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M17 — The Swan Nebula

~ Bernd Flach-Wilken and Volker Weridet
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PAHSs: Source of the UIR Emission?

Polycyclic Aromatic Hydrocarbons
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» Molecular bands near correct wavelengths
* Reasonable physical model for UV-driven IR emission
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Every PAH is an Individual

Spectra for ~1000 PAH
species known from lab or
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Why are PAHS so Interesting?

10-20% of all carbon atoms in the Interstellar Medium (ISM)
are in PAH molecules

For this reason, PAH emissions are found in almost every
cosmic environment in which there are concentrations of
dust illuminated by ultraviolet radiation

They could be used to characterize the conditions of the ISM,
and could be used as a tracer of star formation in the Milky
Way

PAHs now appear to be important molecules on the pathway
to life
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The PAH Ildentification Problem

No astrophysical source shows the unique signature of any
identifiable known PAH

Astrophysical sources appear to have:
— multiple PAH species present

— different PAH-species concentrations depending on:
* UV-intensity, temperature, and composition
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Source Separation
of Spectra
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Numerous PAH Species
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Numerous Applications

Calcium

NG o
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Detected Mixture
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Data from: Mary Garland, University of Toronto Wavenumber
Raman Spectrum Excitation: 514 nm argon ion laser.
http://minerals.gps.caltech.edu/files/raman/toronto/toronto.htm
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PAHs Pose Unique Difficulties

Most source separation problems consist of multiple
mixtures and a handful of unknown sources with unknown

contributions.

PAH spectral source separation consists of one mixture and
numerous known sources with unknown contributions (and
even some unknown sources).

There are potentially 100s to 1000s of species present.

« How do we tell which ones?
« How do we deal with the large number of spectra?
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Astrophysical Spectrum Portal

The PAH spectra database at NASA Ames Research Center
will contain ~1000 PAH spectra

43 The Astrophysical Spectrum Portal - Microsoft Internet Explorer =10l =]
File Edit View Favorites Tools Help | #

O Back ~ () - \ﬂ IELI .;‘J | /.- ) Search “:1\? Favorites Q-‘"e >
Address I@ http:/fwww.nas.nasa. gov j a Go ||-i"‘ks » @ T
b the asp =

The Astrophysical Spectrum Portal

NAS Synthetic Stellar Spectrum Library

Using the NAS Facility's computing resources, researchers at NAS can run stellar
synthesis code involving large numbers of atoms and molecules to generate
synthetic stellar spectra in the infrared region. This link will allow the user to select
various spectra for comparison with planned or actual observations in order to
help determine the presence of various elements and compounds: Synthetic
Stellar Spectrum Library.

Ames Astrochemistry Laboratory’s Library of PAH Spectra
Researchers in the Ames Astrochemistry group are measuring the infrared
spectral region of various laboratory isolated Polycyclic Aromatic Hydrocarbons
(PAHSs). This link will allow the user to convolve any of the available PAH spectra
into a single spectrum or down load the convolved ascii data: PAH Specira
Database.

Curator: H. [deharzs Last Update: M=y 12, 2008
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Three Approaches

1) Hand-fitting by eye
- widely applied

2) Non-Negative Least Squares
- two applications to PAHs (N < 12)

3) Bayesian Source Separation with Sampling
- work In progress
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A Straightforward PAH Model

Fras ()= € 5(1) +4(2)

d N\

modeled IR flux
wavelength  fux noise

Contribution source spectrum
from the ith PAH of the ith PAH

Ignores line-of-sight variations and
various thermal and radiative effects

4 October 2006 NASA AISRP PI Meeting Knuth & Carbon



Non-Negative Least Squares

2

Minimize: X - ,
Subject to: C >0 X = = (Fobs(/ll)_Fmod(/ll))

2° =

L
=1

(Fobs ()-Ycs (z.)j
| \

Estimate PAH
contributions

Works alright, but with only small numbers of PAHs and with
little spectral overlap.
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Mixing Four PAHs

Synthetic Mixture of Four PAHSs
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Slices Through the Space

Log Posterior
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These are cross-sections of a three- Note the variations
dimensional probability space with c1, c2, in the ellipsoidal
c3 being the three variables. c4 is contour
constrained by eccentricities

c4 = 1-(cl+c2+c3)
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Cross-Section for ¢l and c2

Log Posterior
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Why Is c1 More Accurate?

Log Posterior The ratio of the semi-
' ' ' ' ' ' 7 minor to semi-major
Cross-section taken at ¢3 = 30% axes is related to the
relative accuracy to
80 1 which we can
estimate the
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Comparing Spectral Lines

Synthetic Mixture of Four PAHSs
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Cross-Section for ¢l and c3

Log Posterior
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Early Findings and Expectations

Non-negative least squares always assigns a positive value
for the PAH contribution in even mild noise conditions.

Non-contributing PAHs steal spectral energy from contributing
PAHS.

The accuracy to which we are able to detect PAH
contributions is roughly related to the number of unique
spectral lines.

This Is expected to break down as many PAHS superimpose.
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Nested Sampling




Nested Sampling with ON/OFF

ON/OFF

F (1) = zN:(si © s (1) + bkand (A) + ()
i=1 N

contribution
Implementing a Nested Sampling algorithm utilizing ON/OFF
switches.

Estimate contribution independently from the probability the
PAH Is present or not present

Compute the evidence that the data provides about the PAH
contributions

At worst we expect to be able to rule out classes of PAHSs or
identify classes (eg. mass, ionization, etc)
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How Stochastic Integration Works

Uniformly draw samples from the interval
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Stochastic Integration

Uniformly drawn samples are used to approximate an integral
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Stochastic Integration

Each sample represents an area

0.4

110 samples cover
the entire interval
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Stochastic Integration

Add up the areas

0.4

| Roughly this is:

04 *1.0=04
0.275*1.0=0.275
025 *1.0=0.25
0.1 *1.0=0.1
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Skillings Nested Sampling

John Skilling’s Nested Sampling is a variation on this theme.
The idea is:

. work with the log posterior
. start with N samples
. find the least probable sample
. use It to define logPstar
. duplicate one other sample
. constrained exploration
. N uniform samples
over smaller interval
. goto 2

OO0k wWwPNEO

\l
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Skillings Nested Sampling

John Skilling’s Nested Sampling is a variation on this theme.

The idea is:

OOk wWwdNhPEFE O

\l

. work with the log posterior
. start with N samples

. find the least probable sample
. use it to define logPstar

. duplicate one other sample
. constrained exploration

. N uniform samples

over smaller interval

. goto 2

Accept ALL moves
EXCEPT those with
prob less than
logPstar

\

4 October 2006 NASA AISRP Pl Meeting

Knuth & Carbon



Skillings Nested Sampling

John Skilling’s Nested Sampling is a variation on this theme.

The idea is:

OOk wWwdNhPEFE O

\l

. work with the log posterior
. start with N samples

. find the least probable sample
. use it to define logPstar

. duplicate one other sample
. constrained exploration

. N uniform samples

over smaller interval

. goto 2

Accept ALL moves
EXCEPT those with
prob less than
logPstar

\

4 October 2006 NASA AISRP Pl Meeting

Knuth & Carbon



Skillings Nested Sampling

John Skilling’s Nested Sampling is a variation on this theme.

The idea is:

S Ok WwDNPEFEO

. work with the log posterior
. start with N samples

. find the least probable sample

. use it to define logPstar
. duplicate one other sample
. constrained exploration
. N uniform samples
over smaller interval
. goto 2

Accept ALL moves
EXCEPT those with
prob less than
logPstar

\

4 October 2006 NASA AISRP Pl Meeting

Knuth & Carbon



Skillings Nested Sampling

John Skilling’s Nested Sampling is a variation on this theme.

The idea is:

OOk wWwdNPEFE O

\l

. work with the log posterior
. start with N samples

. find the least probable sample
. use it to define logPstar

. duplicate one other sample
. constrained exploration

. N uniform samples

over smaller interval

. goto 2

Accept ALL moves
EXCEPT those with
prob less than
logPstar

4 October 2006 NASA AISRP Pl Meeting

Knuth & Carbon




Skillings Nested Sampling

John Skilling’s Nested Sampling is a variation on this theme.
The idea is:

0. work with the log posterior

1. start with N samples

2. find the least probable sample -

. use it to define logPstar .

. duplicate one other sample :

. constrained exploration

. N uniform samples
over smaller interval

/. goto 2
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Skillings Nested Sampling

John Skilling’s Nested Sampling is a variation on this theme.
The idea is:

0. work with the log posterior
1. start with N samples
2. find the least probable sample

. use It to define logPstar
. duplicate one other sample
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Skillings Nested Sampling

Notice that the interval
shrinks as we iterate and
contracts to high probability
regions.
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Typical Behavior

In a well-behaved problem

the log probabillity increases

monotonically with a

monotonically decreasing .|

rate.

Since we are
ordering according to
the probabillity, this
turns all problems
iInto ONE-
DIMENSIONAL
problems!!!
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- Movie of
Acoustic Source Separation
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If So, How Did PAHs Get There?




Forces Governing Stellar Structure

Nuclear fusion occurs

In the high temperature

and density present

In the core and generates
, Which

acts against the attractive

As long as there is sufficient
fuel In the core, the star
remains in this steady-state.
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Stellar Evolution PAHS
and other
Q:> Oorganics
W,

Stars eventually run out
of Hydrogen to fuse, and

begin to collapse cramming ” /O
more matter into the core.

The greater densities OA/

and pressures allow

creation of C N and O.

The star swells and cools to become \
a Red Giant spewing organics into space. O @

When fuel finally runs out, the star collapses into a hot White Dwarf
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Why are PAHS so Interesting?

10-20% of all carbon atoms in the Interstellar Medium (ISM)
are in PAH molecules

For this reason, PAH emissions are found in almost every
cosmic environment in which there are concentrations of
dust illuminated by ultraviolet radiation

They could be used to characterize the conditions of the ISM,
and could be used as a tracer of star formation in the Milky
Way

PAHs now appear to be important molecules on the pathway
to life
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