Experimental Tests of Quasisymmetry in HSX

J.N. Talmadge HSX Plasma Laboratory UW-Madison

Outline

- Quasihelically symmetric with no toroidal curvature → high effective transform
 - Small deviation from flux surface; Parallel currents reduced in magnitude
 - Helical Pfirsch-Schlüter current
 - Bootstrap current reduces transform

→ Good agreement of V3FIT code to diagnostic coil data

• Good confinement of trapped particles → MHD instability

→ First reflectometer measurements shows core localization of mode

- B = 0.5 T: Reduction of neoclassical momentum, particle and heat transport with anomalous component dominant in QHS
- B = 1.0 T: Thermal plasmas, T_e up to 2.5 keV
- 1D transport model
 → Large curvature, short connection length drives TEM and anomalous transport

Good model for temperature profile and confinement scaling

Future Plans and Conclusions

Quasihelical stellarators have high effective transform

Quasihelical: Fully 3-D, BUT Symmetry in $|B| : B = B_0 [1 - \varepsilon_h \cos(N\phi - m\theta)]$ In straight line coordinates $\theta = \iota \phi$, so that $B = B_0 [1 - \varepsilon_h \cos(N - m\iota)\phi]$ In HSX: N=4, m=1, and $\iota \sim 1$ $\iota_{eff} = N-m \iota \sim 3$

With $t \ge 1$ and n = 4 periodicity of the quasisymmetric field, modulation of |B| on field line $\rightarrow t_{eff} \sim 3$

Lack of toroidal curvature verified by passing orbit measurements

- Grad B drift in HSX confirms lack of toroidal curvature
- Small orbit shift confirms large effective transform of N-m

High effective transform reduces Pfirsch-Schlüter and bootstrap current

Pfirsch-Schlüter current:

- reduced in magnitude
- helical in HSX due to lack of toroidal curvature
- dipole currents are opposite of tokamak where field in HSX is tokamak-like (grad B drift is opposite).

Bootstrap current:

- reduced in magnitude
- opposite direction to tokamak
- reduces transform but confinement improves slightly due to N-m factor

$$J_{PS} = \frac{1}{B_0} \frac{dp}{d\psi} \sum_{n,m} \frac{nI + mg}{n - mi} \delta_{nm} \cos(n\phi - n\theta)$$

$$J_B \sim 1.46 \sqrt{b_{nm}} \frac{m}{n - mt} \frac{g}{B_0} [gradients]$$

Boozer. '82 '92

5

3 axis coils measure current evolution at two toroidal locations

- 16 3-axis pick-up coils mounted in a poloidal array
- Two sets of measurements separated by <1/2 field period.
- From Pfirsch-Schlüter current: $B_{\theta} \sim \cos \theta$ and $B_{r} \sim \sin \theta$

Rogowski confirms bootstrap current unwinds transform

- For on-axis heating, bootstrap current rises during 50 ms ECH
- Colder plasmas with off-axis heating show saturation
- Good agreement with BOOTSJ (ORNL) for extrapolated currents
- Current direction consistent with lack of toroidal curvature

Coil array shows Pfirsch-Schlüter current dominant early in time

- Early time t= 10 ms \rightarrow I_B = 0 in model
- Bootstrap current probably underestimated

*** Special thanks to Steve Knowlton and V3FIT team! ***

Bootstrap current shows up later in time

1/6 Field Period

1/2 Field Period

- Bootstrap current shows up as DC offset in B_{θ}
- Later in time t= 50 ms \rightarrow I_B = BOOTSJ value (overestimated)
- Helical PS current evident in reversal of B_r

Bootstrap current decreases transform in HSX

- Pressure profile from TS; current density profile from BOOTSJ
- Pressure and Current density profiles in VMEC → transform profile
- With 500 A, iota is just above one →no instability signatures observed

Symmetry is broken with auxiliary coils

 Phasing currents in auxiliary coils breaks quasihelical symmetry (n=4, m=1) with n=4 & 8, m=0 mirror terms

Neoclassical transport and parallel viscous damping increased

New mirror configuration increases effective ripple while keeping magnetic axis stationary

.... while transform, well depth and volume remain almost fixed

Good confinement of trapped particles

Photon Energy (KeV)

• Larger HXR flux in QHS configuration.

BUT ... global coherent mode observed at 0.5 T

- Fluctuation observed on interferometer and magnetic coils. Absent at B = 1.0 T
- Frequency scaling with mass density consistent with Alfvenic mode
- Propagates in electron diamagnetic direction
- Amplitude decreases as quasisymmetry is degraded

First results from Reflectometer

- Extraordinary mode at B = 0.5 T
- Coherent mode in QHS localized to core region
- Mode is absent at high symmetry-breaking
- Broad turbulent spectrum observed in Mirror mode

QHS

250

Mirror

HSX has demonstrated benefits of quasisymmetry

- Reduction in momentum, particle and heat transport: B = 0.5 T
- Neoclassical is reduced BUT anomalous contribution now dominates

Off-axis Heating Confirms Thermodiffusive Flux in Mirror

- · With off-axis heating, core temperature is flattened
- Mirror density profile becomes centrally peaked

Off-axis Heating Confirms Thermodiffusive Flux in Mirror

- With off-axis heating, core temperature is flattened
- Mirror density profile becomes centrally peaked

Electron temperature profiles can be well matched between QHS and Mirror

- To get the same electron temperature in Mirror as QHS requires 2.5 times the power
 - 26 kW in QHS, 67 kW in Mirror → large nonthermal population at 0.5 T
 - Density profiles don't match because of thermodiffusion in Mirror

Thermal Diffusivity is Reduced in QHS

• QHS has lower core χ_e

- At r/a ~ 0.25, $\chi_{\rm e}$ is 2.5 m²/s in QHS, 4 m²/s in Mirror
- Difference is comparable to neoclassical reduction (~2 m²/s)
- Two configurations have similar transport outside of r/a~0.5

Anomalous conductivity is difference between experimental and neoclassical

Little difference in anomalous transport between QHS and Mirror

ECH at B = 1.0 T

- Good agreement between kinetic and diamagnetic stored energy
 minimal nonthermal contribution
- Core $\rm T_e$ about twice as large in QHS as Mirror configuration
- Mirror density profile more hollow as T_e gradient increases

Minimum difference profiles to compare transport at B = 1.0 T

- More than twice the power in Mirror configuration to approximate the temperature profile
- Density profile still slightly more peaked in QHS than Mirror

Electron thermal conductivity lower in QHS than Mirror

- Ray-tracing code calculates power deposition profiles
- Total power scaled to diamagnetic loop measurement of stored energy
- QHS experimental thermal conductivity ~ 3 times lower than Mirror:
- Neoclassical calculation is being redone using Spong's PENTA code

- Rewoldt '05 using FULL code showed HSX had largest linear growth rate to ITG/TEM modes compared to LHD, W7-X, NCSX, QPS
- Goal is to apply predictive transport modeling to HSX using multi-mode approach
- Neoclassical transport based on DKES, anomalous transport based on Weiland analytic model

Microstability estimates using axisymmetric models with "quasisymmetric" approximation

- 3D stability calculations find most unstable eigenmodes (ITG/TEM) ballooning in the low field, bad curvature region in HSX
- Dominant particle trapping comes from helical ripple, ε_H (0.14·r/a = 1.4·r/R)
- Reduced connection length, $L_c = q_{eff}R = R/|N-m\iota| \approx R/3$, leads to very low collisionality electrons across the minor radius $\rightarrow TEM (T_e >> T_i)$
- Normal curvature rotates helically, with bad curvature following the location of low field strength
- $\kappa_{N,max} \sim 1/45 \text{ cm}^{-1} \neq 1/R$ (R=120 cm)
- To account for toroidal drifts in drift wave models, $R/L \rightarrow (R/3)/L$

Weiland model with simplified assumptions benchmarked against GS2 code

• Linear growth rates from Weiland and 3D GS2 are in agreement near experimental gradients (a/L_n , $a/L_{Te} = 2 \rightarrow 5$, largest difference ~30%)

• Weiland growth rates 2× smaller without "quasisymmetric" approximation

Model predicts gross features of T_e profile and confinement scaling

• Weiland model, with geometry approximations, gives reasonable fit to temperature profile.

• Captures the scaling and magnitude of confinement times at B = 1.0 T

Near Term Plans

 Emphasis in near term will be to measure flows and radial electric field and compare to neoclassical modeling → diagnostic neutral beam mounted on HSX for CHERS

• Compare experimental data to Spong's PENTA code. How important is it to solve 2 momentum balance equations on flux surface for a quasisymmetric plasma? How do changes in effective ripple affect E_r ?

• Compare reflectometer measurements of turbulence at plasma core for QHS versus Mirror at 1 T. How important are differences in trapped particle fraction and E x B shear?

- Novel low-cost HIBP system being developed with RPI
- Model time evolution of neoclassical currents and compare to measurements for different magnetic geometries.
- Obtain ion root plasma for Mirror to maximize differences with QHS configuration of neoclassical and possibly anomalous transport

Conclusions

- Lack of toroidal curvature verified by
 - grad-B drift of passing particle
 - helical Pfirsch-Schlüter current
 - bootstrap current that decreases transform
- High effective transform verified by
 - small drift of passing particles from flux surface
 - reduced magnitude PS and bootstrap currents
- Good confinement of trapped particles with quasisymmetry → MHD mode observed
 - first reflectometer results shows mode localized to core
 - broad density fluctuation spectrum in Mirror compared to QHS

Conclusions

- ECH at B = 0.5 T
 - Reduction of particle, momentum and heat transport with quasisymmetry
 - Large themodiffusive flux in Mirror yields hollow density profiles, reduction of neoclassical in QHS results in peaked density profile.

• ECH at B = 1.0 T

- Nonthermal component is small
- T_e up to 2.5 keV is observed
- Multi-mode model of neoclassical + modified Weiland for anomalous agrees well with temperature profile and confinement time.

→Quasihelically symmetric configuration improves neoclassical transport. Initial results suggests anomalous transport may be high.