An Overview of the **StarLight Mission**

Oliver Lay, Gary Blackwood, Serge Dubovitsky, Riley Duren

Jet Propulsion Laboratory M/S 301-451 4800 Oak Grove Drive Pasadena CA 91109 Tel: (818) 354-2521 Email: oliver.p.lay@jpl.nasa.gov

2 Far IR 3/7/02

JPL

8 Far IR 3/7/02

JPL

Technology development

Autonomous Formation Flying Sensor tests

18 Far IR 3/7/02

Formation Flying Simulations

Linear and angular metrology

	Performance metric	StarLight	TPF Planet-finding	TPF Astrophysics	StarLight Technology	TPF need
1	Wavelength band (fringes)	600 - 1000 nm	7 - 20 μm	3 - 30 μm		
2	Baselines	30 - 125 m *	75 - 200 m	75 - 1000 m	2-spacecraft parabolic geometry	angular resolution for astrophysics
3	Separation	40 - 600 m *	25 - 70 m	25 - 330 m		
4	Range control (+/-)	10 cm *	5 cm	5 cm	AFF sensor, angular metrology, formation-flying	sizes delay lines
5	Bearing control (+/-)	4 arcmin *	1 arcmin	0.2 arcmin	algorithms, low impulse thrusters	Sizes delay intes
6	Range knowledge (1 σ)	2 cm	1 cm	1 cm	AFF sensor	
7	Range rate knowledge (1 σ)	< 1 µm / s	35 μm / s	1 μm / s	Dual target linear metrology system	formation control ; fringe search
8	Inertial Bearing knowledge (1 σ)	10 arcsec	10 arcsec	2 arcsec	Angular metrology system	magnitude; delay line range
9	Bearing rate knowledge (1 $\sigma)$	30 milliarcsec / s	40 milliarcsec / s	0.2 milliarcsec / s	Angular metrology system	
10	Path length stabilization (1 σ)	35 nm	3.5 - 70 nm	70 nm	Dual target linear metrology system	nulling
11	Tip/tilt stabilization (1 σ)	0.1 λ/D	0.025 λ/D	0.05 _λ /D	Angular metrology system, distributed control loops	nulling

* nominal performance; limits to be pushed on orbit

SECOND WORKSHOP ON NEW CONCEPTS FOR FAR-INFRARED AND SUBMILLIMETER SPACE ASTRONOMY

