Comparison of default and convection-based lightning in the GMI model Kenneth E. Pickering² and Dale J. Allen¹

Maharaj K. Bhat⁴ and Bigyani Das⁴, Bryan N. Duncan³, Susan E. Strahan³, Jose M. Rodriguez², and Christopher Loughner¹

¹Dept. of Atmospheric and Oceanic Science, UMCP ²Atmospheric Chem and Dynamics Branch, NASA-GSFC ³UMBC-GEST and NASA-GSFC

⁴Advanced Management Technology Inc. and NASA-GSFC

GMI Science Team Meeting Greenbelt, MD October 11-13, 2006

Comparison of lightning algorithms

Default Run

- Horizontal distribution: Climatological based on ISCCP monthly average deep convective cloud top heights
- Vertical distribution: C-shaped (Pickering et al., 1998) using climatological CLDHT
- Flashrate = f(CLDHT, marine/continental; P+R, 1992)
- $P_{CG} = 10 P_{IC}$ (Price et al., 1997)
- CG fraction based on cold cloud depth (P+R, 1993)
- Scaled to: 5 Tg N/yr

New Run

- Horizontal distribution: Colocated with model-calculated deep convection
- Vertical distribution: C-shaped as before using modelcalculated CLDHT
- Flashrate = f(CLDMAS, region) [Allen+Pickering,2002]
- P_{CG} = P_{IC} (DeCaria et al., Ott et al., Fehr et al.; STERAO, EULINOX, CRYSTAL-FACE)
- CG fraction not needed
- Scaled to $\approx 5 \text{ Tg N} / \text{yr}$

Implications of the different lightning NO treatments

Default Run

- Convectively-transported precursors (HO_x precursors, NO_x, CO, NMHC) introduced to upper troposphere at different locations than lightning NO
- Lightning NO spigot always open on lowest setting (fuzzy NO_x chemistry)
- Biases in spatial distribution and vertical extent of model convection do not contribute to biases in lightning NO

New Run

- Convectively-transported precursors introduced to upper troposphere at same locations as lightning NO
- Lightning NO spigot opens when convection occurs; setting determined by CLDMAS and region
- Biases in spatial distribution, vertical extent, and magnitude of model convection contribute to biases in location of lightning NO

Flash rate parameterization in new run

Step 1: Fit polynomial,

- $y_{fit} = ax_i + b[x_i]^2 + c[x_i]^3$ to relationship between convective mass flux (CLDMAS) and observed CG flash rates [Allen and Pickering, 2002]
- **y** = NLDN/LRF 6-hr avg CG flash rates for 1997 (10°-60°N; 120°-60°W) [sorted by magnitude]
- **x**_i = Upper tropospheric CLDMAS from the GEOS DAS (Mar 1997-Feb 1998), GEOS FVGCM, or GISS GCM [sorted by magnitude]
- Apply polynomial globally (see "bef regional" plot)

Step 2: Regional adjustments

- Scale polynomial-calculated CG flash rates to match total flash rate from v1.0 OTD/LIS climatology (46.6 flashes s⁻¹)
- Adjust tropical-marine (reduce), tropical-continental (increase), midlatitude-continental (increase), and Africa/S.America flash rates to best match climatology. Per-step adjustments limited to between 1/3 and 3.

Flash rate (flashes min-1)

Flash rate (flashes min—1)

Lightning NO emissions Jan-Dec mean

Mean July NOx

03 (ppbv)

Three GMI Simulations with no lightning

Monthly average July 03 at 300 hPa

03 (ppbv)

Three GMI Simulations with Default Lightning

90

30

60

٩n

Monthly average July 03 at 300 hPa

03 (ppbv)

Three GMI Simulations with New Lightning

Monthly average July 03 at 300 hPa

03 (ppbv)

Lightning contribution to O3 at 300 hPa: July

SHADOZ Stations

Comparison of New Lightning for Three Met. Fields with Sonde Data

GMI with DAO met fields compared with sondes

GMI with FVGCM met fields compared with sondes

GMI with GISS met fields compared with sondes

Summary

- Relationship between CLDMAS and observed CG flash rates utilized to derive lightning parameterizations for 3 GMI meteorological fields
- Marine-continental and tropical-midlatitude adjustments made to parameterizations in order to best match annual average LIS/OTD flash rates.
- When convective-based lightning NO emissions are used:

Low GISS cloud top heights constrain lightning NOx emissions to lower altitudes than in default run; lightning contribution to 300 hPa O3 was confined to lower latitudes.

More lightning NOx in tropical UT than in default run; also in general more O3 throughout troposphere in the tropics

Lightning contribution to O3 at 300 hPa exceeds 50% at tropical low O3 locations; contribution in midlatitudes is lower in GISS than with other models

New lightning improves temporal distribution of O3 at Ascension Island.

Time series of monthly mean O3 vertical profiles improved at several sites including Kuala Lumpur and Ascension Island

New lightning still reflects some biases in model convection (Caribbean, Western Pacific)

Extra Slides

GMI off-line tropospheric chemistry model

Modular CTM that is being used to assess the sensitivity of tropospheric photochemistry to 1) driving MET fields, 2) numerical transport algorithms, 3) emission specifications, 4) etc. An understanding of this sensitivity is needed to focus assessments and to interpret their results.

See: http://gmi.gsfc.nasa.gov/gmi.html

In this study, we use v2 of the model: [manuscript in preparation, 2006] Advection: Lin and Rood (1996) Chemistry: "Harvard" mechanism Physics: Consistent with driving GCM Meteorological fields: **GEOS-STRAT**, GEOS-FVGCM, GISS II' GCM Lightning NO emissions (none vs. climatological vs. convection-based)

Mean January NOx

Mean January NOx

Motivation/Preview

- Production of NO by lightning is an important part of the tropical budget of NOx; whose concentration is the rate-limiting factor in O3 production in much of the non-boundary layer troposphere.
- The default version of the GMI CTM uses gridded monthly climatological values of lightning NO emission.
- In most instances, these model-independent climatological values of lightning NO injection do not match in space or time with the location of model convection.
- In this study, we evaluate the effect of this mismatch on upper tropospheric photochemistry in the tropics through analysis of fields from GMI simulations with climatological- and convection-based lightning NO.

Mean July NOx

GMI flash rates before regional adjustments

Flash rate (flashes min-1)

Normalized O3 error ASC

