NGOP Users Guide

5Chapter 1: Introduction

7Chapter 2: Requirements

8Chapter 3: NGOP Terminology

83.1 Host

83.2 Cluster

83.3 Monitored Element

83.4 System

83.5 System View

83.6 Monitored Object

83.7 State

93.8 Severity Level

93.9 Event

93.10 Status

93.11 Status Rules

93.12 Action

10Chapter 4: Common Configuration Language

104.1 Expansion Mechanism: <For> tag

10Example:

10Example:

114.2 Expression <Apply> tag

114.2.1: Examples

124.3 System <System> tag

13Example:

134.4 Monitored Element <MonitoredElement> tag

13Example:

144.5 Action <Action> tag

144.6 Conditional Mechanism: <If> tag

15Chapter 5: NGOP Central Server

155.1 NCS Overview

155.2 NCS Starting/Stopping

165.3 NCS Configuration

17Chapter 6: NGOP Monitor

176.1 Overview

176.2 Starting the Monitor.

176.3 Monitor Startup Configuration

186.4 NGOP Monitor Usage

186.4.1 CONFIGURE

206.4.2 DISPLAY

226.5 Monitor Configuration

226.5.1 Common Configuration Files

226.5.2 File service_class.xml

236.5.3 File hosts_in_clusters.xml

24Example:

246.5.4 File known_status.xml

25Examples:

256.6 NGOP Hierarchy Definition

266.6.1 System View

266.6.2 System

276.6.3 Monitored Element

276.7 Status Rule Sets

286.7.1 Dependent List

296.7.2 Rule

306.7.3 Generic Rule Example

316.7.4 Dependent Rule

33Chapter 7: Configuration File Manager

337.1: Librarian

337.2: Indexer

337.3 Broker

337.4 CFMS Configuration File

347.5 CFMS Starting/Stopping

347.6 Administrative Client

357.7 Admin Starting/Stopping

35

36Chapter 8: Archive Server

368.1 Archive Server Overview

368.2 Starting and Stopping

368.3: Archiver Configuration

37Chapter 9: Monitoring Agents

379.1: Overview

379.2 Plugin Agent

419.2.1 Starting/Stopping Plugins Agent

419.3 Swatch Agents

439.3.1 Starting/Stopping Swatch Agent

439.4 Monitoring Agent API

439.4.1: API Description

469.4.2: MA API Example

479.4.3 Starting/Stopping Your Agent

49Chapter 10: Action Client

4910.1 Action Client Configuration File

4910.2 Starting/Stopping Action Client

4910.3 File authorized.xml

5010.4 File action.xml

52Chapter 11: Controlling the NGOP Daemons

5211.1: The /var/ngop Directory.

5211.2 Starting the Agents

5211.3 Monitoring the Agents

5311.4 Stopping the Agents

5311.5 Disabling/Enabling Agents

5411.6 Controlling Agents on Remote Hosts

5411.7 Starting/Stopping Individual Agents

55Appendix A

55<For> DTD

55<Apply> DTD

56<Action> DTD

56<If> DTD

56NCS Configuration File DTD

57Monitor Configuration File DTD

57PlugIns Agent DTD

58Swatch Agent DTD

59<ServiceClass> DTD

59<HostsInClusters> DTD

60<KnownStatus> DTD

60Monitored Hierarchy DTD

61<StatusRulesSet> DTD

61CFMS Configuration File DTD

62Archiver Configuration File DTD

62Action Client Configuration File DTD

63<Autorization_File> DTD

63<Action_File> DTD

Chapter 1: Introduction

NGOP is a distributed monitoring system that provides active monitoring of software and hardware, customizable service-level reporting, early error detection, and problem prevention. NGOP provides persistent storage of collected data and is capable of executing corrective actions and sending notifications. NGOP is a framework for developing monitoring tools.

The target audience for this document is wide ranging. It is intended that users will go directly to chapters that interest them, rather than reading the document from cover to cover.

NGOP uses a centralized collection scheme. The NGOP central server (NCS) collects and stores information from various monitoring agents running on remote machines. The NCS is passive, simply listening for messages from the monitoring agents which communicate with the NCS using a well-defined protocol. NGOP provides a “plug-in” monitoring agent, which is a template that is used to easily create monitoring agents for many common tasks. A full API is also provided allowing users to create any type of monitoring agent.

Typically, a monitoring agent will monitor a piece of hardware or software and generate alarms to the NCS when appropriate. For example, a monitoring agent could be written to look for the presence of an important daemon and report when the daemon has died to the NCS.

The Archive Server is a component of NGOP that provides persistent storage. The NCS forwards all messages received from monitoring agents to the Archive Server. The Archive Server stores the messages in an Oracle database, and also provides a web based report generator as well as maintaining the database (rolling old records out to minimize the overhead for example).

The Configuration Server is the component that handles all of the configuration files in NGOP. The configuration files are written using XML.

Information from the NGOP system is made available through the NGOP Monitor. The Monitor is a GUI that displays the data collected by the NCS in a customizable way. Although the NCS is collecting information from potentially many systems, the monitor can watch a subset of the clusters being monitored. In addition, the monitor is configured in such a way that one persons definition of “broke” may be different than another. For example, an operations staff interested in the overall service of a system has a different view than a systems administrator who is interested in every detail. To the operations staff, having 80% of the cluster available is sufficient to provide the service, therefore they want their monitor to tell them the system is fine. The systems administrator wants to know when anything has happened in the cluster.

Below is a pictorial view of the entire NGOP system:

[image: image2.png]Cluster A

Ciuster

Clug

B

oo 1o

Cluster B2

RO

Router

Pertormance

Storage.
Serios

osta
anaeer:

Parormance
[

Woritared Dtjects

Dot @ Etement
© cister @ system

© cursrsam
© vntatngsert 5 ot

Semer

Connzctions

“»TCP _p cmedionbetusen
ioe Hritored Elament
nghis

] Notimplemented in prototype yet

Chapter 2: Requirements

This chapter discusses the various system requirements of various components of the NGOP system.

	Subsystem Name
	Status
	Available on Platforms
	Requirements
	Number of nodes

	NCS
	Required
	Linux
	- Python 1.5.2 and higher

- FCSlib v2_0 and higher
	1

	CFMS Broker /Indexer

Admin GUI
	Optional
	Linux
	- Python 1.5.2 built with tcl/tk support module. CVS

- Tcl v8_0_2, tkv8_0_2

- Blt v2_3, xed b1_0(opt)
	1

	Archiver
	Optional
	Linux,IRIX, SunOS
	- Python 1.5.2 and higher

- dcoracle python package

(available from ups as python_dcoracle)

- Oracle client license

- Shared file space for message requests.
	1

	Action Client
	Optional
	Linux
	- Python v.1.5.2 and higher
	N

	Monitorint Agents

 (PluginsSwatch

 MA Api Ping)
	Required
	Linux, OSF1, SunOS, IRIX
	- Python v1.5.2 and higher

	N

	Monitoring Client
	Required
	Linux, SunOS, IRIX
	- Python 1.5.2 and higher built with tcl/tk support module.

- Tcl v8_0_2,

- tk v8_0_2

- blt v2_3

- 64MB Ram for 6000 elements
	N

Chapter 3: NGOP Terminology

This chapter describes the terminology used when discussing the NGOP system.

3.1 Host

A Host is a computer or an entity with an assigned IP address, identified by its name.

3.2 Cluster

A Cluster is a collection of Hosts that have a common usage or purpose. Clusters may overlap. A Cluster may consist of only one Host. A Cluster is uniquely identified by its name.

3.3 Monitored Element

A Monitored Element (ME) is an atomic entity that is monitored by NGOP. It has a well-defined behavior, which is characterized by its state and is associated with some quantitative measurements. This entity is derived from several parts; each of them contributing to the overall State of the monitored element. A ME is located on a particular Host and belongs to a particular System. Each ME has a unique id that consists of the ME name, the Host name, the System name and the Cluster name. (Examples of Monitored Element: files system, tape drive, system daemon, and memory utilization.)

3.4 System

A System is a set of software components (ME) that are logically integrated into one unit monitored by NGOP. A System is defined on a Cluster and may be distributed across multiple Hosts. It is characterized by its State and Status. A System has a unique id that consists of the System name and the Cluster name. (Examples: LSF Batch , OS “Health” System that could contain system daemons, critical file systems, etc.)

3.5 System View

A System View is a logical collection of Systems, Monitored Elements and System Views. A System View is created by a user/administrator in order to create hierarchical structure in the NGOP Monitor. It is characterized by its Status.

3.6 Monitored Object

A Monitored Object is a System or a ME monitored by NGOP.

3.7 State

A State is a characteristic of a Monitored Object defined by either a Monitoring Agent, or the NCS. A Monitored Object could be in four different states:

· 1 (Up) - the Monitored Object is operational

· 0 (Down) - the Monitored Object is not operational

· -1 (Undefined) - NGOP was not able to determine the state of the monitored element. This is usually set by the NCS when no information has been obtained about this object since the NCS had started.

· -2 (Unknown) - NGOP failed to determine the current state of the monitored element but was able to do it earlier. This is set by the NCS when the connection with the MA has been lost. This state indicates that at some point the NCS was communicating with the MA.

3.8 Severity Level

A Severity Level is a characteristic of an event defined by a MA. It could assume the integer values from 0 - “OK“ to 6 – “Bad”. It is used to describe events when the monitored object is still operational, but a change in the monitored object’s behavior or quantitative characteristics could indicate a potential problem. The severity level of the occurred event is redefined by the status rule in the NGOP Monitor configuration.

3.9 Event

Events are generated by MAs and describe a detected condition. An Event includes the following fields:

· System name

· Cluster name

· Monitored Element name

· Host name

· Date/Time

· Event Name (an aspect of the monitored element that contributed to event initiation).

· Event Value (the current measurements that are associated with that aspect of the monitored element).

· State

· Severity Level

· Source – the id of the Monitoring Agent (MA_name.host)

· Description (human readable explanation of the occurred event)

3.10 Status

A Status is a characteristic of a Monitored Object or System View defined by the NGOP Monitor based on the Status Rules and events. A Status of a monitored object/system view may assume the following values: “Good”, “NotInService”, “Undefined”, “Unknown”, “Warning”, “Error”, “Bad”. Status defines the color of the icons that represents system views or monitored objects in monitor.

3.11 Status Rules

Status Rules are a set of rules defined by a user/administrator that are used by the NGOP Monitor to determine the Status of the Monitored Objects and System Views.

3.12 Action

Actions are associated with monitored objects. An event could trigger the NGOP application to send the request to the NCS to perform an action. NGOP generates zero or more actions depending on the event, NGOP configuration, current day/time, and requester’s authorization. Examples of Actions are:

· Display a message on the Operator console

· Send an e-mail message

· Send a message to a pager

· Run a script

Chapter 4: Common Configuration Language

This chapter describes the NGOP configuration language that allows the creation of hierarchies of monitored components, describes rules to determine the status of components, and defines when and what kind of actions should be performed. The NGOP configuration language provides a framework for creating monitoring tools (“PlugIns”, “Swatch” Monitoring Agents).

The NGOP configuration files are stored in a central repository. All NGOP configuration files are written in XML. XML stands for eXtensible Markup Language (see http://www.w3.org/XML for details). XML makes use of tags (words bracketed by ‘<’ and ‘>’) and attributes (of the form name=”value”). XML uses the tags only to delimit pieces of data, and leaves the interpretation of the data completely to the application that reads it. All configuration files should conform to a corresponding DTD (Document Type Definition). A DTD is a set of rules for constructing of valid XML documents.

4.1 Expansion Mechanism: <For> tag

The NGOP applications (such as NGOP Monitor, CFMS, PlugIns and Swatch Agent) use an expansion mechanism that allows the replication of a particular fragment of an XML document. This fragment refers to a hierarchy and is repeated for every element of this hierarchy. The hierarchy should be defined in the same XML document, or in some other XML documents referred to by name. The hierarchy consists of XML tags where each tag has at least one attribute: Name. There is just one outermost tag of hierarchy. This tag contains multiple tags that could be the same. This XML fragment should conform to the DTD rules.

Example:

This is a hierarchy of <Cluster> tags that contains <Host> tags:

<Cluster Name=”CDFFarm”>

 <Cluster Name=”CDFFarmIO”>

 <Host Name=”cdffarm1”/>

 </Cluster>

 <Cluster Name=”CDFFarmWorker”>

<Host Name=”fncdf1”/>

.

.

.

<Host Name=”fncdf90”/>

 </Cluster>

</Cluster>

Each fragment of the XML document that needs to be replicated should be placed within <For> </For> tags. A <For> tag has the following attributes:

· Each (required) – refers to the child element within the hierarchy

· Var (required) – name of the variable that will be replaced every time when this name is encountered in the XML construction; Var=”{%PlaceHolder}”
· In (required) – refers to the parent element

· Name (required) – refers to the attribute Name of the particular parent element

· Filename (optional) – the name of the file where the hierarchy is described

Example:

<For Each=”Host” Var=”{%Host}” In=”Cluster” Name=”CDFFarm”

Filename=“CDFFarmCluster.xml “>

 <System Name=”OSHealth“ Cluster= “{%Host}” >

 <MonitoredElement Name=”ypbind” Host=”{%Host}“ Type=”Daemon“ />

 <MonitoredElement Name=”syslogd” Host=”{%Host}“ Type=”Daemon“ />

 </System>

</For>

The fragment of the XML document will be repeated for every Host tag within the Cluster tag with attribute Name=”CDFFarm”. These tags are listed in the file CDFFarmCluster.xml. The values of the Cluster attribute of a <System> tag and the Host attribute of a <MonitoredElement> tag will be replaced with the corresponding value of the {%Host} variable. The resulting configuration will look like:

<System Cluster=”cdffarm1” Name=”OSHealth”>

 <MonitoredElement Host=”cdffarm1” Name=”ypbind” Type=”Daemon”/>

 <MonitoredElement Host=”cdffarm1” Name=”syslogd” Type=”Daemon”/>

</System>

<System Cluster=”fncdf1” Name=”OSHealth”>

 <MonitoredElement Host=”fncdf1” Name=”ypbind” Type=”Daemon”/>

 <MonitoredElement Host=”fncdf1” Name=”syslogd” Type=”Daemon”/>

</System>

.

.

.

<System Cluster=”fncdf90” Name=”OSHealth”>

<MonitoredElement Host=”fncdf90” Name=”ypbind” Type=”Daemon”/>

<MonitoredElement Host=”fncdf90” Name=”syslogd” Type=”Daemon”/>

</System>

4.2 Expression <Apply> tag

An <apply> tag is used in various places in the NGOP configuration (Rules, Service Type, and Condition definitions). It defines a mathematical expression (“logical brackets”) (see MathML for details). This expression is evaluated by the NGOP applications and if it is true some specific operations are carried out by the applications. For example, if at some point an expression, defined within a <Condition> tag in a PlugIns agent configuration file becomes true, an agent will generate an event; if an expression within a <GenericRule> tag becomes true, the NGOP Monitor will apply this rule to define the status of the monitored object associated with this rule.

An <apply> tag can contain other <apply> tags. It also could contain logical operators (<and>, <or>, <eq>, <neq>, <lt>, <leq>, <gt>, <geq>, <in>, <notin>.) or functions (<plus>, <times>,<minus>,<divide>,<sum>,<min>,<max>). An <apply> element includes a number token element (<cn>) and identifier token element (<ci>). One of the operators or functions should be the first element within <apply> tag.

This XML fragment should conform to the DTD rules.

4.2.1: Examples

Example 1

Evaluate the following expression:

2y+ 4x + 1> 3z.

<apply>

 <gt/>

 <apply>

 <plus/>

 <apply>

 <times/>

 <ci>y</ci>

 <cn>2</cn>

 </apply>

 <!—2y--!>

 <apply>

 <times/>

 <cn>4</cn>

 <ci>x</ci>

 </apply>

 <!—4x--!>

 <cn>1</cn>

</apply>

<!—2y+4x+1--!>

 <apply>

 <times/>

 <cn>3</cn>

 <ci>z</ci>

</apply>

<!—3z--!>

</apply>

<!--2y+4x+1>3z--!>

The <sum>,<min> and <max> tags should have the following construction:

<sum>

 <bvar>i</bvar>

 <lowlimit> <cn>N1</cn> </lowlimit>

 <uplimit> <cn>N2</cn> </uplimit>

 <ci>element[i]</ci>

</sum>

This represents the following expression:



 (element[i])=element[N1]+….element[N2]
i=N1

Example 2

<apply>

<gt/>

 <apply>

 <sum>

<bvar>I</bvar>

<lowlimit> <cn>0</cn> </lowlimit>

 <uplimit> <cn>10</cn> </uplimit>

 <ci>element[i]</ci>

 </sum>

 <apply/>

 <cn>20</cn>

</apply>

This defines the following expression:



 (element[i])>20

i=0

4.3 System <System> tag

A system definition is used in various places in the NGOP configuration (Swatch and PlugIns Agent configuration, NGOP Monitor hierarchy, status rules set and known status definition). A System is uniquely defined by two tuple:

(System_Name,Cluster_Name)

A <System> tag indicates the beginning of the system definition and requires two attributes:

Name – defines the system name

Cluster - defines the cluster name for this system

A <System> tag contains multiple <MonitoredElement> tags.

This XML fragment should conform to the DTD rules.

Example:

<System Name=”OSHealth” Cluster=”Fnalu”/>

This defines the system “OsHealth.Fnalu”. The <For> tag is used to define multiple systems:

<Unix Name=”UnixFlavor”>

<Flavor Name=”Irix”/>

<Flavor Name=”Solaris”/>

<Flavor Name=”OSF1”/>

<Flavor Name=”Linux”/>

</Unix>

<For Each=”Flavor” Var=”{%F}” In=”Unix” Name=”UnixFlavor”>

 <System Name=”OSHealth_{%F}” Cluster=”Fnalu”/>

</For>

The code above is equivalent to the following XML fragment:

<System Name=”OSHealth_Irix” Cluster=”Fnalu” />

<System Name=”OSHealth_Solaris” Cluster=”Fnalu” />

<System Name=”OSHealth_OSF1” Cluster=”Fnalu” />

<System Name=”OSHealth_Linix” Cluster=”Fnalu” />

4.4 Monitored Element <MonitoredElement> tag

A monitored element definition is used in various places in the NGOP configuration (Swatch and PlugIns Agent configuration, NGOP Monitor hierarchy, status rules set and known status definition). An ME is uniquely defined by four tuple:

(ME_Name,Host_Name,System_Name,Cluster_Name)

A <MonitoredElement> tag can be encountered only within a <System> tag. It has the following required attributes:

Name – defines the monitored element name

Host – defines the physical location of monitored element. (Instances of “localhost” in this value will be replaced by the local host name in MA.)

Type – defines the type of monitored element (see Event for details)

This XML fragment should conform to the DTD rules.

Example:

<System Name=”OSHealth” Cluster=”Fnalu”>

 <MonitoredElement Name=”cpuLoad” Host=”fnsfo” Type=”sysUsage”/>

</System>

This defines the monitored element with id=”cpuLoad.fnsfo.OSHealth.Fnalu” and type=”sysUsage” .

The <For> tag is used to define multiple monitored elements:

<List Name=”Scratch”>

<Item Name=”1”/>

<Item Name=”2”/>

<Item Name=”3”/>

</List>

<System Name=”OsHelath_Irix” Cluster=”Fnalu”>

 <For Each=”Item” Var=”{%I}” In=”List” Name=”Scratch”>

 <MonitoredElement Name=”/local/stage_{%I}” Host=”fnsfo” Type=”fileSystem”/>

 </For>

</System>

The above code fragment is equivalent to the following XML code fragment:

<System Name=”OSHealth_Irix” Cluster=”Fnalu” >

 <MonitoredElement Name=”/local/stage_1” Host=”fnsfo” Type=”fileSystem”/>

 <MonitoredElement Name=”/local/stage_2” Host=”fnsfo” Type=”fileSystem”/>

 <MonitoredElement Name=”/local/stage_3” Host=”fnsfo” Type=”fileSystem”/>

</System>
4.5 Action <Action> tag

An <Action> tag is used in various places in the NGOP configuration (Rules, Condition definition). <Action> tags require two attributes; ID and execution Host. Several optional attributes may be provided as well:

Method - perform a manual or automatic action (default method is automatic)

Type - execute an action locally or send request to NCS (default type is local)

Gap - time before attempt to repeat the same action in case of action failure or reoccurrence of the same event

Repeat - how many times the same action is repeated

Counter - the thershold that allows Agent to generate an action if the number of ocurrences of the same event exceeded this threshold within “Gap” period

An <Action> contains just one other tag <Exec> that describes actual executable and its arguments in two required attributes:

Name

Argument

Special parameters are included in an argument; these parameters always start with % sign. Every application has a list of parameters that are used in configuration. This XML fragment should conform to the DTD rules.

Example

<Action ID=”email” Host=”ndem” Type=”central” Method=”automatic”>

 <Exec Name=”send_email” Argument=”%Mail,Something_awful_just_happened!” />

</Action>

This defines the action with ID=”email” that should be started automatically on the host ndem. The arguments that will be passed to the script send_mail will contain user e-mail address, and some description.

So far we have discussed the XML constructions that are common to the all NGOP subsystems, now we will concentrate on XML constructions specific to each module.

4.6 Conditional Mechanism: <If> tag

The If construct is used as a conditional operation in the NGOP. The only attribute is Cond, which specified the condition. An optional <Else> tag can be used. For the time being the value of Cond attribute should consist of variable placeholder “’{%Role}’”, logical operarator (“==”,”!=”) and role name. This XML fragment should conform to the DTD rules.

Example 1

<ItemList Name=”CMS”>

<Item Name=”CMSPROD”/>

<If Cond=”’{%Role}’==’cmsadmin’”>

<Item Name=”CMSREF”/>

</If>

</ItemList>

Example 2

<If Cond=”’{%Role}’!=’default’”>

<For Each=”Host” Var=”{%Host}” In=”Cluster” Name=”{%C}Worker”

Filename=”hosts_files/hostsInClusters.xml”>

.

.

</For>

 <Else>

.

.

 </Else>

</If>

Chapter 5: NGOP Central Server

This chapter discusses the role of the NGOP Central Server(NCS), how to start and stop it, and it’s configuration.

5.1 NCS Overview

The NGOP Central Server (NCS) is a process that collects messages from multiple monitoring agents and provides clients with requested information. In particular, the NCS performs the following tasks:

· Accepts requests from a monitoring client (GUI for example) to provide monitoring information.

· The monitoring client can instruct the NCS to perform certain actions based on a condition. For example, if a node is being monitored by a ping command then the NCS is told to send email to the systems administrator if the node is failing the ping request.

· Allows for the connection of monitoring agents. The monitoring agents will send events to the NCS.

· Forwards all messages sent by monitoring agents to an Archive Server.

· Once a monitoring agent has connected to the NCS, the NCS will note when the monitoring agent had died. In affect, the NCS monitors the monitoring agents.

5.2 NCS Starting/Stopping

The NCS is started with the other daemons running on a host by issuing the ups start ngop. If UPS is not installed, then the command ngop start must be issued after the $PATH environment variable has been set to point to the NGOP directories. This command starts all of the daemons that have configuration files defined in /var/ngop.

To start only the NCS, the following command must be issued.

ngop start server

or

ngop start “ngop server –c /var/ngop/server/ncs.xml”

Conversely, to stop the NCS issue the following:

ngop stop server

or

ngop stop “ngop server –c /var/ngop/server/ncs.xml”

5.3 NCS Configuration

The NCS configuration file is written using XML. The following is a sample configuration file that is used as a template:

<NCS_cfg>

<NCS tcpPort=”19996” udpPort=”19997” />

<Admin adminName=”ngopadmin” actnHost=”ndem”

adminMail=”ngopadmin@fnal.gov”/>

<Client name=”Archiver” port=”7001” host=”fncduh1” local_log=”/tmp/log.log”/>

</NCS_cfg>

The NCS tag has two entries, tcpPort and udpPort. These two values must be assigned an unused port number. The Admin tag has three entries, the account of the NGOP administrator (adminName), the host that the NCS is running on (actnHost), and the email address of the NGOP administrator (adminMail). The Client tag is used to locate the host that the archive server is running on and the port that it is listening on. The final tag in the template is the local_log tag, which specifies where the logging information is to be stored. The default is to store the logging information in the file log.log in the current working directory. This configuration file should conform to the DTD rules.

Chapter 6: NGOP Monitor

The NGOP monitor gets information from the NCS and allows clients to display the information to the end user through a GUI. This chapter gives an overview of the monitor, how to start and stop it, discusses the configuration file, and explains how to use the display.

6.1 Overview

The NGOP monitor provides graphical display of information collected by the NCS. The NGOP monitor performs the following functions:

· Gives users ability to display custom built system views. This allows different people to interpret the data collected by NGOP in different ways. For example, a systems administrator may be interested in every small detail of the system, whereas a computer operator may only be interested in being notified about major events, which cause the system to be unusable.

· Uses rules that define the status of a system. For example, the system may be considered “ok” if 75% of the nodes are operable.

· Provides a way to initiate a request to the NCS to perform some action.

6.2 Starting the Monitor.

The NGOP monitor is started as follows:

$setup ngop

$ngop start monitor &

This will start the monitor using the configuration file /var/ngop/monitor. To use another monitor, you can supply the –c option:

$ngop monitor –c your_configuration_file &

6.3 Monitor Startup Configuration

In order to run the NGOP monitor, there must be a startup configuration file. Below is an example that can be used as a template:

<client_cfg>

 <Client port=’19996’ host=’ndem’ name=’NCSClnt’/>

 <Client port=’8080’ host=’ndem’ name=’CnfgClnt’/>

 <CfgXml cvsRep=’configxml’ wrkDir=’.ngop’

cvsRoot=’ :pserver :ngop@ndem.fnal.gov:/home/ngop/Repository’

role=’default’/>

 <CfgGui Mail=”%User@fnal.gov” LogLength=”10” Upadte=”1”/>

</client_cfg>

The first <Client> tag has the host and port of the NGOP Central Server. The next <Client> tag defines the port and host of the Configuration Server.

The <CfgXml> tag defines the cvs repository where the configuration files are checked out from (cvsRep), the directory where the files are checkout into (wrkDir), the CVSROOT environment variable needed for CVS (cvsRoot), the chosen set of NGOP configuration (role), the version of NGOP(version), and the name.

The <CfgGui> tag specifies an email address for receiving notifictaion (Mail), the number of events to store for each monitored object (LogLength), and if the object “known status” modification should be automaticaly propagate to display (Update). This configuration file should conform to the DTD rules.

[image: image3.png]Vs
lhosts_files.

FBS. Farm.xml

FBS.rules.xml
FBSCMS.rules.xml
FBSCMS.xml

Hardware. CDFFanm.xml
Hardware.CMS.xml
Hardware. DOFarm.xml
Hardware. FT_fnsfv.xml
Hardvare. FixTargetFanm.xmi
0SHealth. CDFFarm.xml
OSHealth.CMS.xml
(0SHealth.DOFarm xml
OSHealth.FT_nsfv.xml
(0SHealth.Fix TargetFarm.xml

Ping.CMS i
Ping.Farm xmi
Test
Edit
ndex

Add

marctix
with_dtds
bo_4_3
bo_a_2
bo_a1
ifanms-h-0
Iwithaction
ltest 2
ingop_v1_te
Ingop_v1_11
Ingop_v1_1_a
FarmAdmin
loperator
ltest_ho_2
loperatort
loperatord.
loperators
loperatorz
loperator3
loperator1
defaultt

Set.

Hew

6.4 NGOP Monitor Usage

When the ngop monitor command is issued, a popup window appears as follows:

6.4.1 CONFIGURE
When the user invokes the NGOP Monitor for the first time, she/he will be prompted to select a desirable configuration. The selection request will be sent to the CFMS and the corresponding configuration files will be downloaded into a specific user area . In order to perform this function, you must have access to the CVS repository where configuration files are located. In addition, the CVSROOT environment variable must be set, and possibly a cvs login should be performed.

You can skip this step if you already have a configuration in place and choose DISPLAY. Also, you can choose to create a configuration yourself. If you decide to do so, you have to place all of the configuration files in the directory specified in the monitor configuration file. You must then copy the following files into this directory:

· $NGOP_DIR/templates/monitor/defME.rules.xml

· $NGOP_DIR/templates/monitor/defSys.rules.xml

· $NGOP_DIR/templates/monitor/kn_st.xml

· $NGOP_DIR/templates/monitor/hostsInClusters.xml

· $NGOP_DIR/templates/monitor/service_class.xml

The CONFIGURE Menu has several options:

[image: image4.png]NGOP MONITOR [=[ofx]

6.4.1.1 Components
To dowload a configuration, select Components. All monitored objects known to the CFMS will be displayed in the left hand side window. Using the -(button, you can select systems and system views that you want to download from the central repository.

[image: image5.png]Components
Icons For Objects
Icons For Alanms
colors

Mailing Address

The Refresh button is used when you want to replace all modified files. Update will checkout all new files from CVS, but will not change the files that you have modified. When you are finished with the selections, click the Checkout button. The following popup window will appear:

[image: image6.png]x

Checkout

Refresh

Update

fivailable Components:

Harduware
0SHealth
0SHealth

0SHealth
0SHealth
0SHealth
0SHealth
0SHealth
0SHealth

fncdf1l

Fnpcb System
.fncdfl System
fncdf1o
0SHealth.
fncdf12
fncdf13
fncdfld
fncdfls
fncdfl6
fncdfl7

System
System
System
System
System
System
System
System

Quit

Selected
Harduware
Harduware
0SHealth
0SHealth

Components:
Fncdfl System
fncdfl0 System
fncdfl System
fncdf10 System

=[ofx]

If you confirm your selection by clicking the OK button, the cvs checkout will start and you will be able to see the progress:

[image: image7.png]Do you want to delete all local
£ modification of configuration files?

oK Cancel

6.4.1.2 Icons For Objects/Alarms
The icons that the NGOP display uses are customized by clicking on the Icons For Objects and Icons For Alarms buttons. Click on the icon that you want to replace. A window will be displayed with all of the available icons. Simply click on the icon from this window that you want to use. You can add your own icons by placing the files in bmp format in $NGOP_DIR/icons directory

[image: image8.png]X g [=i 3|
chockaut
From: cvsuser@hppe. nal gov:icvs hpp:
"o Momeltievshintngop_test
Please,wait.

Checking out :Hardware.fcdf10.xml

6.4.1.3 Colors

This option allows you to select colors that represents various statuses of monitored objects. When you select Colors, a window will popup that displays the mapping between a status and it’s color. To modify a color, click on the colored tile that you wish to change. A popup window will be displayed that allows you to modify this color.

[image: image9.png]Configure Monitored Obiect Icons. [=1ofx]

=

Elenent. Sustention Susten suslisage Alarn fction

S

wer B [3

usrllsage FileSysten Dacnon Harduare

6.4.1.4 Mailing Address
You can modify your mailing address by choosing the Mailing Address button. The following window will be displayed after choosing this option. [image: image10.png]e
|

Undefined

Urknaun
Marning

Error

Bad

6.4.2 DISPLAY

To start monitoring, click the DISPLAY button from the main menu. If a monitor configuration file CFMS is defined (<Client port=’8080’ host=’ndem’ name=’CnfgClnt’/>), but you didn’t configure your system, a popup window will be displayed asking if you want to the CFMS.

The status of the system views and monitored objects is represented by the color of the icon. In addition, a set of colored arrows that will be displayed over the icon exists to indicate potential problems. There is a hierarchy of color (based on severity level of the occurred event) to represent the proximity to the possible problem. The first level of monitored hierarchy could look as follows:

[image: image11.png]>
rec: [14 I
i
Green: [110 NN
i
Biue: [oo |
3

Selection:

/4066258

o Cancel

By default the window is divided into three sections. The uppermost part displays current level of hierarchy. The middle section(not shown in example below) displays the action log. The bottommost section displays the event log. The displaying of the lower two sections is controlled from within the Options menu.

When an icon is clicked with Button-1 of the mouse, the next level in the hierarchy is displayed. Button-2 will allow you to see the alarms that are present, and Button-3 allows you to see object status rule sets, and change current status or request an update.

[image: image12.png]g Address =1ofx]

Your e-nail address 7 |ngopadnin@Fnal.gov.

| oweel |

Clicking on a log message will display a window with the message details and allow you to acknowledge the [image: image13.png]— - ALLFERMI

X

options | _Print | save | quit

R R 1

BTEV

ACPMAPS

ENSTORE

sttt

FARMS

FNALY

KTEV MINOS

Sttt

sDsS Services
Date Wed May 23 08:36:56 2001, 1D MINOS, Type SystemView, EvenType SystemView, Status Good,
Date Wed Way 73 53557 2007, 1D 0D, Type SyslemView, EventType SyslemView, St Good, 5|
Date Wed Way 73T T, 10 KTEV, Ty Systemview;, EventTye Systemviev, STais Gaad, 51
Date Wed Way 73 53742 2007, 1D CWS, Type SysTemview, EvenTType Systemviev, STais Goad, ST
Date Wed Way 73 53507 2007, 1D COF, Type Systemview, EvemTType Syslemviev, STais Goad, 5ta)
Date Wed Way 73 153546 2007, 1D ENSTORE, Type Systenvizw, EventType Systenview, ST Go
Date Wed Way 73 153927 2007, 1D SDSS, Ty Systemview, EvemtType Systemview, STais Good, 5
Date Wed Way 73 15:33:30 2007, 1D DU, Type Systentiew, EvVentType Systenyiew, Stalis Gon, STt
Date Wed Way 73 15.39.55 2007, 1D WSS, Type SyslemView, EventType SystemView, Stalis Gaud, St
DAt Wed Way 73 T4Z.00 2007, 1D CDF, Type Sysemview, EVemType Sysemview, ST Bad, STt
Date Wed Way 73 154324 2007, 1D PPD, Type SystemView, EventType SystemView, Stalis Gaad, T
DAt Wed Way 73 T54521 2007, 1D FARIAS, Type Sysemvizw, EVenTType Systemyvizy, STams Bad,
e Wed Way 23 U546.33 2001, 10 ACFWIAPS, Ty Systemview, EventType Systemyie, S Gog| /
J | =

message.

6.5 Monitor Configuration

NGOP uses XML to describe the hierarchy and status rules, as well as information about “out of service” monitored objects, available service classes, existing hosts and clusters. The description of the NGOP object hierarchy is located in one or multiple configuration files. Each status rule set should be placed in a separate file.

6.5.1 Common Configuration Files

There are several configuration files that contain general information needed for the NGOP Monitor. These files include data about “out of service” monitored objects, available service classes, existing hosts and clusters.

These files will be downloaded into user configuration area regardless of which monitored objects are selected by the user. These are considered the default configuration files.

6.5.2 File service_class.xml

The service_class.xml configuration file contains information about defined types of service. The service type is associated with the hosts and monitored objects. By default, a monitored element, located on a host has the same service type as this host. A service type defines the time period of active monitoring.

This file has the following required declarations and tags:

<?xml version=’1.0’?>

<!DOCTYPE NGOPConfig SYSTEM “service_class.dtd”>

<NGOPConfig>

<Default_File/>

<ServiceClass>

……… - definition of service type should be placed here

 </ServiceClass>

</NGOPConfig>

A <ServiceClass> tag contains definition of the several service types (tag <ServiceType> , such as “9x5” or “24x7”(“9x5” means that a particular monitored object/host will be actively monitored from 8 am to 5 pm on weekdays). The default service type is “24x7”. A service type is described by a mathematical expression by using an <apply> tag. If the expression is evaluated to be false, all events occurred with the corresponding monitored object/host will be ignored. Within an <apply> tag, a <ci> tag could assume only two values: hour or day_of_the_week. Days of the week are represented by an array of integers, where 0 corresponds Monday. Hour is represented by an integer value within 0 – 24 range. This configuration file should conform the to the DTD rules.

Example:

<ServiceType name=”9x5”>

 <apply>

<and/>

 <apply>

<geq/>

 <ci>hour</ci>

 <cn>8</cn>

 </apply>

 <!—(hour>=8)--!>

 <apply>

 <leq/>

 <ci>hour</ci>

 <cn>17</cn>

 </apply>

 <!—(hour<=17)--!>

 <apply>

<notin/>

<ci>day_of_the_week</ci>

<cn>[5,6]</cn>

 </apply>

 <!—(day_of_the_week not in [Saturday,Sunday])--!>

 </apply>

<!—this just means that “9x5” service type is defined between 8:00-17:00 every day except Saturday and Sunday--!>

<!—see apply for details--!>

</ServiceType>

6.5.3 File hosts_in_clusters.xml

The hosts_in_clusters.xml configuration file contains clusters and hosts that exist in the system. The service type of each host is defined in this configuration. If a service type is not defined, the default service type is assumed for a host. This file has the following required declaration and tags:

<?xml version=’1.0’?>

<!DOCTYPE NGOPConfig SYSTEM “hosts_in_clusters.dtd”>

<NGOPConfig>

<Default_File/>

<HostsInClusters>

……… - known status definition should be placed here

 </HostsInClusters>

</NGOPConfig>

A <HostsInClusters> tag contains multiple <Cluster> tags. A <Cluster> tag has one required attribute (Name).

A <Cluster> tag contains other <Cluster> or <Host> tags. A <Host> tag also has Name as the only required attribute.

A <ServiceType> tag is placed anywhere within a <HostsInClusters> tag. It is defined the service type for all clusters and hosts it contains. A <ServiceType> tag has <Name> as the one required attribute. Name contains the name of the service type defined in service_class.xml.

This configuration file should conform to the DTD rules.

Example:

<ServiceType Name=”24x7”>

<Cluster Name=”FNALU_BATCH”>

 <Cluster Name=” FNALU_BATCH_OSF1”>

<Host Name=”fdei01”/>

 </Cluster>

 <Cluster Name=” FNALU_BATCH_IRIX”>

<Host Name=”fsgb02”/>

 <Host Name=”fsgb03”/>

 <Host Name=”fsgi02”/>

 <Host Name=”fsgi03”/>

 </Cluster>

 <Cluster Name=” FNALU_BATCH_Solaris”>

 <Host Name=”fsub01”/>

 <Host Name=”fsui02”/>

 <Host Name=”fsui03”/>

 </Cluster>

</Cluster>

</ServiceType>

This example describes the cluster FNALU_BATCH. It has three sub clusters:

· FNALU_BATCH_IRIX with hosts:

· fsgb02

· fsgb03

· fsgi02

· fsgi03

· FNALU_BATCH_OSF1 with host:

· fdei01

· FNALU_BATCH_Solaris with hosts:

· fsub01

· fsui02

· fsui03

All hosts that belong to the FNALU_BATCH cluster require 24x7 maintenance support.

6.5.4 File known_status.xml

The known_status.xml configuration file contains references to the monitored objects or hosts that are known to be out of service for a significant period of time. A monitored object/host is marked as “bad”, “in repair” or “test”. If a monitored object/host is not listed in this file, its status is working. This file has the following required declaration and tags:

<?xml version=’1.0’?>

<!DOCTYPE NGOPConfig SYSTEM “known_status.dtd”>

<NGOPConfig>

<Default_File/>

<KnownStatus>

……… - known status definition should be placed here

 </KnownStatus>

</NGOPConfig>

A <KnownStatus> tag contains multiple <Status> tags. A <Status> tag has one required attribute; Name that can assume the values “bad”, “in_repair”, or “test”.

You can specify the “out of service” time interval (<OutOfServiceInterval> tag) within the <Status> tag. It includes one optional attribute Description and the following required attributes:

StartDateTime – “yyyy-mm-dd hh:mm”

EndDateTime – “yyyy-mm-dd hh:mm”

If an object/host needs to be marked “out of service” for periodic maintenance, it is specified using a <MaintenancePeriod> tag. This tag has three required attributes:

DaysInterval – the maintenance reoccurrence interval in days (the count starts from the day defined in <StartDate>)

FromTime – the maintenance start time (hh:mm)

HoursDuration - maintenance duration in hours

Out of service monitored objects and hosts are listed within the corresponding <Status> tag. This configuration file should conform to the DTD rules.
Examples:

<Status Name=”bad”>

 <Host Name=”fnpc110”/>

 <System Name=”LSF” Cluster=”fsgb02” />

</Status>
This declares host fnpc110 and system LSF.fsgb02 to be in a known bad condition.

<Status Name=”in_repair”>

 <OutOfServiceInterval StartDateTime=”2001-05-01 12:30”>

 <System Name=”OCS” Cluster=”FixTarget”/>

 </OutOfServiceInterval>

</Status>

<Status Name=”test”>

 <OutOfServiceInterval StartDateTime=”2001-05-04 08:30”>

 <MaintenancePeriod DaysInterval=”7” FromTime=”08:30”

HoursDuration=”4”> <Host Name=”fnpc107”/>

 </ MaintenancePeriod>

 </OutOfServiceInterval>

</Status>

This declares the system OCS.FixTarget to be in repair since May 1, 2001 12:30 and host “fnpc107” being used for testing purpose weekly from 8 am to 12 pm since May 4, 2001

6.6 NGOP Hierarchy Definition

An NGOP monitored hierarchy consists of system views, systems, and monitored elements. The system and system view definitions are placed in one or multiple configuration files. The monitored element definitions should be always placed within the system definition. Every configuration file describing the NGOP monitored hierarchy has the following required declaration and tags:

<?xml version=’1.0’?>

<!DOCTYPE NGOPConfig SYSTEM “hierarchy.dtd”>

<NGOPConfig>

……… - definition of system view, system, and monitored elements should be placed here

</NGOPConfig>

The following XML tags are used to describe the monitored hierarchy:

<SystemView>

<System>

<Monitoried Element>

A <For> tag can be used anywhere in the monitored hierarchy definition in order to replicate some XML fragments.

6.6.1 System View

A System View is uniquely defined by its id. A system view contains only references to the other system views and monitored objects. (Important: all components of the hierarchy should be defined elsewhere!)

A <SystemView> tag has the following attributes:

ID (required)

RefRule - a reference to the status rule set, describing the status rules for this system view, the default value is “SystemViewDefRuleSet”

This configuration file should conform the DTD rules.

Example 1:

<SytemView ID=”LSF_Fnalu_Batch”>

 <SystemView ID=”Fnalu_Batch_Irix”/>

 <SystemView ID=”Fnalu_Batch_Solaris”>

 <!—references to the system views---!>

 <System Name=Ping Cluster=”Fnalu_Batch”/>

 <!—reference to the system--!>

 <System Name=”OSHealth” Cluster=”Fnalu_Batch”>

 <MonitoredElement Name=”/tmp” Host= Host=”fsgb02”/>

 <MonitoredElement Name=”/tmp” Host=”fsgb03” />

….

 </System>

 <!—references to monitored elements--!>

</SystemView>
This example defines a system view LSF_Fnalu_Batch that contains two other system views (Fnalu_Batch_Solaris and Fnalu_Batch_Irix), one system (Ping.Fnalu_Batch), and several monitored elements (/tmp.fsgb03.OSHealth.Fnalu_Batch for example).

Example 2:

The following example defines system views Fnalu_Batch_Irix that contains three LSF systems running on nodes named fsgb02, fsgb03, and fsgi02.

<SystemView ID=”Fnalu_Batch_Irix”>

 <System Name=”LSF” Cluster=”fsgb02”/>

 <System Name=”LSF” Cluster=”fsgb03”/>

 <System Name=”LSF” Cluster=”fsgi02”/>

</SystemView>

6.6.2 System

A <System> tag contains multiple <MonitoredElement> tags and should be referenced at least once within <SystemView> tag. A definition of a system hierarchy should be placed outside system view scope. In the NGOP hierarchy definition a <System> tag has two additional optional attributes:

ServiceType – default “24x7”

RefRule - a reference to the status rules set, describing the status rules for this system, the default value is “SystemDefRuleSet”

This configuration file should conform the DTD rules.

Example:

The following example defines a system called OSHealth.Fnalu that is monitored around on a 24x7 basis. The status rule set defining the status of this system is described in SGIHealthRuleSet. The system consists of several monitored elements (“ping.fsgb02.Ping.Fnalu_batch” for example).

<System Name=”Ping” Cluster=”Fnalu_Batch” ServiceType=”24x7”

RefRule=”SGIHealthRuleSet”>

<MonitoredElement Name=”ping” Host=”fsgb02” Type=”Hardware”/>

<MonitoredElement Name=”ping” Host=”fsgb03” Type=”Hardware”/>

<MonitoredElement Name=”ping” Host=”fsub02” Type=”Hardware”/>

</System>

6.6.3 Monitored Element

A <Monitored Element> tag is encountered only within <System> tags and has two additional optional attributes:

ServiceType – default is service type of the host

RefRule – a reference to the status rule set, describing the status rules for this monitored element, the default value is “MEDefRuleSet”

This configuration file should conform the DTD rules.

Example:

The following example defines the monitored elements with an id of cpuLoad.fnsfo.OSHealth. Fnalu and a Type of sysUsage. The status rule set defining the status of this monitored element is described in MEDefRuleSet and the service type is the service type of the host fnsfo.

<System Name=”OSHealth” Cluster=”Fnalu”>

<MonitoredElement Name=”cpuLoad” Host=”fnsfo” Type=”sysUsage”/>

</System>

6.7 Status Rule Sets

Every set of status rules is associated with some systems view or monitored objects. When the NGOP Monitor receives an event regarding an object, it uses set of status rules associated with this object to define its status and severity level. It also applies the corresponding rules to every component of the hierarchy this object belongs. In the NGOP configuration, a <StatusRuleSet> tag with required attribute ID represents the set of status rules. Every set of status rules definition is located in a separate file and has the following required declaration and tags:

<?xml version=’1.0’?>

<!DOCTYPE NGOPRules SYSTEM “rules.dtd”>

<NGOPRules>

<StatusRuleSet ID=”MEDefRuleSet>

……depenent list could be placed here

…… rules

</StatusRuleSet>

</NGOPRules>

The content of the set of status rules definition is divided into two parts:

· Dependent list - list of all objects that this particular monitored object depends on

· Rules

A Dependent list is omitted if a monitored object doesn’t depend on any other object. This configuration file should conform to the DTD rules.

6.7.1 Dependent List

A dependent list contains a list of the references to monitored objects and system views. In the NGOP configuration, a <DependList> tag represents a dependent list. In a dependent list, monitored objects/system views are arranged in groups. A group may contain other groups and is represented by a <Group> tag that has one required attribute Name (it should be unique only within this <SatusRulesSet> definition). Every group has a parameter “%GroupLen” that is equal to the total number of monitored objects in the group. A system may contain one special empty group with the attribute Name set to “{self}”. It means that this system depends on all monitored elements that it contains. All objects in a dependent list are ordered by their appearance relative to a particular group. A <For> tag may be used in a dependent list. This XML fragment should conform to the DTD rules.

Example:

This is an example of dependent list that consist of the “self” group:

<DependList>

<Group Name = “{self}”/>

</DependList>

The FBS system is a batch system developed at Fermilab. FBS depends on a bmgr and logd process running on a central node. FBS depends on the central node being up. FBS also depends on a process called a launcher to be running on all nodes in the system that can run a batch process. FBS runs on a cluster. In this example, the clusters CDFFarm and D0Farm (defined in the HostsInClusters.xml file) are running the FBS system.

HostsInClusters.xml:

<?xml version=’1.0’?>

<!DOCTYPE NGOPConfig SYSTEM “hosts_in_clusters.dtd”>

<NGOPConfig>

<Default_File/>

 <HostsInClusters>

 <Cluster Name=”CDFFarm”>

 <Cluster Name=”CDFFarmIO”>

<Host Name=”cdffarm1”/>

 </Cluster>

 <Cluster Name=”CDFFarmWorker”>

<Host Name=”fncdf1”/>

….

<Host Name=”fncdf90”/>

 </Cluster>

 </Cluster>

 <Cluster Name=”D0Farm”>

 <Cluster Name=”D0FarmIO”>

<Host Name=”d0bbin”/>

 </Cluster>

 <Cluster Name=”D0FarmWorker”>

 <Host Name=”fnd01”/>

….

 <Host Name=”fnd100”/>

 </Cluster>

 </Cluster>

….

 </HostsInClusters>

</NGOPConfig>

<?xml version=’1.0’?>

<!DOCTYPE NGOPRules SYSTEM “statusruleset.dtd”>

<NGOPRules>

<FBSInstance Name=”FBS”>

 <Instance Name=”D0”/>

 <Instance Name=”CDFFarm”/>

</FBSInstance>

<For Each=”Instance” Var=”{%I}” In=”FBSInstance” Name=”FBS”>

 <StatusRuleSet ID=”FBS{%I}RuleSet>

 <DependList>

 <Group Name=”fbs_daemon/>

 <System ID=”FBS” Cluster=”{%I}Farm” >

 <For Each=”Host” Var=”{%H}” In=”Cluster” Name=”{%I}FarmIO”

Filename=”HostsInClusters.xml”>

<MonitoredElement Name=”bmgr” Host=”{%H}” />

<MonitoredElement Name=”logd” Host=”{%H}” />

 </For>

 </System>

 </Group>

<!—logd could be referenced in DependRule as fbs_daemon[1]--!>

<Group Name=”launcher”>

 <System ID=”FBS” Cluster=”{%I}Farm” >

 <For Each=”Host” Var=”{%H}” In=”Cluster” Name=”{%I}FarmWorker”>

<MonitoredElement Name=”launcher Host=”{%H}”/>

 </For>

 </System>

</Group>

<!—launcher on fncdf1 could be referenced in DependRule as launcher[0]--!>

<Group Name=”hostUP”/>

 <System Name=”Ping” Cluster=”{%I}FarmIO”>

 <For Each=”Host” Var=”{%H}” In=”Cluster” Name=”{%I}FarmIO”>

<MonitoredElement Name=”ping” Host=”{%H}”/>

 </For>

 </System>

</Group>

</DependList>

…

</StatusRuleSet>

</NGOPRules>

6.7.2 Rule

When the NGOP Monitor receives an event it performs the following steps:

1. Finds the monitored object associated with this event

2. Finds the status rule set that defined rules for this monitored object

3. Evaluates an expression defined in every rule

4. Applies the rule (sets status and severity level) if an evaluated expression is true. The worst status/severity level of the corresponding rule with the highest priority will determine ultimate object’s status/severity level.

5. Identifies all the members of hierarchy that is affected by the change of this monitored object status.

6. Repeats steps 2-6 until there is no more affected members of hierarchy (step 5).

There are two implemented rule types.

· A Generic Rule (<GenericRule> tag) sets the monitored object status and severity level based on the event received from the NCS.

· A Dependent Rule (<DependRule> tag) sets the monitored element status and severity level based on the event received from the NCS and the status of each dependent monitored object in some group.

All these rules have three required attributes:

· Status – This can assume a special value “None” indicates that this rule will not change an existing status. In a dependant rule the Status of dependent list members is used in the expression.

· Prio (Priority) – This indicates the importance of the particular rule. It can assume any integer value greater than or equal to 0. The lower the value, the less important the rule is. If several rules are satisfied, the status and severity level of the monitored object will be the one associated with the rule with the highest priority.
· SevLevel (Severity Level) – This can assume a special value of “None” that indicates that this rule will not change the existing severity level.
There is one optional attribute:

· Dsc (Description). – Description is an explanation of the condition of a rule. Special parameters may be included in a description such as %ID , %Host or %Event. These parameters will be replaced by the corresponding values of the monitored object associated with this rule.
Every rule contains an expression that has to be evaluated upon receipt of an event. In an expression any particular field of the event is referred by its name. An Action is attached to any of the rules.

Example:

Let’s assume that the agent “LinuxHealth” is monitoring the file system “/export/home” on the worker node “fnd01”. This file system should be mounted from the I/O node “d0bbin”. The LinuxHealth Agent can generate events in three cases:

1. The file system is not mounted

2. Automount program is not running

3. The file system is more than 95% full

The status of the monitored element should change upon receiving any of these events unless the I/O node is down.

In order to do so the set of status rules (FileSystemRuleSet) should include the following:

	Rule Type
	Status
	Priority
	Evaluated Expression

	Dependent
	Good
	1
	d0bbin is down

	Generic
	Bad
	0
	File system is not mounted

	Generic
	Error
	0
	Automount is not running

	Generic
	Warning
	0
	File system is 95% full

If at some point we receive the event (1.), the status becomes “Bad” if the I/O node is up and “Good” if the I/O node is down.

6.7.3 Generic Rule Example

This rule is applied to a particular monitored object if the event associated with this object has a “State” of 1 (“Up”). The severity level remains unchanged. This XML fragment should conform the DTD rules.

<GenericRule Status=”Good” Prio=”0” SevLevel=”None” >

<apply>

<eq/>

<ci> State </ci>

<cn> 1 </cn>

</apply>

<!—if expression (State==1) is true , rule is applied--!>

</GenericRule>

This rule is applied to a particular monitored object if the event associated with this object has “State” value equal to 0 (“Down”). The severity level remains unchanged.

<GenericRule Status=”BAD” Prio=”0” SevLevel=”None” >

<apply>

<eq/>

<ci>State</ci>

<cn>0</cn>

</apply>

<!-if exression (State == 0) is true then the rule is applied --!>

</GenericRule>

This rule is applied to a particular monitored object if the event associated with this object has “State” value equal to 1 (“Up”) and “SevLevel” value equal to 6 (“Bad”). It set status to “Error”.

<GenericRule Status=”Error” Prio=”0” SevLevel=”None”>

<apply>

<and/>

<apply>

<eq/>

<ci>State</ci>

<cn>1</cn>

</apply>

<apply>

<eq/>

<ci>SevLevel</ci>

<cn>6</cn>

</apply>

</apply>

<!—if expression ((State==1) && (SevLevel==6)) is true , rule is applied--!>

6.7.4 Dependent Rule

A Dependent Rule allows for the use of objects from a dependent list in an expression. These objects are indexed by their position within a specific group of a dependent list. For example, the object that is listed third in the group named “fbs_daemon” is referred as “fbs_deamon[2]” (indexing starts with 0) in an expression. If a dependent list of a system status rule set has a group with Name=”{self}”, the i-th monitored object that belongs to this system is referred as “{self[i-1]}”. This XML fragment should conform to the DTD rules.

Example

This rule is applied to the “FBS” system when NGOP reports that the bmgr daemon is not running. bmgr is the first element (fbs_daemon[0]) of the fbs_daemon group in the dependent list of the FBS rule (see dependent list Example)

<DependRule Status=”Bad” Prio=”1” SevLevel=”None” Dsc=”Batch_Manager_is_down”>

<apply>

<and/>

<apply>

<eq/>

<ci>fbs_daemon[0].EventType</ci>

<cn>”Daemon”</cn>

</apply>

<apply>

<eq/>

<ci>fbs_deamon[0].State</ci>

<cn>0</cn>

</apply>

</apply>

<!—if expression ((bmgr.EventType==”Daemon”) && (bmgr.State==0)) is true then rule is applied--!>

This rule is applied to the FBS system when NGOP reports that the FBS central machine is down. ping is the first element of the “hostUp” group (hostUp[0])in the dependent list of the FBS rule (see dependent list Example).

<DependRule Status=”Unknown” Prio=”1” Dsc=”%Host_is_down”>

<apply>

<eq/>

<ci>hostUp[0].State</ci>

<cn>0</cn>

</apply>

</DependRule>
Chapter 7: Configuration File Manager

The configuration files for the NGOP system are monitored by a separate set of processes referred to as the Configuration File Manager System (CFMS) which cooperate:

· Configuration file Librarian

· Configuration file Indexer

· Configuration file Broker

· Administrative client

· Monitoring Client

Each of these packages has distinct responsibilities and is described below.

7.1: Librarian

The librarian is responsible for maintaining the master copies of the configuration files. In addition, the librarian is responsible for:

· Authenticating that users have permissions for file modification

· Maintaining revision history of files to allow checkpointing, rollback, commit, and full revision history.

· Delivering the contents of particular configuration files to Monitoring Clients, the NCS, and the CFM Indexer.

The librarian uses CVS to store configuration files.

7.2: Indexer

The Indexer reads a CVS tagged set of configuration files from the Librarian, generates an index listing of the files needed for each component of the system. The indexer also performs syntax and basic sanity checks of the configuration files, as well as finding dependencies.

7.3 Broker

The Broker communicates with two types of clients, and has distinct responsibilities for each:

Monitoring /Action Clients

When the monitoring client connects to the Broker, it sends the broker a subscription list of components. The Broker uses the indices generated by the Indexer to repeatedly send a revision tag and list of configuration files to the Monitoring Client—once initially, and then again as new indices are created. The monitoring client then requests those configuration files directly from the Librarian.

Administrative Clients

The Broker accepts requests from the Administrative Client including a version control/rollback tag after the admin client has run the indexer and checked the new index is with the Librarian

7.4 CFMS Configuration File

CFMS configuration file contains the following information:

<client_cfg>

<Client port=”8080” host=”ngop” name=”CnfgClnt”/>

<CfgXml cvsRep=”configxml”

cvsRoot=”:pserver:ngop@ngop.fnal.gov:/home/ngop/Repository”

version=”ngop_v1_1” name=”CfgXmlAC”/>

</client_cfg>

The <client_cfg> tag client tag defines parameters that are required to start CFMS. This tag is required and it includes the following attributes: TCP Port to connect to CFMS, host name where CFMS is running, and the name of CFMS (CnfgClnt).
The CfgXml tag is required. It defines the parameters that will be used to create local configuration and connect to CVS repository. The CfgXml tag includes the following attributes: name of ngop configuration cvs repository, CVSROOT definition, tag of current configuration version and the name. This configuration file should conform to the DTD rules.

7.5 CFMS Starting/Stopping

The CFMS is started in several ways. If the CFMS configuration file is located in

/var/ngop/cfms directory, it is started issuing the following command:

ngop start cfms

To start the CFMS with your own configuration file, use the following command:

ngop cfms –c config_file

7.6 Administrative Client

The administrative client allows one to:

· modify/create one or more configuration files (via the Librarian, and an appropriate editor)

· Run consistency checks on the files (by invoking Indexer)

· Commit a set of changed files (possibly yielding a CVS tag)

· Notify the Broker that the new taged version of configuration files are available.

7.7 Admin Starting/Stopping

The Admin GUI is started issuing the following command:

ngop admin –c config_file

The Admin GUI uses the same configuration file as CFMS. Below is a screen sample from the Admin GUI.

[image: image14.png]0SHealth. fcdf1

options | print || save

[=[ofx]

n:lua

i s IS Y |
T T e R S|
&
4
e — | =

o THediT, Tye syelsage, EvemType sysU%s), /

JE R —|

Chapter 8: Archive Server

8.1 Archive Server Overview

The Archive/History Server System is responsible for storing and retrieving messages generated by the NGOP system. Each message sent to the archive server is stored in an Oracle database. There are four major components of the Archive Server:

· Server: This process runs on an Oracle client machine and accepts messages from the NCS. It immediately caches the requests to local disk.

· Database Interface: This process takes the requests that have been cached by the server and stores them in the database. Having a separate process to store the data in the database allows the server to continue to run even if there are problems with the Oracle database.

· Web Interface: The information in the database is retrieved using a web-based interface.

· Cleanup Process: This process processes records in the Oracle database and rolls messages off that are more than 15 days old.

8.2 Starting and Stopping

The script to start the Archiver is located in the $NGOP_DIR/prototype/archsrv/src/server directory. $NGOP_DIR is set with UPS by issuing setup ngop. To start the archiver daemons:

setup ngop

cd $NGOP_DIR/prototype/archsrv/src/server

start_daemons
The start_daemons script launches two other scripts: start_archiver and start_dbinter. These scripts sit in a loop and periodically check to make sure the daemons are running. If for some reason the daemons die, the scripts will restart them.

8.3: Archiver Configuration

Below is an example configuration file for the archive server:

<ArchiverConfig>

<Port>7001</Port>

<ArchiverHost>fncduh1.fnal.gov</ArchiverHost>

<OraUser>oracle_user</OraUser>

<OraPW>oracle_pw</OraPW>

<OraInstance>procdev</OraInstance>

<LogPath>/home/fncduh/ngop/serverlog/log.out</LogPath>

<DBInterSleepInterval>15</DBInterSleepInterval>

<RequestDirectory>/home/fncduh/ngop/scratch</RequestDirectory>

<ErrorDirectory>/home/fncduh/ngop/errors</ErrorDirectory>

</ArchiverConfig>

The Port and ArchiverHost are the port and host that the archive server is listening on for requests. The OraUser/OraPW is the Oracle userid and password of an owner that can write into the archive tables. OraInstance is the Oracle instance that the tables reside in. LogPath points to the file that contains the log files created by the archiver. DBInterSleepInterval is the time in seconds that the database interface program will look in RequestDirectory to process new messages. ErrorDirectory is the pathname where requests that could not be processed are placed. This configuration file should conform to the DTD rules.

Chapter 9: Monitoring Agents

9.1: Overview

Monitoring Agents (MA) are processes that monitor some entity and report a status to the NCS. NGOP provides a basic set of MA’s, but users are free to write their own. The MA is the element that gives NGOP a great deal of flexibility.

A Monitoring Agent(MA) includes the following features:

· interfaces to NCS

· monitors the characteristics of a particular monitored object

· sends events to the NCS when characteristic of the object meets specific conditions (An MA doesn’t send an event when the monitored object doesn’t meet any conditions. In this case the State of the monitored object is assumed to be UP. A MA will send an event if a monitored object satisfies some condition)

· performs local actions

· sends requests to perform centrilized actions

· sends heartbeats to the NCS

· resends events and configuration when the connection with the NCS is interrupted

· MA configuration, conditions and actions associated with conditions are described in the configuration file using XML. This file should be located on the node where MA is running

NGOP provides a framework for creation of the MAs: either by using the MA API or the PlugIns Agent.

9.2 Plugin Agent

A PlugIn Agent provides the monitoring of software or hardware components utilizing existing scripts or executables (plug-ins). These plug-ins should be able to measure and print some quantitative characteristics of the monitored objects. A configuration file describing the monitored hierarchy, plug-ins and set of conditions is required in order to use a PlugIns Agent. This configuration file should conform to specific DTD rules. A configuration file should start with the following XML declarations:

<?xml version=”1.0”?>

<!DOCTYPE MA-Config SYSTEM “agent.dtd”>

The first tag of a PlugIns Agent XML document is a <MA_config> tag, which defines the MA configuration. This tag is required, and requires to additional attributes:

· Name – the name of the PlugIn Agents.

· Update – specifies the time interval in seconds between running the plug-in agent.

· Type – specifies the type of the MA. There are two possible types:

· Daemon (default) - Monitoring Agent that should be always present

· Cron – Monitoring Agent that will run for a short period of time and then reaper within the time interval specified in the heartbeat attribute

An <NCS> tag (required) defines the NCS parameters and includes the following required attributes:

· Port - the NCS UDP port

· Host - the NCS host

· Heartbeat - specifies the heartbeat interval in seconds

A system description should follow the <NCS> tag. Several systems are described in the same XML document. A <System> tag indicates the beginning of the system definition. It contains multiple monitored elements.

A <ConditionSet> tag indicates the beginning of the condition set definition. A <ConditionSet> tag could be placed within the <MonitoredElement> or <System> tags. It contains the description of a plug-in and at least one condition. The <fn> tag describes plug-in that should be executed in order to define the state of a monitored. It has the following required attributes:

· Name - the name of the operation (“plug_in” for all the PlugIns Agents)

· Arg – the full path to the plug-in that needs to be executed to verify the state of monitored object (Parameters %ID, %Name, %Cluster and %Host is used in an attribute Arg and will be substituted with the corresponding values of monitored object)

· RetVal – the description of return values. It has the following format:

“type:var_name, type:var_name…”

where type is float, int, string, array int, array float or array string

Important: in case of int, float or string types the return values should be returned in the standard output of a plug-in, and separated by a newline character. In case of an “array …” type the return values should be returned in the standard output of a plug-in, and separated by space (see Example for more details). If the plug-in exits with non-zero exit code then the return value is set to Error and the following event will be generated:

“Date=… ID=… EventType=” executable” EventName=”plug-ins” State=-2 Description=”Failed to execute command”

The <Condition> tag indicates the beginning of the condition definition and has the following attributes:

· State (required) - defines the monitored object state if the occurred event satisfied this condition

· SevLevel (required) - severity level of the event that satisfied this condition

· Description (required) - readable description of the event(Parameters %ID, %Name, %Cluster ,%Host and %Event is used in an attribute Description and will be substituted with the corresponding values of monitored object)

· EventName (optional) - defines the event name if it is different from the monitored object name (see Event)

· EventType (optional) - defines the event type if it is different from the monitored object type (see Event)

The <apply> tag indicates the beginning of a mathematical expression that should be evaluated in order to determine if the condition is satisfied. If an expression is evaluated to be true a PlugIn Agent will generate an event. A special variable %len(retValue_array_name) is used in a <ci> tag. It refers to the length of the array in plug-ins return value and is used in <sum>, <min> and <max> function operators (see Example for more details).

The <Action> tag is optional and it indicates the beginning of action definition. If the condition is satisfied and the action is defined, then the PlugIns Agent will perform this action locally or send request to the NCS to execute this action.

The general structure of a PlugIns Agent configuration file should look like the following:

<?xml version=”1.0” ?>

<!DOCTYPE MA-Config SYSTEM “agent.dtd” >

<MA-Config Name….>

 <NCS Host=…/>

 <System Name=..>

 <MonitoredElement Name=…>

 <ConditionSet>

<fn Name=”plug-ins” Arg=…/>

<Condition State=…>

 <apply>

<!—expression--!>

 </apply>

 <Action>

<!—action--!>

 </Action>

</Condition>

<!—more conditions--!>

 </ConditionSet>

 </MonitoredElement>

 <!—more monitored elements--!>

 </System>

 <!—more systems--!>

</MA-Config>

In the PlugIns Agent configuration localhost instances will be replaced by the local host name. This configuration file should conform to the DTD rules.

Example 1:

Let’s assume that we want to monitor the system load averages for the past 1, 5, and 15 minutes using the following command as a “plugin”:

uptime|awk ‘{print $(NF-2),$(NF-1),$NF}’|awk -F’,’ ‘{print $1,$2,$3}’

Assume that we want the PlugIns agent to generate an event when the minimum of cpu load averages exceeds 12.0. The fragment of the PlugIns configuration file to perform this would look like the following:

<MonitoredElement Name=”cpuLoad” Host=”localhost” Type=”sysUsage”>

<ConditionSet>

<fn Name=”plug_ins” Arg=” uptime|awk ‘{print $(NF-2),

$(NF-1),$NF}’|awk -F’,’ ‘{print $1,$2,$3}’ “

RetVal=”array float:load”/>

 <Condition State=”UP” SevLevel=”6” Description=”Cpu load too high”>

 <apply>

<geq/>

<apply>

 <min>

<bvar>i<bvar>

<lowlimit><cn>0<cn></lowlimit>

<uperlimit><ci>%len(load)</ci></uperlimit>

<ci>load</ci>

 </min>

</apply>

<cn>12.0</cn>

 </apply>

 <!—checking for condition : min(load[i]) >=12.0, where i = 0, len(load)--!>

 </Condition>

</ConditionSet>

Example 2:

Let’s assume that we want to monitor OS “Health” on an SGI node named fnsfo. We want to check some components using the following Unix commands:

Number of cpu off –line:

mpadmin -n|wc -l

Cpu load during last 15 min:

uptime | awk -F’,’ ‘{print $NF}’

/dev/root file system size

df /dev/root | grep -v Filesystem|awk ‘{print $6}’

Inetd daemon presence

ps -ef | grep inetd | grep -v grep|wc –l

The agent’s configuration file will look like the following:

<?xml version=”1.0”?>

<!DOCTYPE MA-conifg System “agent.dtd”>

<MA-config Name=”SGI_Health” Update=”180”>

<NCS Heartbeat=”600” Port=”19997” Host=”ndem.fnal.gov”/>

 <System Name=”OSHealth” Cluster=”localhost”>

 <!—system id is “OSHealth.fnsfo” --!>

<MonitoredElement Name=”cpuStatus” Host=”localhost” Type=”Hardware”>

<!—monitored element id is “cpuStatus.fnsfo.OSHealth.fnsfo” --!>

<ConditionSet>

<fn Name=”plug_ins” Arg=”mpadmin -n|wc -l” RetVal=”int:onlinecount”/>

 <Condition State=”Down” SevLevel=”6” Description=”At least one cpu is off-line”>

<apply>

 <eq/>

 <ci>onlinecount</ci>

 <cn>4</cn>

</apply>

<!—checking for condition : (onlinecount == 4) , where number of

processors on fnsfo is equal to 4--!>

 </Condition>

</ConditionSet>

</MonitoredElement>

<MonitoredElement Name=”cpuLoad” Host=”localhost” Type=”sysUsage”>

<!—monitored element id is “cpuLoad.fnsfo.OSHealth.fnsfo” --!>

<ConditionSet>

<fn Name=”plug_ins” Arg=”uptime | awk -F’,’ ‘{print $NF}’” RetVal=”float:load”/>

 <Condition State=”UP” SevLevel=”4” Description=”Cpu load is between 8 and 15 during

last 15 minutes”>

<apply>

<and/>

 <apply>

 <geq/>

 <ci>load</ci>

 <cn>8.0</cn>

 </apply>

 <apply>

 <lt/>

 <ci>load</ci>

 <cn>15.0</cn>

 </apply>

</apply>

<!—checking for condition : ((load>=8)&& (load<15)) --!>

 </Condition>

 <Condition State=”UP” SevLevel=”6” Description=”Cpu load is greater than 15 during last 15 minutes”>

<apply>

 <geq/>

 <ci>load</ci>

 <cn>15.0</cn>

</apply>

<!—checking for condition : (load>=15) --!>

 </Condition>

</ConditionSet>

</MonitoredElement>

<MonitoredElement Name=”/dev/root” Host=”localhost” Type=”FileSystem”>

<!—monitored element id is “/dev/root.fnsfo.OSHealth.fnsfo” --!>

<ConditionSet>

<fn Name=”plug_ins” Arg=”df /dev/root | grep -v Filesystem|awk ‘{print $6}’”

RetVal=”int:size”/>

 <Condition State=”UP” SevLevel=”6” Description=”file system is more then 95% full”>

 <apply>

 <gt/>

 <ci>size</ci>

 <cn>95</cn>

 </apply>

 <!—checking for condition : (size>95%) --!>

 </Condition>

</ConditionSet>

</MonitoredElement>

<MonitoredElement Name=”inetd” Host=”localhost” Type=”Daemon”>

<!—monitored element id is “inetd.fnsfo.OSHealth.fnsfo” --!>

<ConditionSet>

 <fn Name=”plug_ins” Arg=”ps -ef | grep inetd | grep -v grep|wc -l”

RetVal=”int:ifExist”/>

 <Condition State=”Down” SevLevel=”6” Description=”inetd daemons is not running”>

<apply>

 <neq/>

 <ci>ifExists</ci>

 <cn>1</cn>

</apply>

 </Condition>

</ConditionSet>

</MonitoredElement>

</System>

</MA-config>

9.2.1 Starting/Stopping Plugins Agent

You can start Plugins Agent in several ways. Multiple Agents configuration files are placed in /var/ngop/plugins_agent directory and could start (stop) simultaneously by issuing

ngop start/stop plugins_agent

In order to start individual agents, the following commands are used:
ngop start/stop “ngop plugins_agent –c /ngop/var/plugins_agent/cfg_file”

or

ngop plugins_agent –c cfg_file

(you have to manually kill an agent if started it this way)

9.3 Swatch Agents

A Swatch Agent is an agent that watches a log file for lines matching a regular expression, and takes some action when this occurs (similar to swatch). Like the other agents in NGOP, an XML configuration file controls the Swatch Agent’s behavior. A XML document for each Swatch Agent is placed in a separate file and should begins with the following XML declarations:

<?xml version=”1.0”?>

<!DOCTYPE SwatchAgentConfig SYSTEM “swatchagent.dtd” >

The outermost tag of the file is <SwatchAgentConfig> , which includes the required name attribute. name specifies the name of the monitoring agent.

The second outermost tag of the file is <NCS>, which includes the following attributes:

Heartbeat - specifies the hearbeat interval in seconds

Host - specifies the host name of the NCS to send events

Port - specifies the port number on the above host

The third outermost tag of the file is <File>, which includes the following attributes:

file - This lists the file the agent should watch for messages

filetype – The valid values for filetype are:

“multihost” – This indicates that a hostname match should be prepended to regular expressions when expanding HostType lists.

“plain” – This indicates that all regular expressions are to be used verbatim

A system description should follow the<File> tag. Several systems are described in the same XML document. The <System> tag indicates the beginning of the system definition. It contains multiple monitored elements.

Once we are in the context of a given <MonitoredElement>, we can specify rules about log file lines, which will trigger events about that monitored element, with an <ReRule> tag. <ReRule> tag has the following required attributes:

Regexp – defines a regular expression

State
SevLevel

EventName

EventValue

and one optional attribute:

ActionID – defines action that should be executed when pattern is matched

An <Action> tag that should be within a <SwatchAgentConfig> tag describes an action.

In the Swatch Agent configuration instances of “localhost” will be replaced by the local host name. This configuration file should conform to the DTD rules.

Example:

Let’s assume that we want to monitor a syslogd log file on a Linux machine. We want to watch for the following patterns:

‘kernel: nfs: server.*not responding’

‘ypbind.*failed’

‘shutdown succeeded’

‘startup succeeded’

‘kernel:.*irq

‘kernel:.*reset: success’

‘kernel:.*status timeout:’

‘kernel:.*drive not ready for command’

<?xml version=’1.0’?>

<!DOCTYPE SwatchAgentConfig SYSTEM “swatchagent.dtd” >

<SwatchAgentConfig name=”SwatchAgent”>

<NCS Heartbeat=”600” Host=’ndem.fnal.gov’ Port=’19997’>

<File file=’/var/log/messages’ filetype=’plain’>

 <System ID=’OSHealth’ Cluster=’localhost’>

<MonitoredElement Name=’syslogd’ Type=’Daemon’ Host=’localhost’>

<ReRule Regexp=’kernel: nfs: server.*not responding’ EventName=’nfs’

State=’UP’ SevLevel=’6’/>

<ReRule Regexp=’ypbind.*failed’ EventName=’ypbind’ State=’UP’ SevLevel=’4’/>

<ReRule Regexp=’shutdown succeeded’ State=’UP’ SevLevel =’5’/>

<ReRule Regexp=’startup succeeded’ State=’UP’ SevLevel= ‘0’/>

<ReRule Regexp=’kernel:.*irq timeout’ State=’UP’ SevLevel= ‘6’/>

<ReRule Regexp=’kernel:.*reset: success’ State=’UP’ SevLevel= ‘6’/>

<ReRule Regexp=’kernel:.*status timeout:’ State=’UP’ SevLevel= ‘6’/>

<ReRule Regexp=’kernel:.*drive not ready for command’ State=’1’

SevLevel= ‘6’/>

<ReRule Regexp=’kernel:.*Unable to load interpreter /lib/ld-linux.so.2’

State=’1’ SevLevel= ‘6’/>

</MonitoredElement>

</System>

</File>

</SwatchAgentConfig>
9.3.1 Starting/Stopping Swatch Agent

You can start Swatch Agent in several ways. Multiple Agents configuration files are placed in /var/ngop/swatch_agent directory and could start (stop) simultaneously by issuing

ngop start/stop swatch_agent

In order to start individual agents , the following commands are used:

ngop start/stop “ngop swatch_agent –c /ngop/var/swatch_agent/cfg_file”

or

ngop swatch_agent –c cfg_file

The agent must be killed manually if started by the latter.
9.4 Monitoring Agent API

Users can write their own monitoring agents using the supplied monitoring agent API that comes with the NGOP product. This chapter discussed the monitoring agent API and gives examples.

9.4.1: API Description

NGOP Monitoring Agent API provides way for users to write their own Monitoring Agent that will communicate with NGOP Central Server.

MAClient Class performs all the communication between Monitoring Agent and NGOP Central Server. User has to create the object of this class. The MAClient Class provides the following methods:

· Setting MA attributes

· Describing configuration

· Registering with NGOP Central Server

· Sending Events to NGOP Central server

· Performing Action

· Sending request to NCS to perform Action

Only a Python binding API is provided in prototype version.

9.4.1.1: MAClient Class

In order to use the MA API, user applications should import the MAClient class from the MA_API module:

from MA_API import MAClient

9.4.1.2: MAClient methods

This section describes the methods available for the MAClient class.

9.4.1.2.1 MAClient()
The constructor MAClient() creates an MAClient object and establishes communication with the NGOP Central Server.

Synopsis:

MAClient()

Arguments:

None
Return Value:

MAClient object.

9.4.1.2.2 setMAAttrib()

This method sets the monitoring agent attributes such as name, heartbeat rate, central server host and port.

Synopsis:

setMAAttrib(maName,heartbeat,ncsHost,ncsPort,type)
Arguments:

maName:

String; Monitoring Agent name

heartbeat:
String; interval in seconds to sent a heartbeat message to the NCS.

ncsHost:
String; NCS host

ncsPort:
String; NCS port

type:
 Sring,MA type (Cron or Daemon)

Return Value:

None.

9.4.1.2.3 addSystem()

This method adds system information to the list of monitored objects.

Synopsis:

addSystem(sysName, clusterName)
Arguments:

sysName:

String; name of the system.

clusterName:
String; name of the cluster.

Return Value:

None.

9.4.1.2.4 addME()

This method adds monitored elements to the system configuration.

Synopsis:

addME(sysName, clusterName, meName, meType, host)
Arguments:

sysName:

String; name of the system.

clusterName:
String; name of the cluster.

meName:

String: monitored element name.

meType:

String: monitored element type.

host:

String: host name where the monitored element is located.

Return Value:

None.

9.4.1.2.5 register()

This method sends the initial configuratio to the NGOP Central Server.

Synopsis:

register()
Arguments:

None

Return Value:

None

9.4.2.6 send_event()

This method sends an event message to the NGOP Central Server.

Synopsis:
send_event(eventDict,sysName,clusterName,meName,meHost)
Arguments:

eventDict: Dictionary: Describes the event with the following dictionary keys:

EventType – String

EventName – String

EventValue – String

State – Integer (-1,0,1)

1 - undefined

0 - up

1 - down

SevLevel – Integer (0-6).

0 – None

1 - NotInService

2 - Unknown

3 - Undefined

4 - Warning

5 - Error

6 - Alert

sysName: String: name of the system

clusterName: String: name of the cluster

meName: String: name of the monitored element

meHost: String: name of the host where the monitored element is located.

meName,meHost are set to None if event is related to

system state

Return Value:
2-type (status,reason)

status: Integer

0 – failure

1 – success

reason: String; Reason for failure or NULL.

9.4.1.2.6 do_action()

This method sends an event message to the NGOP Central Server.

Synopsis:
do_action(sysName,clusterName,meName,meHost,eventDict,actionDict)

Arguments:

eventDict: Dictionary: Describes the event with the following dictionary keys:

EventType – String

EventName – String

EventValue – String

State – Integer (-1,0,1)

1 - undefined

0 - up

1 - down

SevLevel – Integer (0-6).

0 – None

1 - NotInService

2 - Unknown

3 - Undefined

4 - Warning

5 - Error

6 - Alert

actionDict: Dictionary: Describes the action with the following keys:

ActionID – String: The action id.

ExecName – String: Name of the command to be executed.

ArgList – String: The argument list to ExecName.

ActionType – String: Either “local” or “central”.

sysName: String: name of the system

clusterName: String: name of the cluster

meName: String: name of the monitored element.

meHost: String: name of the host where the monitored element is located.

meName,meHost are set to None if event is related to

system state

Return Value:
None.

9.4.1.2.7 stop()

This method notify NCS that is ended normaly .

Synopsis:
stop()

Arguments:

None

Return Value: None

9.4.2: MA API Example

This section details a monitoring agent written using the API. In this example, let’s assume that we want to monitor the system “mySystem” on the cluster “myCluster”. Let’s say the cluster consists of 100 nodes named myWorker1, myWorker2, ..., myWorker100. A monitored element called myDaemon is running on each the node in the cluster. When myDaemon dies or restarts we would like to send an event message to the NGOP Central Server.

Here is the code to perform this task:

import MA_API
import time
import sys
DOWN=0
UP=1
UNKNOWN=-1
def isDaemonAlive(self,name,node):
 #user provides way to verify that the daemon is alive on the node

 return state,description
 #state could be Down, Up, Unknown
 #description should not have blanks
if __name__==”__main__”:
 checkTime=myCheck
 # monitoring interval
 maName=”myAgent” i
 #name of the monitoring agent
 sysName=”mySystem”
 #system name
 clusterName=”myCluster”
 #cluster name
 nodeName=”myWorker”
 #common node name
 minIdx=1
 #node number starts with this index
 maxIdx=100
 #node number ends with this index
 meName=”myDaemon”
 #name of monitored element
 meType=”Daemon”
 #type of monitored element
 heartbeat=”300”
 #heartbeat rate in sec
 serverHost=’ngop’
 serverPort=”19997”
 #NGOP Central Server host and port

 cl=MA_API.MAClient()
 #creates MAClient object

 cl.setMAAttrib(maName,heartbeat,serverHost,serverPort)
 #sets MA attributes

 cl.addSystem(sysName,clusterName)
 #configures the system
 oldStateList=[]
 #hold previous state of the monitred element
 for i in range(minIdx,maxIdx):
 cl.addME(sysName,clusterName,meName,meType,nodeName+repr(i))
 #configures system monitored elements list
 oldStateList.append(UP)
 # sets all state to UP

 cl.register()
 #registers monitoring agent with NGOP Central Server

 while 1:

 for i in range(minIdx,maxIdx):

 state,description=isDaemonAlive(meName, nodeName+repr(i))
 if oldStateList[i]==state:
 continue #nothing has changed
 eventDict={’EventType’:meType, ‘EventName’:meName, \
 ‘State’:state,’SevLevel’:0}
 eventDict[’Description’]=description

status,reason=cl.sendEvent(eventDict,sysName,clusterName,

 meName,nodeName)

 #sends event to NGOP CS

if not status: print “Error:”,reason

oldStateList[i]=state

 time.sleep(checkTime)

9.4.3 Starting/Stopping Your Agent

You can start your Agent issuing the following command:

ngop your_python_code.py &

Chapter 10: Action Client

An Action Client has the following features:

· It gets configuration information from the CFMS

· It gets action requests from the NCS

· It verifies user authorization to request the actions

· It performs actions

· It notifies the NCS about success/failure of a performed actions

There are several configuration files that contain general information needed for the action clients. These files will be downloaded into a designated configuration area during the NGOP action client startup.

10.1 Action Client Configuration File

Action Client configuration file contains the following information:

<AC_cfg>

 <Client port="19986" host="localhost" name="NCSClnt"/>

 <Client port="8080" host="localhost" name="CnfgClnt"/>

 <CfgXml cvsRep="configxml" wrkDir=".ngop_action" excDir="scripts" cvsRoot=":pserver:ngop@ngop.fnal.gov:/home/ngop/Repository" role="farmadmin"/>

</AC_cfg>

The <AC_cfg> tag client tag defines parameters that are required to start Action Client. Action Client should be connected to NCS, so first <Client> tag is required. The second <Client> tag is optional and is needed if Action Client connects to CFMS. The <Client> tag has the following attributes: service tcp port, host name of the node where service is running and service name (NCSClnt/CnfgClnt). The CfgXml tag is required. It defines the parameters that will be used to create local configuration and connect to CVS repository. CfgXml tag includes the following attributes: name of the root dirctory (required), name of ngop configuration cvs repository (requred), CVSROOT definition (optional), tag of current configuration role.

This configuration file should conform to the DTD rules.

10.2 Starting/Stopping Action Client

An administrator can start Action Client in several ways. Action Client configuration files are placed in /var/ngop/action directory and could start (stop) simultaneously by issuing

ngop start/stop action

or

 ngop action –c cfg_file &

If the agent is started by the latter command, the agent can only be killed manually.

10.3 File authorized.xml
The authorized.xml configuration file contains information about the users who are authorized to perform certain actions via an action client. Each user belongs to an authorization group.

If a user has requested an action but is not listed in the authorized.xml configuration file, the request will be denied. The authorized.xml file requires the following declaration and tags:

<?xml version=’1.0’?>

<!DOCTYPE NGOPAction SYSTEM “action.dtd”>

<NGOPAction>

<Authorization_File>

 <AuthorizedGroup ID="ngop_admin">

 <User Name="user_name"/>

 ...

 </AuthorizedGroup>

</Authorization_File>

</NGOPAction>

An <Authorization_File> tag contains zero or more <AuthorizedGroup> tags. These tags have a required attribute of ID and contain zero or more user names (<User>). This configuration file should conform to the DTD rules.

Example:

Two groups (ngop_admin and oss_admin) are described in this example. A list of authorized users is attached to each group.

<AuthorizationFile>

<AuthorizedGroup ID=”ngop_admin”>

<User Name=”smith”/>

<User Name=”jones”/>

</AuthorizedGroup>

<AuthorizedGroup ID=”oss_admin”>

<User Name=”brown”/>

<User Name=”johnson”/>

</AuthorizedGroup>

</AuthorizationFile>

10.4 File action.xml
The action.xml configuration file describes actions which consist of executables or scripts, a host where they are located, and the groups that are authorized to perform this action. The action.xml file requires the following declaration and tags:

<?xml version=’1.0’?>

<!DOCTYPE NGOPAction System “action.dtd”>

<NGOPAction>

<Action_File>

<NGOPAction>

<Action_File>

 <Action ID="action_name">

 <Host Name="host_name">

 <AuthorizedGroup ID="group_name"/>

...

 <Exec Path="command_name"/>

 ...

 </Host>

 </Action>

</Action_File>

An <Action> tag has one required attribute (ID) and contains several <Host> tags. A <Host> tag has a Name attribute and contains one or more <AuthorizedGroup> tags (with an ID attribute) and <Exec> tags (with a Path attribute). This configuration file should conform to the DTD rules.

Example:

Two actions are defined in this example. The first action allows operator and oss_admin groups to send email via an action client running on the host ndem..

<ActionFile>

<ActionID=”email”>

<Host Name=”ndem”>

<AuthorizedGroup ID=”operator”/>

<AuthorizedGroup ID=”oss_admin”/>

<Exec Path=”scripts/email”>

</Host>

</Action>

</ActionFile>

Chapter 11: Controlling the NGOP Daemons

The NGOP package requires multiple processes to be running on multiple systems:

· The NCS, Broker, and Action Client on a central service machine.

· Ping agents on some machines which watch over other machines.

· Monitoring agents local to various systems.

To facilitate this, NGOP provides a simple mechanism for an administrator to write down what NGOP processes should be running on a given system, and to start them, stop them, and make sure that they are still running. This mechanism is also integrated with the UPS packaging system which has an umbrella mechanism to start processes needed for various UPS products at system startup.

11.1: The /var/ngop Directory.

The start/stop mechanism by default uses a directory tree under /var/ngop on each system to record what processes should be running on that system. The location of this directory can be changed by setting the environment variable NGOP_START_DIR.

As an example, suppose that you wanted to have two swatch_agent processes each running a different configuration file, and one plugins_agent process:

ngop swatch_agent –c cfg1.xml

ngop swatch_agent –c cfg2.xml

ngop plugins_agent –c cfg3.xml

To configure this you would place the configuration files under /var/ngop as follows:

/var/ngop/swatch_agent/cfg1.xml

/var/ngop/swatch_agent/cfg2.xml

/var/ngop/plugins_agent/cfg3.xml

The directory tree should have r+w permissions for the uid who will be running the NGOP processes.

11.2 Starting the Agents

Once the directory structure has been setup under /var/ngop, the agents are started by doing one of the following:

ups start ngop

or

setup ngop

ngop start

When the command is issued, an informational message will be displayed to the screen for each process started. The start/stop mechanism also records which agents have been started with their process ID numbers in /var/ngop/.pids.<hostname>.

11.3 Monitoring the Agents

The start/stop mechanism provides a means to monitor the agents:

ups status ngop

or

setup ngop

ngop status

Below is an example of the output produced by the status command:

$ ngop status

Running:

PID
COMMAND

9707
ngop swatch_agent –c /var/ngop/swatch_agent/cfg1.xml

9710
ngop swatch_agent –c /var/ngop/swatch_agent/cfg2.xml

9713
ngop plugins_agent –c /var/ngop/plugins_agent/cfg3.xml

If one of the agents has died, it will still show in the listing:

$ ngop status

Running:

PID
COMMAND

9707
ngop swatch_agent –c /var/ngop/swatch_agent/cfg1.xml

died
ngop swatch_agent –c /var/ngop/swatch_agent/cfg2.xml

9713
ngop plugins_agent –c /var/ngop/plugins_agent/cfg3.xml

There is also a check command which will obtain the status of the agents and restart those that have died:

$ ngop check

Running:

PID
COMMAND

9707
ngop swatch_agent –c /var/ngop/swatch_agent/cfg1.xml still running

9710
ngop swatch_agent –c /var/ngop/swatch_agent/cfg2.xml died, restarting ...

9713
ngop plugins_agent –c /var/ngop/plugins_agent/cfg3.xml still running

11.4 Stopping the Agents

Once the directory structure under /var/ngop has been setup and the agents have been started as in the previous section, stopping the agents is accomplished with one of the following commands:

ups stop ngop

or

setup ngop

ngop stop

The stopping mechanism looks under /var/ngop/.pids.<hostname> for agents that have been started. Informational messages are displayed as each agent is stopped:

$ngop stop

Stopping: ngop swatch_agent –c /var/ngop/swatch_agent/cfg1.xml

Stopping: ngop swatch_agent –c /var/ngop/swatch_agent/cfg2.xml

Stopping: ngop plugins_agent –c /var/ngop/plugins_agent/cfg2.xml

11.5 Disabling/Enabling Agents

It is sometimes desirable to disable an agent, but not to discard it’s configuration. This is accomplished with the ngop disable command. The agent is enabled with ngop enable. The argument to these commands is either the full NGOP command (as listed by ngop status) in quotes, or the base name of the configuration file (cfg2 for example):

$ ngop status

Running:

PID
COMMAND

9707
ngop swatch_agent –c /var/ngop/swatch_agent/cfg1.xml

9710
ngop swatch_agent –c /var/ngop/swatch_agent/cfg2.xml

9713
ngop plugins_agent –c /var/ngop/plugins_agent/cfg3.xml

$ ngop disable “cfg2”

Stopping: ngop swatch_agent –c /var/ngop/swatch_agent/cfg2.xml

$ngop stop

Stopping: ngop swatch_agent –c /var/ngop/swatch_agent/cfg1.xml

Stopping: ngop plugins_agent –c /var/ngop/plugins_agent/cfg2.xml

$ngop start

Starting: ngop swatch_agent –c /var/ngop/swatch_agent/cfg1.xml

Disabled: ngop swatch_agent –c /var/ngop/swatch_agent/cfg2.xml

Starting: ngop plugins_agent –c /var/ngop/swatch_agent/cfg3.xml

$ngop enable “cfg2”

Starting: ngop swatch_agent –c /var/ngop/swatch_agent/cfg2.xml

11.6 Controlling Agents on Remote Hosts

NGOP agents often run on multiple hosts. The ngop remote command is used to stop, start, or modify the behaviour of NGOP agents on remote hosts provided that the user issuing the command has permission to rsh to those hosts.

The format of the remote command is:

ngop remote [-l user] <host>|<cluster> |

ngop remote [-l user] <host_prefix>:<start_range>-<end_range>

For example, to start nodes fcdf09, fcdf10, fcdf11, fcdf12, and fcdf13, the following command is used:

ngop remote fcdf:09-13

If the above command should be executed as the user ngopuser, the following command would be used:

ngop remote –l ngopuser fcdf:09-13

If the “tictac” tools for the farms are being used, the tictac cluster name can be used:

ngop remote –l ngop start –c fcdf_cluster

11.7 Starting/Stopping Individual Agents

The start and stop commands can be given a string to match that will pick servers to start or stop. For example, to stop a swatch_agent using the configuration file /var/ngop/swatch_agent/ cfg1.xml:

$ngop stop “cfg1”

Stopping: ngop swatch_agent –c /var/ngop/swatch_agent/cfg1.xml

$ngop status

Running:

PID
COMMAND

died
ngop swatch_agent –c /var/ngop/swatch_agent/cfg1.xml

9708
ngop swatch_agent –c /var/ngop/swatch_agent/cfg2.xml

9713
ngop plugins_agent –c /var/ngop/plugins_agent/cfg3.xml

With multiple hosts, this can result in a more complicated string. For example, to kill the deamon in the above example on hosts fcdf09-13, you would issue the following command:

ngop remote ‘stop cfg1’ fcdf09-13

Appendix A

<For> DTD

<!ELEMENT For (For* | MonitoredElement+) >

<!ATTLIST For

Each CDATA #REQUIRED

In CDATA #REQUIRED

Name CDATA #REQUIRED

Var CDATA #REQUIRED

File CDATA #IMPLIED

>

<Apply> DTD

<!ELEMENT apply ((sum | min | max | divide | times | plus | minus | and | or | eq | neq | gt | geq | lt | leq | in | notin), (apply | cn | ci)*) >

<!ELEMENT sum (bvar, uplimit, lowlimit, (apply | ci | cn)*) >

<!ELEMENT min (bvar, uplimit, lowlimit, (apply | ci | cn)*) >

<!ELEMENT max (bvar, uplimit, lowlimit, (apply | ci | cn)*) >

<!ELEMENT bvar EMPTY >

<!ELEMENT uplimit (apply | cn) >

<!ELEMENT lowlimit (apply | cn) >

<!ELEMENT divide EMPTY >

<!ELEMENT times EMPTY >

<!ELEMENT plus EMPTY >

<!ELEMENT minus EMPTY >

<!ELEMENT and EMPTY >

<!ELEMENT or EMPTY >

<!ELEMENT eq EMPTY >

<!ELEMENT neq EMPTY >

<!ELEMENT gt EMPTY >

<!ELEMENT geq EMPTY >

<!ELEMENT lt EMPTY >

<!ELEMENT leq EMPTY >

<!ELEMENT in EMPTY >

<!ELEMENT notin EMPTY >

<!ELEMENT ci (#PCDATA) >

<!ELEMENT cn (#PCDATA) >

<Action> DTD

<!ELEMENT Action (Exec) >

<!ATTLIST Action

ID CDATA #REQUIRED

Host CDATA #REQUIRED

Method (manual | automatic) 'automatic'

Type (local | central) 'central'

Repeat CDATA #IMPLIED

Gap CDATA #IMPLIED

>

<!ELEMENT Exec EMPTY >

<!ATTLIST Exec

Name CDATA #REQUIRED

Argument CDATA #REQUIRED

>

<If> DTD

<!ELEMENT If (PCDATA|Else?) >

<!ATTLIST If

Cond CDATA #REQUIRED “’{%Role}’==(!=)’role_name’”

>

<!ELEMENT Else (PCDATA)>

NCS Configuration File DTD

<!ELEMENT NCS_cfg (NCS, Client?, Admin) >

<!ELEMENT NCS EMPTY >

<!ATTLIST NCS

 tcpPort CDATA #REQUIRED

 udpPort CDATA #REQUIRED

>

<!ELEMENT Client EMPTY >

<!ATTLIST Client

 name (Archiver) #IMPLIED

 port CDATA #REQUIRED

 local_log CDATA 'log.log'

 host CDATA 'localhost'

>

<!ELEMENT Admin EMPTY >

<!ATTLIST Admin

 actnHost CDATA 'localhost'

 adminMail CDATA '%User@fnal.gov'

 adminName CDATA '%User'

>

Monitor Configuration File DTD

<!ELEMENT client_cfg (Client*, CfgXml, CfgGui) >

<!ELEMENT Client EMPTY >

<!ATTLIST Client

 port CDATA #REQUIRED

 host CDATA #REQUIRED

 name (NCSClnt | CnfgClnt) 'NCSClnt'

>

<!ELEMENT CfgXml EMPTY >

<!ATTLIST CfgXml

 wrkDir CDATA #REQUIRED

 cvsRep CDATA #REQUIRED

 cvsRoot CDATA #IMPLIED

 role CDATA 'default'

>

<!ELEMENT CfgGui EMPTY >

<!ATTLIST CfgGui

 LogLength CDATA '10'

 Mail CDATA #IMPLIED

 Update (“0”|”1”) “1”

>

PlugIns Agent DTD

<!ELEMENT MA-config (NCS, (For | System | ItemList)*) >

<!ATTLIST MA-config

 Name CDATA #REQUIRED

 Update CDATA #REQUIRED

 >

<!ELEMENT NCS EMPTY >

<!ATTLIST NCS

 Heartbeat CDATA #REQUIRED

 Host CDATA #REQUIRED

 Port CDATA #REQUIRED

>

<!ELEMENT System (ConditionSet | For | MonitoredElement)* >

<!ATTLIST System

 Name CDATA #REQUIRED

 Cluster CDATA 'localhost'

>

<!ELEMENT MonitoredElement (ConditionSet)* >

<!ATTLIST MonitoredElement

 Name CDATA #REQUIRED

 Type CDATA 'Element'

 Host CDATA 'localhost'

>

<!ELEMENT ConditionSet (fn, Condition*) >

<!ELEMENT fn EMPTY >

<!ATTLIST fn

 Name (plug_ins) #REQUIRED

 Arg CDATA #REQUIRED

 RetVal CDATA #REQUIRED

>

<!ELEMENT Condition (apply*, Action?) >

<!ATTLIST Condition

Description CDATA #REQUIRED

SevLevel CDATA #REQUIRED

State CDATA #REQUIRED

EventType CDATA #IMPLIED

EventName CDATA #IMPLIED

 >

<!ELEMENT Item EMPTY >

<!ATTLIST Item

Name CDATA #REQUIRED

>

<!ELEMENT ItemList (Item)+ >

<!ATTLIST ItemList

Name CDATA #REQUIRED

>

<!-- see for dtd -->

<!-- see apply dtd -->

<!-- see action dtd -->

Swatch Agent DTD

<!ELEMENT SwatchAgentConfig (File)* >

<!ATTLIST SwatchAgentConfig

 name CDATA #REQUIRED

>

<!ELEMENT NCS EMPTY >

<!ATTLIST NCS

 Port CDATA #REQUIRED

 Host CDATA #REQUIRED

 Heartbeat CDATA #REQUIRED

 >

<!ELEMENT File (For | (System, Action?)*)*) >

<!ATTLIST File

 file CDATA #REQUIRED

 filetype (plain | multihost) #REQUIRED

>

<!ELEMENT System (For | MonitoredElement)* >

<!ATTLIST System

 Name CDATA #REQUIRED

 Cluster CDATA #REQUIRED

>

<!ELEMENT MonitoredElement (ReRule)* >

<!ATTLIST MonitoredElement

 Name CDATA #REQUIRED

 Type CDATA #REQUIRED

 Host CDATA #REQUIRED

>

<!ELEMENT ReRule EMPTY >

<!ATTLIST ReRule

Regexp CDATA #REQUIRED

SevLevel CDATA #REQUIRED

State CDATA #REQUIRED

EventType CDATA #IMPLIED

EventName CDATA #IMPLIED

EventValue CDATA #IMPLIED

ActionID CDATA #IMPLIED

>

<!--see for dtd -->

<!--see apply dtd -->

<!--see action dtd -->

<ServiceClass> DTD

<!ELEMENT NGOPConfig (Default_File, ServiceClass) >

<!ELEMENT Default_File EMPTY >

<!ELEMENT ServiceClass (ServiceType)* >

<!ELEMENT ServiceType (apply)* >

<!ATTLIST ServiceType

Name CDATA #REQUIRED

>

<!-see apply dtd --!>

<HostsInClusters> DTD

<!ELEMENT NGOPConfig (Default_File, HostByCluster) >

<!ELEMENT Default_File EMPTY >

<!ELEMENT HostByCluster (ServiceType | Cluster)* >

<!ELEMENT ServiceType (Cluster | Host)* >

<!ATTLIST ServiceType

Name CDATA #REQUIRED

>

<!ELEMENT Cluster (Host)* >

<!ATTLIST Cluster

Name CDATA #REQUIRED

>

<!ELEMENT Host EMPTY >

<!ATTLIST Host

Name CDATA #REQUIRED

>

<KnownStatus> DTD

<!ELEMENT NGOPConfig (Default_File, KnownStatus) >

<!ELEMENT Default_File EMPTY >

<!ELEMENT KnownStatus (Status)* >

<!ELEMENT Status (OutOfServiceInterval | System | Host)* >

<!ATTLIST Status

Name (bad | test | in_repair) #REQUIRED

 >

<!ELEMENT OutOfServiceInterval (MaintenancePeriod)* >

<!ATTLIST OutOfServiceInterval

StartDateTime (CDATA | None) "None"

EndDateTime (CDATA | None) "None"

>

<!ELEMENT MaintenancePeriod EMPTY >

<!ATTLIST MaintenancePeriod

DaysInterval CDATA #REQUIRED

FromTime CDATA #REQUIRED

HoursDuration CDATA #REQUIRED

>

Monitored Hierarchy DTD

<!ELEMENT NGOPConfig (For | SystemView)* >

<!ELEMENT SystemView (For | SystemView | System)* >

<!ATTLIST SystemView

ID CDATA #REQUIRED

RefRule (CDATA | SystemViewDefRuleSet) "SystemViewDefRuleSet"

>

<!ELEMENT System (For | MonitoredElement)* >

<!ATTLIST System

Name CDATA #REQUIRED

ServiceType (CDATA | 9x5 | 24x7) "24x7"

<!-- new type should be first introduced in ServiceClass definition before it could be used here -->

RefRule (CDATA | SystemDefRuleSet) "SystemDeftRuleSet"

>

<!ELEMENT MonitoredElement EMPTY >

<!ATTLIST MonitoredElement

Name CDATA #REQUIRED

Type CDATA #REQUIRED

RefRule (CDATA | MEDeftRuleSet) "MEDefRuleSet"

ServiceType (CDATA | 9x5 | 24x7) "24x7"

>

<!--see for dtd -->

<StatusRulesSet> DTD

<!ELEMENT NGOPRule (StatusRulesSet)* >

<!ELEMENT StatusRulesSet (DependList?, (GenricRule | DependRule)*) >

<!ATTLIST StatusRulesSet

ID CDATA #REQUIRED

>

<!ELEMENT DependList (Group)* >

<!ELEMENT Group (For | System)* >

<!ATTLIST Name

Name CDATA #REQUIRED

>

<!-- see system dtd in hierarchy -->

<!ELEMENT GenericRule (apply, Action) >

<!ATTLIST GenericRule

Prio CDATA #REQUIRED

Status (None|Good|Unknown|Undefined|Warning|Error|Bad) #REQUIRED

SevLevel (None|Good|Unknown|Undefined|Warning|Error|Bad) 'Good'

Dsc CDATA #IMPLIED

>

<!ELEMENT DependRule (apply, Action) >

<!ATTLIST DependRule

Prio CDATA #REQUIRED

Status (None|Good|Unknown|Undefined|Warning|Error|Bad) #REQUIRED

SevLevel (None|Good|Unknown|Undefined|Warning|Error|Bad) 'Good'

Dsc CDATA #IMPLIED

>

<!--see for dtd -->

<!--see apply dtd -->

<!--see action dtd -->

CFMS Configuration File DTD

<!ELEMENT client_cfg (Client | CfgXml) >

<!ELEMENT Client EMPTY >

<!ATTLIST Client

 host CDATA #REQUIRED

 port CDATA #REQUIRED

 name CDATA #REQUIRED

>

<!ELEMENT CfgXml EMPTY >

<!ATTLIST CfgXml

 cvsRoot CDATA #REQUIRED

 name CDATA #REQUIRED

 version CDATA #REQUIRED

 cvsRep CDATA #REQUIRED

>

Archiver Configuration File DTD

<!ELEMENT ArchiverConfig (Port, ArchiverHost, LogPath, RequestDirectory, ErrorDirectory, DBInterSleepInterval) >

<!ELEMENT Port EMPTY >

<!ELEMENT ArchiverHost (OraPW, OraUser, OraInstance) #REQUIRED >

<!ELEMENT LogPath EMPTY >

<!ELEMENT RequestDirectory EMPTY >

<!ELEMENT ErrorDirectory EMPTY >

<!ELEMENT DBInterSleepInterval EMPTY >

<!ELEMENT OraPW EMPTY >

<!ELEMENT OraUser EMPTY >

<!ELEMENT OraInstance EMPTY >

Action Client Configuration File DTD

<!ELEMENT AC_cfg (Client+, CfgXml) >

<!ELEMENT Client EMPTY >

<!ATTLIST Client

 port CDATA #REQUIRED

 name (NCSClnt | CnfgClnt) 'NCSClnt'

 host CDATA 'localhost'

>

<!ELEMENT CfgXml EMPTY >

<!ATTLIST CfgXml

 excDir CDATA #REQUIRED

 wrkDir CDATA #REQUIRED

 cvsRep CDATA #IMPLIED

 cvsRoot CDATA #IMPLIED

 role CDATA 'default'

>

<Autorization_File> DTD

<!ELEMENT NGOPAction (Authorization_File) >

<!ELEMENT Authorization_File (AuthorizedGroup)* >

<!ELEMENT AuthorizedGroup (User)* >

<!ATTLIST AuthorizedGroup

 ID CDATA #REQUIRED

>

<!ELEMENT User EMPTY >

<!ATTLIST User

 Name CDATA #REQUIRED

>

<Action_File> DTD

<!ELEMENT NGOPAction (Action_File) >

<!ELEMENT Action_File (Action)* >

<!ELEMENT Action (Host)* >

<!ATTLIST Action

ID CDATA #REQUIRED

>

<!ELEMENT Host (AuthorizedGroup , Exec)* >

<!ATTLIST Host

Name CDATA #REQUIRED

>

<!ELEMENT Exec EMPTY >

<!ATTLIST Exec

Path CDATA #REQUIRED

>

<!ELEMENT AuthorizedGroup EMPTY >

<!ATTLIST AuthorizedGroup

ID CDATA #REQUIRED

>

� EMBED MSPhotoEd.3 ���

PAGE
50

[image: image15.png]— -{ Alarms for:Farms.CDFFarm -0 X
options| et || save | auit |

et Tue Do 13 145507 00,10 FB5 COFFam uncher o 50 D
R TUe e T3 45307 SO0 B3 COFF i AUHETer Regi Type s~
AT e Dec 343307 0000 B3 COFF i aUrEner e Type D
[Date Tue Dec 19 14:39.07 2000, 1D FBS COFF arm Jauncher incdad, Type Daemy
DRt e Dec T3 43307 20000 P53 COFF i aUrEner e T3pe D
AT e Dec T3 43307 0000 P53 COFF i aUrEner e T3pe D
DR e Do 34357 Z000-0 P55 COFF AU Ener ey T35 D
et e e 20 05513 2008 0 Povar P pover Suppy s 9o
R e DeE F0U5SE 7S F000 0 FovarCOFFam Bover-supgy e Ty
R T D 2 07T 00010 e e ey e T/ 57
Rt Ty D 21 073103 200010 e e ey e e o7
R T D 1 024727 2000053 COP P Fanerer G fype sen| 1
JE—

[image: image16.png]0| Infofar:/deviroot.frsth OSHedithfrsth | x

Options | Dependees | Status Rules | tuit

ID: /dev/root. fnsfh,0SHealth, Frsfh
Tupe: FileSusten

Host: fsth KnounStatus: working

Parent, 10: OSHealth, fsth

ServiceTupes 247

knounstatus: orking

Current. Status: Good

Last, Update Info:

D: /dev/root. fnsfh, 0SHealth, Frsfh

Tupe: FileSysten

LLast, Update: led fuug 29 12:26:45 2001

[Event Neme: plug insC"df /dev/root | grep - Filesy
[Event Value: size:53

JSource: SGTHealthfigent, Frsfh

[image: image17.png]Update
Change Known Status
Change Service Type
Change Host Known Status
Change Host Service Type

[image: image18.png]e

bad
S
Sy

Lok |

Cancel

[image: image19.png]Do you want to acknowledge
this message:

Date: Th Déc 21 07:30:50
2000

ID:
OSHealth.fncdf22.memory.fn
cdf22

Type: sys Usage

EventType: sysUsage
EventName: memory
EventValue: 95

Status: 0

SevLevel: S

Description: Memory usage is
greater or equal to 95%

oK Cancel

[image: image20.png]Vs
lhosts_files.

FBS. Farm.xml

FBS.rules.xml
FBSCMS.rules.xml
FBSCMS.xml

Hardware. CDFFanm.xml
Hardware.CMS.xml
Hardware. DOFarm.xml
Hardware. FT_fnsfv.xml
Hardvare. FixTargetFanm.xmi
0SHealth. CDFFarm.xml
OSHealth.CMS.xml
(0SHealth.DOFarm xml
OSHealth.FT_nsfv.xml
(0SHealth.Fix TargetFarm.xml

Ping.CMS i
Ping.Farm xmi
Test
Edit
ndex

Add

marctix
with_dtds
bo_4_3
bo_a_2
bo_a1
ifanms-h-0
Iwithaction
ltest 2
ingop_v1_te
Ingop_v1_11
Ingop_v1_1_a
FarmAdmin
loperator
ltest_ho_2
loperatort
loperatord.
loperators
loperatorz
loperator3
loperator1
defaultt

Set.

Hew

_1069066365.bin

