Product
- Properties
- "White Box"/ "Black Box"
- Test Bench

Interconnect Models

- User View
- Design View
- Bare Board Design
- Layout templates
- Layers

Geometric Models

- 2D
- 3D
- CSG, Brep...
- EDIF, IPC, GDSII
- compatible "trace" model

An AP210 DFx Tool - Seth, Thurman, Stori, et al.

2nd Ed. AP210 Tools and Translators (InterCax / LKSoft)

- IDA-STEP Product Family viewers, converters, editors, diff tools
- JSDAI[™] Toolkit AP203, 210, 214, 236, 239, integration of ARM and AIM/MIM concepts

Translator	Xxx->AP210	
Mentor / Boardstation	available	
Mentor / PADS	available	
Mentor / Expedition	available	
Zuken - Visula / CR5000 / CADSTAR (CADIF)	available	
Cadence / OrCAD	Q3'07	
Cadence / Allegro	Q2'07	
CadSoft / EAGLE	available	

An AP210 DFx Tool - Seth, Thurman, Stori, et al.

2nd Ed. AP210 Recommended Practices - www.wikistep.org

- 2nd Edition of STEP AP-210 adopts the new modular architecture to promote interoperability with other STEP APs such as AP203 Ed. 2 and AP214.
- Translators from several common native ECAD representations for the 2nd Edition of AP-210 are available and/or under development.
- Breadth of the AP-210 standard, and the formidable learning curve associated with its adoption may challenge implementers.
- Currently working to define, document, and implement a series of procedures for the extraction of PCA and PCB data from a 2nd Edition AP-210 representation of an electronic assembly. (work funded by NIST)
 - Serve as a bridge for vendors looking to add AP210 import / export capabilities into existing tools as well as those developing design and/or manufacturing tools with native AP-210 capabilities.

getLocationOfLaminateComponent lext assembly usage occu rence_relationship relating_product_definition occurrence #547 \H96 drill Interconnect _definition Product_definition Ы Laminate_component Component_2d_loc #249 tion Shape_representation sr2 Shape_representation sr1 Product _definition Cartesian _transform ation_operator_2d #1114 'R23 1 nomal on CKT1' occurrence Laminate _component ext_assembly_usage_occu rence_relationship Structured_layout_component sub_assembly_relationship relating product definition related product definition relating product definition related_product_definition Р #1102 FO `R23 ructured_layout Interconnect _definition Geometric_template component #249 `ppsm #814 #820 omponent_2d_loc tio Shape_representation sr2 Shape_representation sr1 Shape representation #805 #1101 #25 artesian _transforr s2 placement 2 is2 placement 2 ation_operator_2d a2p2d_1 a2p2d_2 // Returns between 0 and 3 transformations that must be applied sequentially to locate the shape __representation of the laminate _component with respect to the shape __representation // of the interconnect _definition (pcb). Query may be applied to either a Laminate __component that is part of a Structured __layout __component or a Laminate __component located directly on the Pcb [Cartesian_transformation_operator_2d; Axis2_placement_2d; Axis2_placement_2d] getLocationOfLaminateComponent (Interconnect_definition id , Laminate_component Ic , Shape_representation sr 1, Shape_representation sr 2) Structured_layout_component_sub_assembly_relationship slcsar = referencingEntityOp (Ic) where {slcsar.related_product_definition ->Ic } If (slcsar !=null) structured_layout_component slc = referencedEntityOp (slcsar)
 where {slcsar.relating_product_definition -> slc } structured template st = referencedEntityOp (slc) where {slc.relating_product_definition -> st} shape_representation srOfslc = getShapeRepresentationOfProductDefinitionShape (st); [a2p2d1; a2p2d2] = getAxisPlacementOfSLCSAR (slcsar, sr1, srOfslc);

next_assembly_occurrence_usage_relationship naour where {naour.related_product_definition->slc } = referencingEntityOp (slc)

cartesian_transformation_operator_2d cto2d = getCartesianTransformationOfNAUOR (naour, srOfslc, sr2)

```
return [cto2d; a2p2d1; a2p2d2]
```

// Laminate _component is not part of a Structured _layout_component else

next_assembly_occurrence_usage_relationship naour = referencingEntityOp (lc) where {naour .related_product_definition ->ic } {naour .relating_product_definition ->id }

 $cartesian_transformation_operator_2d\ cto2d\ =\ getCartesianTransformationOfNAUOR\ (naour,\ sr1,\ sr2)$

return [cto2d; null; null]]

NASA-ESA PDE 2007

} }

An AP210 DFx Tool - Seth, Thurman, Stori, et al.

13

2nd Ed. Query Implementation

- Use of code generation (templates) to instantiate specific query operations.
 - Automate "mechanical" portions of the JSDAIspecific code generation
 - Reduce implementation time and permit alternate backing implementations
 - Query trace / debugging code
 - Strict / loose operation checking (i.e. result uniqueness, qualifications)
 - Experiment with alternate query strategies (i.e. maps)

Example: Relationship Operation


```
// Given: GivenEntity e
// Returns: RelatedEntity r
// Where r is related to e through RelatingEntity re
// e<-re.given_attribute
// re.related_attribute->r
// OPT re.qualifying_attribute=value
// Returns an entity r of type RelatedEntity that is related to the
// re of type RelatingEntity that references GivenEntity through
// re of type RelatingEntity that references GivenEntity through
// re of type RelatingEntity that references GivenEntity through
// re of type RelatingEntity that references GivenEntity through
// re of type RelatingEntity that references GivenEntity through
// re of type RelatingEntity that references GivenEntity through
// re of type RelatingEntity that references GivenEntity through
// re of type RelatingEntity that references GivenEntity through
// re of type RelatingEntity that references GivenEntity through
// re of type RelatingEntity that references GivenEntity through
// re of type RelatingEntity that references GivenEntity through
// re of type RelatingEntity that references GivenEntity through
// re of type RelatingEntity that references GivenEntity through
// re of type RelatingEntity that references GivenEntity through
// re of type RelatingEntity that references GivenEntity through
// re of type RelatingEntity that references GivenEntity through
// re of type RelatingEntity that references GivenEntity through
// re of type RelatingEntity through
// re of
```

// Returns an entity r of type RelatedEntity that is related to the given entity e of type GivenEntity through the a relating entitiy
// re of type RelatingEntity that references GivenEntity through the attribute given __attribute and RelatedEntity through the
// attribute related _attribute. Optionally, the relating entity may be qualified through the additional requirement that
// re.qualifying_attribute = value.
// It there is no entity that entities that entities that entities and entity.

 $/\!/$ If there is no entity that satisfies this requirement $\,$, returns null .

```
RelatedEntity r = relatedEntityOp (GivenEntity e)

where {RelatingEntity re}

{e <- re.given_attribute}

{re.related_attribute -> r}

OPT {re.qualifying_attribute=value}

{

// implementation

return RelatedEntity r .....
```

Sample Relationship Operation sr_relatedTo_pd_through_sdr

/**

```
* Given a product_definition,
* this method will return a shape_representation
* related by a shape definition representation.
* 
* product_definition <-
* shape definition representation.definition
* shape definition representation
* {shape definition representation
* shape_definition_representation.used_representation ->
* shape_representation =>
* 
* @param e1 the starting entity of type product_definition
*/
public EShape representation sr relatedTo pd through sdr (EProduct definition e1) throws SdaiException
      AShape definition representation a relationship = new AShape definition representation();
      CShape definition representation.usedinDefinition(null, (EProduct definition)e1, null, a relationship);
      Sdailterator it_entities = a_relationship.createlterator();
      while (it entities.next())
      {
```


return null;

}

Sample Query – Get Transformation for NAUOR

Sample Query - Get Transformation for NAUOR

// Returns a cartesian_transformation_operator_2d in the case that a relating component_2d_location exists
// for the given next_assembly_usage_occurrence_relationship. The c2dl is qualified by the two given shape_representations
// If no such transformation exists the query returns null
// If no such transformation exists the query returns null
// If no such transformation exists the query returns null
// If no such transformation exists the query returns null
// If no such transformation exists the query returns null
// If no such transformation exists the query returns null
// If no such transformation exists the query returns null
// If no such transformation exists the query returns null
// If no such transformation exists the query returns null
// If no such transformation exists the query returns null
// If no such transformation exists the query returns null
// If no such transformation exists the query returns null
// If no such transformation exists the query returns null
// If no such transformation exists the query returns null
// If no such transformation exists the query returns null
// If no such transformation exists the query returns null
// If no such transformation exists the query returns null
// If no such transformation exists the query returns null
// If no such transformation exists the query returns null
// If no such transformation exists the query returns null
// If no such transformation exists the query returns null
// If no such transformation exists the query returns null
// If no such transformation exists the query returns null
// If no such transformation exists the query returns null
// If no such transformation exists the query returns null
// If no such transformation exists the query returns null
// If no such transformation exists the query returns null
// If no such transformation exists the query returns null
// If no such transformation exists the query returns null
// If no such transformation exists the query returns null
// If no such transformation exists the q

DFx Model and Process Flow

- Internal data structure respects key AP210 concepts such as padstacks, stratum features, layer connection points, physical networks
- Comprehensive PCB API that allows efficient traversal of model for rule processing.
 - Graph-based connectivity algorithms
- Dual geometric representation
 - Comprehensive geometric library
 - Native AP210 / ECAD design entities

 - geometric entities

DFX Rules

AP210 Entities

Geometric Algorithms

Resolved Manifold Entities

Preprocessing of AP210 entities to geometric regions

Mapping AP210 entities to resolved geometry - copper

Mapping AP210 entities to resolved geometry - copper

NASA-ESA PDE 2007

An AP210 DFx Tool - Seth, Thurman, Stori, et al.

Mapping AP210 entities to resolved geometry - SM

Mapping AP210 entities to resolved geometry - SM

NASA-ESA PDE 2007

An AP210 DFx 1001 - Sein, murman, Stori, et al.

DFM example: Minimum SM web thickness

Minimum solder mask web must be no less than "x"

- Resolve intersecting and overlapping positive and negative soldermask boundaries.
- Violations limited to thin webs in proximity to attach pads.
- Direct visualization of violating geometry. Violations mapped back to design entities for reporting.

DFM example: Soldermask Slivers

Identify soldermask features that could cause quality issues due to delamination.

- Offsetting and boolean operations on soldermask geometry
- Classification of candidate slivers based on boundary analysis.
- Direct visualization of violating geometry.

27

DFXpert 0.8				
Edit Configuration Tools Help				
CB Model Explorer Rule Results Explorer	Pan/Zoom Ruler Tool Pick Tool	୦ Reset View Clear Selection 👔 🚍 🗔		
Clear Active 🛛 🔺 🕨	A			
Silver (Borderline) Silver (Borderline) Silver (Borderline) Silver (Borderline) Silver (Borderline) Silver (Critical) Silver (Critical)				
Ine Layer Control Recently Selected Entities Model(09_828-1578-002210) BOTTOM PCA Components S/RESIST B bot	Center: (2.63026 , 3.59101	l) (0.17031×0.0982)in Viewi	ng: From Bottom	
CKT7	Sliver (Critical)			
♥ СКТ6 ♥ СКТ5	Title Sliver (Critical)	Properties		×
CKT4	Rule General: Solder Mask Slive	ers Sliver Class		
	Path S/RESIST B	Exterior Boundary		0.41777933 mm
CKT1	Details	Interior Boundary	0	0.11638711 mm
S/RESIST T		Exterior -> Interior Ratio	0	3 5896
828-1578-002	Entities S/RESIST B	Sliver Area	2	0.00750911 mm^2 V
		51101 7100		0.007309111111 2

NASA-ESA PDE 2007

An AP210 DFx Tool - Seth, Thurman, Stori, et al.

DFA example: Copper Balance

- Analyze copper balance in proximity of lands associated with certain PCA components
 - Requires geometric resolution of full copper connectivity
 - Computation of integral properties (i.e. area)
 - Quantitative reporting
 - Direct visual feedback

NASA-ESA PDE 2007

DFT example: Testpad Identification

- Support requirements for multiple test processes (FP, ICT)
- Rules combine
 - Netlist pad connectivity
 - PCA clearance
 - PCB clearance, proximity
 - Text strings in close proximity
- Requirements
 - Search for a series of test pad candidates that meet certain criteria
 - Sufficient size for testing equipment
 - Satisfies clearance and accessibility requirements
 - Filter, summarize, and report by component and net.

NASA-ESA PDE 2007

DFT example: Support for Visual Inspection

- Require laminate text strings in close proximity to certain PCA components and testpoints
- Polarized components have consistent orientation <or> orientation symbols
- BGAs have visible orientation markings
 - Not obscured by component footprint
 - Must be in close proximity
 - Chamfer to indicant pin one
 - Shape recognition algorithm for identification

Case Study – RCI Designs

- 6 production designs from CR-5000 -> AP210
- part 21 physical files up to 35 MB (outer layers only)
- 48 DFM rules / 61 DFT rules
- Processing time (times below will be dramatically reduced in new implementation)
 - <10 min for 5 of 6.
 - ~1 hr for the 6th
- Number of design entities (on outer layers) up to:
 - 9,700 lands, 3,800 traces, 7,300 non-land copper regions
 - 56,000 polygons
 - 4,200,000 vertices
 - <8 min processing time

Status

- AP210 has been vetted in a challenging production environment
 - Comprehensive AP210 model supports a wide range of DFA / DFM / DFT analysis
 - Translators from major ECAD formats are available
- DFx capabilities have been developed and demonstrated
 - Robust geometric library integrated with PCB model
 - Flexible architecture to support rapid customization and rule prototyping
 - Results validated on hundreds of production designs by producibility and test engineers
 - Commercial implementation (DFXpert) complete pending 2nd Ed. update and regression testing

