GMI: WHERE ARE WE NOW?

Jose M. Rodriguez GMI Science Team Meeting Nov. 17, 2004 Boulder, CO

OUTLINE

- Summary of past and current activities
- Mostly for the benefit of those OUTSIDE GMI.

THE GLOBAL MODELING INITIATIVE (GMI): BRIEF HISTORY

- Started by NASA's Atmospheric Effects of Aviation Program (AEAP) to address difficulties in assessing aircraft effects using multiplicity of 2-D models- (One-input-many-results problem).
- "Little ice age" from 1999-2001 due to phase out of AEAP.
- Became part of NASA's Atmospheric Chemistry, Modeling and Analysis Program (ACMAP) in 2001.
- "Core institution" originally at Lawrence Livermore National Laboratory.
- "Core institution" moved to NASA/GSFC in June 2003 (joint effort of Codes 931 and 916).
 - Project Scientist: Jose M. Rodriguez, U. of Miami
 - Project Manager: Susan Strahan, NASA/GSFC
- Part of Modeling and Analysis Program (MAP), 2004

THE GLOBAL MODELING INITIATIVE: ELEMENTS

- A modular computational framework for a three-dimensional chemicaltransport model capable of incorporating and testing the impact of utilizing different dynamical inputs, model processes, emissions, and other model components, in a COMMON FRAMEWORK (A multiplicity of models).
- A "core institution" providing model integration and maintenance, software engineering, model simulations, coding standards, archival of model versions and results.
- A team approach to integrating, evaluating and expanding the model. Team members contribute inputs, algorithms, analysis tools.
- Emphasis on model evaluation through comparison to observations.
- Emphasis on evaluation of model uncertainties, and their implication for simulated atmospheric composition/radiative forcings.

DIFFERENT VERSIONS OF GMI

- ALL VERSIONS EXTEND FROM THE SURFACE TO THE HIGHEST LEVEL PROVIDED BY METEOROLOGICAL FIELDS
- STRATOSPHERIC GMI
 - No tropospheric chemistry (care in analyzing results)
 - Troposphere for lower boundary conditions, ie., removal of NOY, CIY, O_3
- TROPOSPHERIC GMI
 - No stratospheric chemistry
 - Stratosphere as upper boundary condition for incoming $\rm O_3$ and NOY flux
- COMBINED STRAT-TROP GMI ("COMBO")
 - Stratospheric and Tropospheric chemistry lumped together
- AEROSOL GMI
 - Total mass of sulfate, dust, organic and inorganic carbon, seasalt
 - Read in pre-calculated fields of OH, HO₂, O₃...

STRATOSPHERIC GMI

- Originally tested different advection algorithms:
 - Semi-Lagrangian Transport (Rasch and Williamson, 1991)
 - Second-Order Moments (Prather, 1986)
 - Flux-form Semi-Lagrangian (Lin and Rood, 1996) ***
 - Experiments on HSCT accumulation, age of air indicated that Lin and Rood performed comparably to SOM.
- Originally tested different chemical Mechanism/Solver
 - Rotman et al., 2001 Description of chemical mechanism
 - Ramaroson (1989) Used originally
 - SMVGEAR-II (Jacobson, 1995-1996) Used now
- PSC Parameterization
 - Considine et al., (1999)
- Resolution: 4x5.

STRATOSPHERE: EVALUATION OF SUPERSONIC AIRCRAFT IMPACT (1999)

- Meteorological fields from:
 - MACCM2 (Boville, 1995) ****
 - GEOS-1 (1995-1996)
 - GISS-II' (Rind and Lerner, 1996)
- Results: Kinnison and Rodriguez (1999); Kinnison et al. (2000)
 - 3-D models did not give "best" assessment due to poor simulation of N₂O/NOY in lower stratosphere
- GRADING OF METEOROLOGICAL FIELS: DOUGLASS ET AL., 1999
 - Six physically-based diagnostics, comparing temperature, tracer simulations (CO₂, N₂O) to examine model performance in simulating different aspects of stratospheric transport.

Douglass et al., 1999

STRATOSPHERE: OZONE RECOVERY

- New meteorological products available from GMAO
 - fvGCM "Cold" year
 - fvDAS (GEOS-4) 1999-2000
- Simulations from 1995-2030 using WMO 2002 scenario
- Strahan et al., 2004: Physically-based diagnostic analysis.
- Considine et al., 2004: Analysis of recovery of Antarctic ozone hole
- Douglass et al., 2004: Comparison to observed reservoir and radical species
 - Overall, fvGCM "better" (upper stratosphere?)

Strahan et al., 04 . Slide 2

Figure 8. Evolution of CH_4 distributions on the 450 K surface inside and outside the Antarctic vortex in spring. The central column, representing an 8-year accumulation of HALOE observations in austral spring, demonstrates that the vortex air mass maintains its identity while gradually eroding. The GMI_{GCM} simulation (left column) maintains some separation through the spring, but large overlap between the distributions indicates exchange between the regions, in contrast to the observations. The GMI_{DAS} simulation (right column) does a worse job of maintaining separation, and by November the vortex and midlatitudes are nearly identical (i.e., well mixed).

Strahan, private comm, 2x2.5 resolution

STRATOSPHERE: ONGOING WORK

- Hindcast: "Warm" and "cold" fvGCM years, forced by solar cycle variability, halogen loading, volcanic eruption and energetic particles, 1970-2020?. (Stolarski)
- Resolution is now 2x2.5
- Photolysis rates calculated from "fastJx" algorithm (Prather et al.)

TROPOSPHERIC SIMULATIONS

- Stratosphere represented by influx of O₃, NOy across the tropopause (McLinden et al., 2000 SYNOZ, 475 TgO₃/year; Connell et al., 2001)
- Surface emissions, chemical mechanism from Harvard GEOS-CHEM (Bey et al., 2000)
- Lightning source of 5 TgN/year, distribution from Price and Rind, 1995; Pickering, 1998)
- "Pressure fixer" to correct column mass flux divergence to agree with changes in surface pressure (Prather et al., 1987)
- Calculations for 1996 conditions, using three meteorological fields, with ALL OTHER MODEL COMPONENTS THE SAME
 - Middle Atmospheric Community Climate Model 3 (MACCM3; NCAR; free running)
 - NASA/Goddard Institute for Space Studies (GISS; free running)
 - Goddard Data Assimilation Office (GEOS-STRAT; 1997-1998

IMPACT OF SUBSONIC AIRCRAFT

- "Chemical" Impact
 - Production of O_3 in upper troposphere (greenhouse gas) through emission of NO, and reaction of RO_2 + NO
 - Increase in OH leads to decrease in CH_4 lifetime.
- "Direct" radiative impact from sulfate, soot emissions
- "Indirect" radiative impact from contrail formation, modification of cirrus coverage (Hard to address at this point)
- Emission of other greenhouse gases: CO₂, H₂O

GMI SUBSONIC AIRCRAFT IMPACT SIMULATIONS

- QUESTION: HOW IS THE CALCULATED CHEMICAL IMPACT AFFECTED BY DIFFERENT METEOROLOGICAL INPUTS?
- Performed full-chemistry simulation for 1995 conditions, with aircraft scenario provided by S. Baughcum (Boeing). Other emissions from the latest update by J. Logan (Harvard). Subsonic aircraft input: 0.46 TgN/year
- Performed a simulation DOUBLING the aircraft input, with all other emissions/model components staying the same (simpler exercise).
- NOTE: Lightning source of NOx the same for all three simulations

COMPARISON OF GMI RESULTS TO IPCC\ (Rodriguez et al., 2003)

	IPCC	GMI-	GMI-	GMI-
		DAO	GISS	MACCM3
? NO _x Peak July zonal average pptv	60-150	20	40	45
? NO _x Tropospheric total, July Tg N		0.0021	0.0033	0.0027
? O ₃ Peak annual, zonal average ppbv	7-12	2.2	1.6	2.0
? O ₃ Tropospheric total, annual avera ge Tg O ₃	4-8 ^a 9-18	4.1	3.3	3.7
? CH ₄ lifetime (percent)	-1.2 to -1.4 ^a -1.6 to -2.6	-0.95	-0.76	-1.0

Note: IPCC aircraft perturbation, 1.3 TgN/year; GMI experiment, 0.47 TgN/year

TROPOSPHERIC EVALUATION

- CAN WE "GRADE" TROPOSPHERIC EXPERIMENTS (Logan)? Physically-based testing harder because of lack of data!
- Methyl chloroform lifetime with respect to removal by tropospheric OH (Rodriguez, Duncan)
 - CCM3, 5.8 years
 - GEOS-STRAT, 5.9 years
 - GISS II', 6.6 years
- Radionucleides (²²²Rn, ²¹⁰Pb, ⁷Be) (Considine)
- Ozone sonde, surface data; surface/ship CO; MOZAIC (Logan)
- Aircraft data (Chatfield, Logan, Rodriguez) ??
- CO₂, CFCs, "synthetic" tracers (Prather, Rodriguez, Logan)
- Budgets of ozone and precursors.
- MANUSCRIPTS IN PREPARATION
- Slide 3

GMI TROPOSPHERE: CURRENT/FUTURE ACTIVITIES

- Relate simulated composition to meteorological characteristics of different fields
- Evaluate performance of different analyzed winds
- Simulations for TRACE-P period
 - GEOS-4 analysis
 - GEOS-4 forecast (36 hours, use last 24)
 - ECMWF forecast (Wild et al., 2004)
- Other periods may follow Utilize also "free running" GCMs (fvGCM, others?)
- Lightning parameterization consistent with meteorological fields (Pickering, Allen, Duncan)
- Further testing with satellite data: GOME, MODIS, AIRS, Aura
- Other Uncertainties: Wet deposition, emission inventories...
- CHARACTERIZE HOW UNCERTAINTIES IN SPECIFIC ATMOSPHERIC PROCESSES
 AFFECT:
 - Atmospheric composition (eg., long range transport of pollutants, distribution of short-lived halogenated compounds)
 - Radiative forcings

UPCOMING ASSESSMENTS

- IPCC, 2007
 - Carrying out simulations for "Experiment 2", ie., current and future composition of atmosphere (No "future climate" simulations envisioned).
 - Aerosol simulations
- UEET, 2007
 - Subsonic aircraft impact
- WMO, 2007?

GMI AEROSOLS

- Aerosols: Total mass for sulfate, dust, sea salt, carbon (Penner/Liu)
- Off-line box model comparison of microphysical models(Penner/Weisenstein)
- Incorporation of microphysical modules (Penner, Adams, Weisenstein)
- Aerosol-cloud interactions (Nenes; first stab at "indirect" effect)

GMI: COUPLED STRATOSPHERE/TROPOSPHERE

- Currently, combined chemical mechanism with ALL reactions in stratosphere and troposphere (Connell)
- Other mechanisms (Langley/Considine)
- Model prototype runs have been carried out (Considine)
- Speed-up in performance is needed.
- Stratospheric-tropospheric coupling
 - Analysis of aircraft/satellite data in UT/LS
 - Coupling between changes in stratospheric and tropospheric chemical composition

GMI CHEMISTRY-CLIMATE LONG-TERM?

- Adoption of ESMF-compliant framework
- Developing/testing of efficient numerical algorithms (chemistry?)
- CTM relative flexibility allows "process" studies relevant to chemistry-climate interactions
- Anticipate increased coordination of efforts with climate models as a result of MAP NRA
- Expect to utilize meteorological fields from CAM Define problems of common interest.