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Abstract 
The hourly measurement outputs of selected EC sensors, in Queensland streams, have been modelled in terms of 
both instantaneous and antecedent flow conditions.  The six sites are at gauging stations with 6 to 9 years of almost 
continuous flow and EC data.  Three stations are located in a large inland catchment with ephemeral streams, and 
three are in coastal catchments.  The assessment of this automated data assumes that instream EC is the cumulative 
result of past and present hydrological processes, which are considered sequentially.  The final EC-Hydrology 
model improves parameter correlation, particularly for ephemeral streams.  These results indicate that the major 
processes relating to variability are at least partially accounted for.  The EC-hydrology model provides a range of 
values for EC that are more representative of a particular site over time.  This preliminary assessment indicates the 
method can improve the prediction of loads and salt concentrations and enable a more realistic setting of salinity 
targets. 
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Introduction  
Concern about land and stream salinity is widespread and successful management requires salinity target setting.  It 
is therefore essential that the nature of salt processes and the effectiveness of remediation be known as accurately 
as possible.  An EC/flow relationship needs to be determined for the calculation of salt loads in streams, as well as 
for trend estimation and predictive salinity models. A limitation, however, is that no matter how the relationship is 
estimated, it seldom accounts for the majority of EC variability, particularly in large, complex catchments (Jolly et 
al. 2001).  Predictable sources of additional variability are serial correlation resulting from antecedent weather 
conditions Morton (1997), or changes during periods of no flow.  The hysteresis between rising and falling stages 
may also be significant.  Because of the high degree of scatter in most EC/flow plots, the choice of an algorithm to 
represent the relationship must be made subjectively, typically on the basis of the most dominant process, however, 
correlation usually remains poor.  
 
It is difficult to assess the full impact of catchment hydrology on EC at a site with the small sets of manually 
collected data that are usually available.  In response to this, the Queensland Department of Natural Resources, 
Mines and Energy (NRM&E) has been installing EC sensors since 1993 as part of its ambient monitoring program; 
there are now approximately 150 in operation (Clarke 1998).  The sensors can reflect the full variability of EC over 
all stages of the hydrograph, and provide enough data to incorporate antecedent flow conditions to expand the EC-
hydrology model.  
 
Materials and Methods 
Assessment methods used to process EC sensor records must have the capacity to handle a large volume of data 
which is typically over 50,000 hourly readings with accompanying flow measurements.  Most previous approaches 
have relied on summary statistics, or the selection of representative values as in Hirst (1992).  For this current 
study, a methodology has been developed which is largely automated, and assumes that the instream EC is the 
cumulative result of several processes, which are modelled sequentially.  

Stream Sites 
The data examined are the hourly outputs of six EC sensors with records of from 6 to 9 years with no significant 
gaps.  Three are located in the, middle and lower reaches and a tributary of a large, dry inland catchment; the 
remaining three are in medium sized coastal catchments, which have more continuous flow.  The sites were chosen 
on the basis of adequacy of the data, and the need to assess the method on a wide a set of conditions.  All the 
gauging stations are within subtropical to tropical climates, with highly variable summer rainfall.  The headwater 
relief is moderate, and alluvium of variable extent is present at the sensor sites.  The characteristics of each 
catchment are summarised in Table 1.  To demonstrate the method, data from the inland site on the Condamine 
River at Chinchilla is examined.  
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Table 1. Summary of stream gauges with EC sensors installed. 
Stream Catchment 

Area Km3
Rainfall 

mm 
Annual Flow 
Megalitres 

Start 
EC  

Comments 

O'Connell R 
GS 124001 

363 1400-
2000 

124,000 1994 Small, moist, lightly developed coastal 
catchment . 

Mary R 
GS 138014 

6845 1000-
1400 

807,000 1993 Permanent stream in hilly coastal 
catchment. Moderate development 

Gregory R 
GS 912105 

11489 300-800 521,000 1995 Permanent stream in tropical savannah. 
Limited development 

Hogson Ck 
GS 422352 

560 500-700 13,000 1993 Highly developed subcatchment in inland 
basin. Saline sediments, weathered basalt. 

Condamine R 
GS 422308 

19190 500-800 249,000 1995 Mature floodplain in inland catchment, 
downstream of towns and irrigation 

Culgoa R 
GS 422204 

79330 300-500 222,000 1996 Large inland catchment, stream entering 
alluvial fan. Dam, irrigation upstream 

 
Methodology 
The EC-Hydrology relationship has been treated in three stages: (a) definition of a median instantaneous flow; (b) 
incorporation of an antecedent hydrology correction; and (c) a correction for EC changes during no-flow periods, if 
these are significant.  
 
The Statistical Methodology used to develop the EC/instantaneous flow initially subtracts each flow from the 
previous value to identify rising and falling stages.  All EC data are then categorized into flow percentiles, and 
rising and falling stages are each sorted into percentile classes represented by their median EC.  Discharge for each 
stage/percentile is represented by the geometric mean of the flow range.  These reduced data sets are modelled to 
determine the EC/Flow relationship.   
 
A number of algorithms are used to model EC against Instantaneous flow, depending on the process assumed to  
control the relationship.  As most of these processes are nonlinear, they cannot be modelled by simple regression, 
and various methods have been applied. For a dilution driven system, Harned et al. (1981) and Hirsch et al. (1982) 
used an exponential algorithm; alternatively, a quadratic relationship based on logs of flow and parameter 
concentration has been demonstrated by Yu and Neil (1993).  This relationship produces a maximum salinity at 
intermediate rather than minimum flows,  allowing for a more complex EC/Flow interaction.  Other approaches 
involve a smoothing procedure such as LOWESS (Cleveland 1979), or by removal of flow-weighted means.  
However, Thorburn et al. (1992) proposed an algorithm that is suitable for streams running through alluvial valleys 
where ground and surface water interact. This algorithm has been widely used in previous studies, (e.g. QDPI 
1994), and is adopted here.  The algorithm produces a Z-shaped curve that is asymptotic to assumed baseflow as 
flow approaches zero. The curve also approaches the salinity of overland flow at high flow exceedences.  This 
algorithm is:  
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where K1 is the assumed EC of baseflow, K2 is the lowest EC expected in runoff, Q is the discharge, and K3 and 
K4 are constants relating to curvature. Rising and falling stage data were modelled separately as well as combined, 
and the model that best represented the whole dataset was selected.  Fig.1 shows the dataset, including manual 
samples, compared to the model; it is evident that although the general trend of the relationship has been captured, 
the variability is too great to consider the model as a predictor of concentration.  Fig. 1 also indicates that the higher 
concentrations are censored as flow reaches zero.  Fig. 2 demonstrates the results of the model plotted against time. 
 
Corrections were next developed for antecedent flow history.  Three time periods were investigated: 100 hours for 
approximately weekly flow history, 1,000 hours for a monthly trend, and 10,000 hours for annual effects.  
Cumulative sums of flow for these periods are added to datafile, and these are transformed to logs to account for 
the assumed skewed distribution.  The data are then divided into 60 sets of around 1000 records each, with 
sequential samples assigned to alternate sets.  The residuals from the instantaneous flow model in each set were 
linearly correlated with logs of the cumulative flow sums.  The final algorithm took the form: 

000,10000,1100 87652 QKxQKQKKRsidualEC ×++×+=  
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Where RsidualEC2 is the residual ECs remaining after the no-flow correction has been applied, Q10,000 is the log 
of the integral of the past 10,000 hours of flow, Q1000 is the log of the integral of the past 1,000 hours of flow, and 
Q100 is the log of the integral of the past  100 hours of flow.  This gives a weighting to more recent conditions.  
 

 
 

 no-flow correction was then developed for the residuals of the antecedent model, based on number of hours since 
ow ceased.  Three prolonged no flow periods were examined, and in each case the EC appeared to follow a 

Results and Discussion 
he final EC-hydrology model for the EC sensor at Gauging Station 422308 on the Condamine River at Chinchilla 

e distribution of final residuals on Fig .5.  The multiple algorithm for the model is:  

 
A brief summary of results for each site is given in Table 2.  The same methodology was used throughout the 
investigation so that the response of stream EC to flow could be examined equivalently under a range of 
hydrological environments by comparing the constants produced by the model.  For this reason, the algorithms 
used were those that produced the best overall results, rather than being optimised for a particular site.  
 

Table 2. Summary of results of EC/hydrology modelling for each site. 
Stream Comments 

 

Figure 2. EC Sensor data compared with instantaneous 
flow model over time. No flows are a constant. 

Figure 1. Flow/EC relationship modelled for 
instantaneous flow on Condamine River 

A
fl
quadratic rise from the level at the end of flow, but at different rates for individual dry spells.  It was then decided 
to use the most representative quadratic path to develop the correction as follows.  ECs from periods of greater than 
100 hours of no-flow are assigned to individual sets.  Each set is modelled quadratically, and the results compared 
by observation to select the best model to represent the no-flow trend overall, the constant being ignored.  The 
correction for no-flow is therefore a quadratic function, which reduces to zero during continuous flow:  

21093 hoursKhoursKRsidualEC ×+×= .  
 

T
is shown on Fig. 3, and th

O'Connell R Strong EC/flow relationship. Antecedent and no-flow models accounted for short dry spells 
Mary R Relatively high EC variability at most stages of flow. Model was improved for higher ECs by 

incorporating antecedent conditions. 
Riversleigh Ck Highly seasonal flow accompanied by strong EC fluctuations. Model of limited value, but may have 

defined an EC trend unrelated to short-term hydrology. 
Hogson Ck Model difficult to define, due to very high and fluctuating ECs (about 100 – 3000 µS/cm). Prediction of 

high ECs improved by incorporating antecedent and no-flow corrections. 
Condamine R  As demonstrated, model satisfactory, and improved by antecedent and no-flow corrections 
Balonne R Results similar to Condamine, which is higher in the catchment, but model less predictive of high ECs. 

May be due to greater flow regulation and breakup of stream into braided channels. 
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Figure 3. EC modeled by flow, antecedent hydrology, and 

 
Figs 1 and 2 indicate that the Thorburn algorithm performs well in estimating EC/ instantaneous flow under high 
flow conditions, the most significant for mass transport. Results for the Gregory and Mary also sh

time since flow ceased. 
Figure 4. Distribution of residuals in final model, 
showing a reasonable fit at flows and dry periods

ow it to be 
enerally applicable to per rtance of antecedent 

condit residu rally dominant, and 
we nual
par ela  Baseflow 
EC ly lowe
 
Conclusions 
De nera  
sites by including  can now be defined for all 
con  l stribution of 
rem duals t 
as collected at gaug ameter relationship 

 needed to define processes in ephemeral catchments; however, further work is required to develop and refine 
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