
The Technology and Infrastructure That Enable the CCA

CCTTSS Leads: Rob Armstrong (SNL, PI), Jim Kohl (ORNL, co-PI and Lead for Parallel Data
Redistribution), Gary Kumfert (LLNL, co-PI and Lead for Frameworks); Chasm: Craig Rasmussen
(LANL, co-PI), Matt Sottile (LANL); Babel: Tamara Dahlgren (LLNL), Tom Epperly (LLNL), Gary
Kumfert (LLNL); Ccaffeine: Ben Allan (SNL), Rob Armstrong (SNL); XCAT: Dennis Gannon (Indiana
Univ., co-PI); SCIRun: Steven Parker (Univ. Utah, co-PI); MxN: David Bernholdt (ORNL, co-PI),
Randy Bramley (Indiana Univ.), Jim Kohl (ORNL), Jay Larson (ANL), Steven Parker (Univ. Utah)

Summary

The Center for Component Technology for Terascale Simulation Software (CCTTSS) faces
unique technical challenges in bringing the benefits of component technology – well
established in commercial computing – to the scientific computing community. Component
technology broadens the scope of software’s use, thereby reducing the need for tedious
software customization or rewrites and increasing computational scientists’ productivity.

The very nature of terascale computing is beyond
the scope of commercial component systems.
CCTTSS must address multiple architectures and
operating systems (unlike Microsoft COM),
multiple languages (unlike Java Beans), high
performance in process interconnects (unlike
CORBA), and support for massive parallelism,
Fortran77/90/95, and Grid connectivity (unlike
all the above). The CCTTSS is simultaneously
conducting novel research and producing
practical end-user tools in the areas of language
interoperability, parallel data redistribution, and
frameworks.

Language Interoperability
SciDAC applications are often written in
Fortran90/95, whereas for SciDAC math and CS
libraries C/C++ is more common. The technical
difficulties in connecting the two often preclude
effective sharing. We currently have two tools
that cover the depth and breadth of the language
interoperability problem: Chasm and Babel.

Chasm is an automatic wrapping tool to connect
Fortran90/95 and C++. It generates wrappings
implicitly by scanning existing source code.
Chasm also has advanced capabilities in dealing
with Fortran90 array descriptors – a particularly
pernicious barrier to language interoperability.

Babel is an IDL based tool that currently
connects C, C++, Fortran77/90/95, Python, and
Java. Babel’s approach is more scalable in the

number of languages that it can support, but
requires an explicit listing of what to wrap
expressed in SIDL (Scientific Interface
Definition Language). The CCA specification
itself is written exclusively in SIDL.

These two tools with their differing approaches
complement each other effectively. Chasm is
applying its Fortran90 and C++ automation
techniques to produce SIDL. Babel is adopting
Chasm’s Fortran90 array infrastructure to
augment its own Fortran90 bindings.

MxN
A co
a disp
distri
probl
mass
the tw
of pro
to as
figur

Research supported by the Mathematics, Information and Computational

Computing Research, U.S. Department of Energy, under contract No. D
Fig 1. Parallel data redistributed between
4 and 9 processors
 Parallel Data Redistribution
mmon barrier to scientific software reuse is
arate underlying model for how data is

buted in memory by different codes. This
em is exacerbated when combining
ively parallel codes and even more so when
o codes are separated on differing numbers
cessors. This most general case is referred

the “MxN problem” and illustrated in the
e above.

Sciences Office, Office of Advanced Scientific
E-AC05-00OR22725 with UT-Battelle, LLC.

In traditional software development, such
external coupling of parallel data arrays has been
a painful and ad hoc activity. The CCA will
make generalized parallel model coupling a
reality. MxN tools provide the basic functions for
exchanging parallel data, including registering
the data, creating connections with parallel
“communication schedules”, and then actually
transferring parallel data elements among
components.

MxN tools are currently implemented as
components, built upon existing tools for
interacting with parallel simulations. The
CUMULVS system for interactive visualization,
computational steering, and application fault-
tolerance, has been wrapped as one component.
The PAWS model coupling system has been
wrapped as another.

SciDAC funding of the CCTTSS has motivated –
and CCA components have enabled – these two
disparate communication models from
CUMULVS and PAWS to be generalized into a
common interface specification that subsumes
the capabilities of both systems. To incorporate
a variety of structured and unstructured mesh
support, this research has progressed in
cooperation with the CCA scientific data
working group. Extensions are planned for
particle data, adaptive meshes, and sparse arrays.

Frameworks
CCA frameworks serve two purposes: (1) to
simplify the task of composing applications from
CCA components, and (2) to provide for and
enforce the behavior ensuring interoperability
that is laid out by the CCA specification.
Frameworks manage components: their creation,
connection, and eventual cleanup. The CCA
specification not only admits parallel
components for high-performance computing,
but also allows CCA components to be
distributed across remote Grid-enabled
computers.

The CCTTSS supports three frameworks, each
with its own specialties and purpose. Linkages
between these frameworks provide a full
complement of features to work with numerous
application scenarios. Ccaffeine is the

production CCTTSS framework best positioned
for most terascale simulations. SCIRun and
XCAT are research vehicles that are being used
to prototype new ideas and push the CCA
architecture in new directions.

The Ccaffeine framework focuses on high-
performance parallel components and provides a
simple, single-threaded environment that uses
MPI or PVM for interprocess communication.
The XCAT framework is both CCA and Grid
compliant, emphasizing distributed components
on the Grid. These two frameworks function in a
complementary fashion, such that Ccaffeine can
be used to compose and run a parallel high-
performance application, and XCAT can provide
the connectivity from CCA to the rest of the
planet to allow execution as a Grid resource. A
combustion application demonstrated at SC02
exploited precisely this capability. SCIRun is a
third framework that combines aspects of the
other two and is evolving to provide connections
to other component-based systems. It supports
parallel components like Ccaffeine but regards
them as a single distributed component, and it
also supports distributed components similar to
XCAT.

Tying It All Together: An Example
An ambitious future CCA capability and
example of continued CCTTSS development is
support for Parallel Remote Method Invocations
(PRMI), or the coordination of method
invocations among parallel components. Babel
is incorporating serial RMI capabilities from
XCAT and SCIRun, thereby empowering
Ccaffeine with distributed capabilities as well.
The CCA specification will expand to include
interconnect standards, assuring framework
interoperability across the Grid. MxN will
integrate its parallel data exchange capabilities
from a component into the framework. Then, the
framework being able to transparently handle
parallel data redistribution without the explicit
coordination of the user becomes a possibility.

Contact Information:
Rob Armstrong (PI)
Phone: (925) 294-2470
Email: rob@sandia.gov
http://www.cca-forum.org

Research supported by the Mathematics, Information and Computational Sciences Office, Office of Advanced Scientific

Computing Research, U.S. Department of Energy, under contract No. DE-AC05-00OR22725 with UT-Battelle, LLC.

mailto:rob@sandia.gov
http://www.cca-forum.org/

	Language Interoperability
	MxN Parallel Data Redistribution
	Tying It All Together: An Example

