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           An overall scheme for conversion of sources of carbon
           to alcohols, ethers, olefins, aromatics and amines.  

t l d           All these processes are catalyzed.
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Modeling: Theoretical Background and Platforms I 

A. Empirical methods: 

MMFF – Merck Molecular Force Field “standard” molecular dynamics 

GULP – General Utility Lattice Properties (j.gale@ic.ac.uk )

B. Semiempirical methods:

Pm3(tm) – Semi-empirical molecular orbital method [J. J. P. Stewart, J. Comp. 
Chem. 10 (1989) 209]

Ligand-Field Theory Codes – calculation of correlation term diagrams and 
optical transitions in low-symmetry systems (P.J. Hutta & K. Klier, QCPE )

DMol3 - DFT-LCAO with the double-numerical basis set [B. Delley, J. Chem. 
Phys. 92 (1990) 508] and effective core potential (ECP) for core electrons

VASP - Vienna Ab Initio Simulation Package with plane-wave basis and ultra-soft 
pseudopotentials: [G. Kresse, J. Furthmüller, Comput. Mat. Sci. 6 (1996) 15; 
Phys. Rev. B54 (1996) 11169; G. Kresse, J. Hafner, J. Phys.: Condens. Matter   
6 (1994) 8245; D. Vanderbilt, Phys. Rev. B41 (1990) 7892

mailto:j.gale@ic.ac.uk


Modeling: Theoretical Background and Platforms II

C. All-electron methods:

WIEN2k - Full Potential Augmented Plane-Waves plus local orbitals (APW+LO) 
and linearized augmented plane-waves (LAPW).  [P. Blaha, K. Schwarz, G. 
Madsen, D. Kvasnicka, J. Luitz,  http://www.wien2k.at.]  Spin-orbit coupling is 
implemented in P. Novak, "Calculation of spin-orbit coupling", 
http://www.wien2k.at/reg_user/textbooks/novak_lecture_on_spinorbit.ps

DMol3 w/DNP basis set

Spartan w/DN** basis set

QChem w/6-31G** basis set

The last three methods give comparable results for cluster calculations

http://www.wien2k.at/
http://www.wien2k.at/
http://www.wien2k.at/reg_user/textbooks/novak_lecture_on_spinorbit.ps
http://www.wien2k.at/reg_user/textbooks/novak_lecture_on_spinorbit.ps


Modeling: Theoretical Background and Platforms III

D. Optimizations:

Force Driven damped Newton method: New coordinates Rm
τ+1 of atom m after 

optimization step τ are set as Rm
τ+1= Rm

τ + ηm(Rm
τ - Rm

τ-1)  + δm Fm,
where the “friction” parameter η and the “step-size” parameter δ are selected to 
best fit the optimization task and  Fm are forces on each atom m.

BFGS - Broyden-Fletcher-Goldfarb-Shanno scheme, in:  R. Fletcher, Practical 
Methods of Optimization, Wiley, New York, 1987, p. 55 ff.

RFO - Rational Function Optimization: A. Banerjee, N. Adams, J. Simons, R. 
Shepard, J. Phys. Chem. 89 (1985) 52.

E. Transition States:

Searches for saddle points on potential energy surfaces (PES), modified for 
tunneling for surface reactions involving hydrogen.  Examples in:  K. Klier, “The 
Transition State in Heterogeneous Catalysis”, Topics in Catalysis 18 (2002) 141



In DFT, the (valence and core) orbital energies εi are obtained as 
solutions of the set of the Kohn-Sham equations 

where the effective potential

and the total energy

E = Σi εi - J[ρ] + Exc[ρ] - ∫ υxc(r) ρ(r) dr

with a universal density functional (e.g. Perdew-Burke-Ernzerhof)

F[ρ] = Ts[ρ] - J[ρ] + Exc[ρ],   

and Ts is the kinetic energy of a reference system with electron 
density ρ free of the ‘external potential’ of atomic nuclei υ(r).
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In open-shell systems, unbalanced electron spin gives rise to differences in 
chemical behavior between molecules, clusters, surfaces and solids 



Surface is a complex defect to model; edge – even more complex
Edges with adsorbates – a challenge
Reactions of adsorbates with transition states – a future

IΣlm Alm ul(r) Ylm(r)

           Ω-1/2 ΣG cG exp(i(G+k).r)

1 - 1.2 nm

adsorbate

layer 1
layer 2
layer 3

layer 4

S

S

S

S



Overall Scheme

Modeling Methods

MoS2 – Reactive Edges and Sites

Reactions with Hydrogen

The Adsorption Entropy Penalty

The Sites and Effects of Alkali

The Transition State

Reactions with Hydrogen and Carbon Monoxide

Contributions of Modeling



(1013)

The atomic structure of the edges of the single-crystal MoS2 in this 
electron micrograph by Chianelli et al. [J. Catal. 92 (1985), 56] has 

been determined [Spirko et al., Surf. Sci., submitted] to be the
(1013) edge pictured in the inset.



MoS2 edges are sites of reactivity toward H2, O2, CO, metals, organic 
compounds.  ‘Stable’ edges are relaxed (10-1x) where Mo coordination 

increases due to movement of S up and sideways (J.A. Spirko, M.L. 
Neiman, A.M. Oelker, K. Klier, Surf. Sci., submitted).  DFT/GGA/DNP.



Clusters MoxS2x (unrelaxed, top; relaxed, bottom) begin to reconstruct like 
edges when x ≥ 7 (right).  Smaller sizes are high spin (triplets) all the way down 

to a single molecule (left), whose calculated properties are in excellent 
agreement with experiment [Liang and Andrews, JPC A106 (2002) 6945, 

Spirko et al., present study]
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Hydrogen - the “Big Picture”:

From Tom Mebrahtu: “Advanced Materials for Hydrogen Storage Applications” 
APCI, February 16, 2003)

http://www.airproducts.com/corp/rel/03025.asp

President Bush, State of the Union Address – January 28, 2003

“Tonight I am proposing $1.2 billion in research funding so that America can lead the 
world in developing clean, hydrogen-powered automobiles … A simple chemical 

reaction between hydrogen and oxygen generates energy, which can be used to power a 
car producing only water, not exhaust fumes.  With a new national commitment, our 

scientists and engineers will overcome obstacles to taking these cars from laboratory to 
showrooms so that the first car driven by a child born today could be powered by 

hydrogen, and pollution-free.  Join me in this important innovation to make our air 
significantly cleaner, and our country much less dependent on foreign sources of 

energy.”



Rosi et al., Science 300 (2003) 1127, C&E News 5/19/’03, p. 11, New 
York Times 5/16/’03. report molecular H2 storage 4 wt. % at 78 K and

1 wt.% at 298 K, 20 bar.  Material: Zn4O(BDC)3 
BDC = 1,4-benzenedicarboxylate

Zn

Zn
O

O

Zn



Hydrogen in Heterogeneous Systems - General Issues and Activation on 
Sulfides

Tasks:

• Comprehensive critical review “Hydrogen Activation, Generation and 
Storage” (Abby Oelker and KK)

• “Relative Stabilities of Clusters and Edges, and Electronic Surface 
States in MoS2” (Jeff Spirko, Mike Neiman and KK)

• “Activation of Hydrogen on Unpromoted and Alkali-Promoted TS2 
Chalcogenides” (Jeff and KK)  



Hydrogen Activation, Generation and Storage
A.M. Oelker and K. Klier

Contents: 
 
I. Hydrogen as Panacea 
 
II. Production of Hydrogen 

A. Steam Reforming 
B. Partial Oxidation 
C. Autothermal Reforming  
D. Electrolysis, Thermolysis, Photolysis of 

Water 
E. Biomass Gasification, Biohydrogen 

 
III. Storage of Hydrogen 

A. Dilemmas Regarding Conventional Storage
B. Carbon Nanotubes 
C. Hydrogenated Organic Compounds 
D. Glass Spheres & Zeolites 
E. Liquid Hydrogen 
F. Metal Hydrides (Reversible) 

 
IV. Summary, Conclusion 



MoS2 relaxed edges (10-1x) adsorb H2 dissociatively and heteropolarly into MoH
and SH species [S. Cristol et al., JPC B106 (2002) 5659; B104 (2000) 11220, 
DFT/GGA/VASP].  The challenge: No experiment has found Mo-H, and S-H 
has been argued indirectly based on low-frequency modes observed by neutron 
scattering [P.N. Jones et al., Surf. Sci. 207 (1988) 105 to 660 cm-1; C.J. Wright 
et al., J.C.S. Faraday I, 76 (1980) 640, 662, 847, 1348, 1977 (v.w.) cm-1, 
reinterpreted by C.M. Sayers, J. Phys. C14 (1981) 4969 as bending Mo-S-H 
mode with overtones].  Our calculations (DFT/GGA/DN**):



MoS2 clusters bind H2 to form monohydrides, dihydrides and η2−H2
complexes, all on exposed Mo atoms [J.A. Spirko, M.L. Neiman, A.M. 
Oelker, K. Klier].  DFT/GGA/DN**.  Interatomic distances are in nm.  

Energies of formation: -40 kcal/mol H2 (a) to +2.8 kcal/mol H2 (c). 



MoS2 does not bind H2 on the most stable (101x) edges [Cristol et 
al., VASP#, Neiman et al., DMol3*].  H2 dissociates on the less stable 
(1010) and (1211) edges.  Adsorption energies are in kcal/mol H2.
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Alkali doping of sulfides gives rise to profound changes in their surface 
activity:  K+, Cs+ promote alcohol synthesis from CO+H2 over MoS2, 

alkali intercalate to form electron donor-acceptor (EDA) complexes, Cso

chemisorbs and Lio reacts with a complete ‘supra-valence electron’
transfer to MoS2 conduction band [cf. Park et al. JPC 100 (1996) 10739; 

JPC B104 (2000) 3145]



which reacts with electron acceptors [cf. Park et al. JCP  111 (1999) 
1636, a combined HR-XPS and theoretical study] to form monodispersed

Cs+
(s) -MoS2-OH-

(s) catalytic system  



Potassium site preference (-->--) for sites on the Mo7S14 cluster: 
(a) trigonal hollowsite-edge, (b) on (1013) edge, (c) on (0001) basal 

plane, (d) on (1210) edge.  Energies of Ko + Mo7S14 are in kcal/mol Ko

>
>

>



Potassium doping of MoS2 clusters favors dissociative chemisorption of H2.  
Interatomic distances are in nm.  Energy of formation (DFT/GGA/DN**) of (b) K-
Mo7S14H10 from (a) K-Mo7S14 and molecular hydrogen is -3.0 kcal/mol, in contrast 
to K-free system, +14.0 kcal/mol. K-Mo(4d2)S2 is MoxTc(4d3)1-xS2 !!!



K-MoS2 is MoxTc1-xS2 !!!

{ Mo(4d2) + e−[K 4s]        Tc(4d3) } 

K-Mo7S14 + 5H2 K-Mo7S14H10 - 0.6 kcal/mol H2

Compare with potassium-free reaction:

Mo7S14 + 5H2 Mo7S14H10 + 2.8 kcal/mol H2

Potassium promotes hydrogen activation on Mo7S14



Potassium promotes hydrogen activation on both MoS2 and NbS2

TxS2x clusters adsorb molecular hydrogen dissociatively into Mo-bonded η2-H2
[d(H-H) < 0.1nm, ν ∼ 3000 cm-1], also discovered in Si, cf. M.Stavola et al., PR 
Lett. 88, 105507, 245503 (2002); PRB 65, 245208; PRB 66, 075216 (2002),
and dihydride [d(H-H) > 0.16nm], cf. G.J. Kubas, J. Organomet. Chem. 635 

(2001) 37.  Mo-H vib. frequencies in dihydride are 1800 – 2000 cm-1.  On MoS2 
monomer, dihydride is formed without a barrier, on NbS2 with a barrier ~ 15 

kcal/mol, on K-doped NbS2 with a small barrier of < 5.5 kcal/mol: 

K-NbS2 is MoS2!!!

{ Nb(4d1) + e−[K 4s]        Mo(4d2) } 



Overall Scheme

Modeling Methods

MoS2 – Reactive Edges and Sites

Reactions with Hydrogen

The Adsorption Entropy Penalty

The Sites and Effects of Alkali

The Transition State

Reactions with Hydrogen and Carbon Monoxide

Contributions of Modeling



saddles.org

A qualifying TS has zero energy derivatives and a negative curvature 
along the reaction coordinate. There is a lowest TS.

The search for transition state (TS) involves the location of saddle points
 in a reaction landscape with many stationary points

other products

other saddle points

lowest saddle point

products

reactants



Mechanisms and ratesconditions         methodology

Experiment    vs.    theory

Catalytic issues

Selectivity control

Transition States

Barriers

Energetics



Molybdenum Disulfide Dissociates Hydrogen Molecule 
into a

Dihydride Without Activation Barrier
DFT/GGA/DN** Coordinate Driving



Niobium Disulfide Dissociates Molecular Hydrogen into a 
Dihydride With a Barrier of < 15 kcal/mol  

DFT/GGA/DN** Coordinate Driving



K

Nb

S

HH

K-doped NbS2 Dissociates Molecular Hydrogen into a Dihydride
With a Barrier of < 5.5 kcal/mol.  Antisymmetric HOMO is Shown at the 

Barrier.  DFT/GGA/DN** Coordinate Driving



           An overall scheme for conversion of sources of carbon
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TS for inverting SN2 pathway HO*CH3
+ HOR  *CH3OR + water
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DFT, BP, DN**
ν = i 402 cm-1
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CO activation for oxygenate synthesis:

● CO makes readily (inert) carbonyls and hydrido-carbonyls, but does 
not insert into the Mo-H bond 

Ef(kcal/mol)                                    - 45.7                 -64.4                  -77.8

<(S-Mo-S):               116o 114o 115o 116o

<(H-Mo-H):                                       117o 128o



CO activation for oxygenate synthesis:
● CO inserts into the HO−

(s) counterion of the alkali 

– Associative mechanism involves a facile nucleophilic attack  of CO 
coordinated to the alkali cation by the HO−

(s) counterion,

K+
(s)..OH-

(s). + CO HO-C-O- - 68 kcal/mol (MNDO)
K+ 

(s) 
followed by 1,2 antarafacial sigmatropic transfer of hydrogen to form 
surface formate

HO-C-O- K+ 
(s)  TS H-COO- K+ 

(s) - 30 kcal/mol (MNDO)

[K. Klier et al., in “Methane Conversion”, Elsevier (ed. D.M. Bibby et al.) 
1988, 109-125]

Higher level calculations are desirable, incl. those of the TS energies



Mechanism of Methanol Synthesis

• Activate H2 on the defect sites of the sulfide

• Activate CO in the coordination sphere of an alkali promoter (Cs > Rb
> K > Na ~ Li)

• Hydrogenate formate to methoxide

• Hydrolyze surface methoxide to methanol



Contributions of modelingContributions of modeling

● Understanding and selection of viable mechanisms – H2 activation via     
homopolar antisymmetric ‘driving down’ of the σ∗(Η−Η) orbital,
CO activation by base attack

● Predictions of :  

Energy barriers as a function of catalyst composition and structure –
finding the lowest pass

Vibrational frequencies of adsorbed reactants and  
incentives for search of new species (dihydrides) by spectroscopy

Significance of entropy penalties in hydrogen activation

Effects of alkali on activation of reaction components

Kinetics and thermodynamics
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