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ABSTRACT

The multicriteria methodology, which provides a means to estimate optimal ranges for land surface model
parameter values via calibration, is evaluated. Following calibration, differences between schemes resulting from
effective parameter values can be isolated from differences resulting from scheme structure or scheme param-
eterizations. The method is applied to the Project for the Intercomparison of Land Surface Parameterization
Schemes (PILPS) phase-2a data from the Cabauw site in the Netherlands using the Chameleon Surface Model
(CHASM) as the surrogate for a range of land surface schemes. Simulations are performed calibrating six modes
of CHASM, representing a range of land surface complexity, against observed net radiation and latent and
sensible heat fluxes. The six modes range from a simple bucket model to a complex mosaic-type structure with
separate energy balances for each mosaic tile and explicit treatment of transpiration, canopy interception, and
bare-ground evaporation. Results demonstrate that the performance of CHASM depends on the complexity of
the representation of the surface energy balance. If the multicriteria method is used with two observed variables,
the performance of the model improves little with incremental increases in complexity until the most complex
version of the model is reached. If the multicriteria method is used with three observed variables, the most
complex mode is shown to calibrate more accurately and more precisely than the simple modes. In all cases,
every calibrated mode performs better than simulations using the default PILPS phase-2a parameters. The
performance of the most complex mode of CHASM suggests that more complex representations of the surface
energy balance generally improve the calibrated performance of land surface schemes. However, all modes,
when calibrated, retain a residual error that most likely is due to parameterization errors included in the scheme.
Most error is contained in the simulation of the latent heat flux, which suggests that, to improve CHASM further,
the representation of the surface hydrological processes should be developed. Thus, the multicriteria method
provides a means to assess the performance of a single model or group of land surface models and provides
guidance as to the directions scheme development should take.

1. Introduction
Developments in the parameterization of land surface

processes over the last two decades have tended to add
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complexity to the land surface schemes or models used
to represent the surface energy and water balance in
climate and weather prediction simulations. The inter-
comparison of existing land surface models has led to
the identification of large differences in the partitioning
of available water between runoff and evaporation and
in the partitioning of available energy between sensible
and latent heat fluxes (Henderson-Sellers et al. 1995;
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TABLE 1. Summary of CHASM’s modes (after Desborough 1999).
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Shao and Henderson-Sellers 1996; Chen et al. 1997;
Dirmeyer et al. 1999). Differences among models are a
combination of differences in model structure and model
parameters. Although intercomparison efforts have at-
tempted to remove differences resulting from parame-
ters by setting values in all schemes to be numerically
identical, no effective mechanism existed to ensure that
the parameter values were effectively the same. It has
become clear that the effective meaning of parameters
varied across land surface schemes involved in the Pro-
ject for the Intercomparison of Land Surface Schemes
(PILPS; Chen et al. 1997; Desborough 1999). There is
therefore a need for a new methodology through which
intercomparisons of this kind can be improved (cf. Hen-
derson-Sellers 1993).

One way to ensure that parameters across a range of
schemes are effectively identical and have the same phys-
ical meaning is to employ a method of parameter cali-
bration. Carefully choosing and adjusting physical pa-
rameters for land surface models can improve the sim-
ulation of some quantities (Henderson-Sellers 1996; Dir-
meyer et al. 1999), but most methods used in
intercomparison exercises are subjective. The adjustment
of some parameters can be difficult if they are not easily
measured (e.g., surface resistance and soil hydraulic con-
ductivity). Several objective techniques recently have
been developed to select and to adjust the parameters in
land surface models. For example, Sellers et al. (1989)
used an iterative loop driven by a least squares reduction
program and reliable micrometeorological measurements
taken over the Amazonian tropical forest to estimate and
to optimize physiological parameters in the Simple Bio-
sphere Model. Their results showed that the specification
of optimal parameters improved the simulation of sen-
sible and latent heat fluxes. Franks and Beven (1997)
employed the generalized likelihood uncertainty esti-
mation technique to reduce the uncertainty in the fluxes
simulated by a simple soil–vegetation–atmosphere trans-
fer scheme. Most recent, Gupta et al. (1999) used a mul-
ticriteria parameter estimation method to estimate the
ranges of optimal parameter values. They showed that
the Biosphere–Atmosphere Transfer Scheme (BATS)
model performance improves when its parameters were
optimized using the multicriteria method.

In this study, we apply the multicriteria calibration
method to six modes of the Chameleon Surface Model
(CHASM; Table 1; Desborough 1999; Desborough et

al. 2001) and analyze the performance of the model in
these six modes in the simulation of the turbulent energy
fluxes and net radiation. Our aim is to demonstrate the
use of the multicriteria methodology with CHASM and
to assess how much of the differences simulated by the
modes of CHASM in PILPS-like experiments can be
removed through calibration. The residual differences
that cannot be removed by calibration should be due
therefore to differences in the parameterization of the
land surface. These parameterizations provide a guide
to the relationship between these differences and model
complexity, because the six modes of CHASM encap-
sulate the range of complexity used in most existing
land surface models.

2. Method, data, and modeling framework

a. The multicriteria calibration methodology

Relatively little work in land surface modeling has
focused on the errors caused by parameter uncertainty
despite the common use of calibration in hydrology
where accuracy is important for optimal design (So-
rooshian and Dracup 1980) and where considerable ef-
fort has been devoted to improving forecasting (So-
rooshian and Gupta 1983; Sorooshian et al. 1993; Gupta
and Sorooshian 1983; Hendrickson et al. 1988). The
recent development of the multicriteria calibration
methodology provides an effective and efficient means
of reducing the uncertainty in parameter values. The
methodology was developed by Gupta et al. (1998) from
a single-criteria method developed by Duan et al. (1994)
that is widely used in hydrological modeling. Gupta et
al. (1998) have used the multicriteria methodology to
estimate the reasonable ranges of optimal parameters
for the BATS land surface model. Full details of the
multicriteria calibration methodology are given by Gup-
ta et al. (1998) and Yapo et al. (1997), and a brief
summary is presented below.

The first step in using the multicriteria calibration
methodology is to define the feasible parameter range
for each parameter to be calibrated. This range, the fea-
sible parameter space, is then sampled. The distance
between model results and observations (the model out-
put residual) is then calculated using one or more ob-
jective functions. The objective function is generally
derived from maximum likelihood or Bayesian theory
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TABLE 2. The default, lower, and upper bounds for parameters and initial values of three state variables using in CHASM. The default
values come from Beljaars and Bosveld (1997) and were used in PILPS phase 2a (Chen et al. 1997).

Parameter Description Default Lower Upper

Model parameters
ALBG
ALBN
ALBV
ALEAFM
ALEAFS
FVEGM
FVEGS
RCMIN
RHON
WRMAX
ZCOL
Z0G
Z0N
Z0V

Bare-ground albedo
Snow albedo
Vegetation albedo
Leaf area index seasonality parameter
Max leaf area index
Max fractional vegetation cover
Fractional vegetation cover seasonality
Canopy resistance (s m21)
Snow density (kg m23)
Available water holding capacity (kg m22)
Soil color index
Bare-ground roughness length (m)
Snow surface roughness length (m)
Vegetation roughness length (m)

0.2
0.75
0.23
2
1.5
0.95
0.7

40
100
141

5
0.01
4 3 1024

0.15

0.1
0.7
0.1
1
1
0.2
0.2
0

50
10
4
1 3 1024

1 3 1024

0.01

0.4
0.9
0.4
6
3
0.95
0.95

300
100

1000
6
0.01
6 3 1024

2.5

Model state variables
TS
WN
WR

Aerodynamic surface temperature (K)
Snow mass (kg m22)
Available moisture in root zone (kg m22)

279
0

141

275
0
0

310
10

500

to measure a specific statistical characteristic of the out-
put residual (Gupta et al. 1998). Because model cali-
bration is a multiobjective problem (i.e., errors result
from many sources), it is unlikely that any single ob-
jective function is best suited for model calibration;
hence, the multicriteria calibration methodology allows
for several objective functions to be used to measure
different statistical properties of the output residual.

Once the feasible parameter space has been sampled,
the multicriteria calibration methodology selects a set of
parameter values that, based on the shape of the objective
function space from the previous step, minimizes each
of the objectives and therefore reduces the error. The
methodology terminates when the process has converged
to a ‘‘Pareto set.’’ Within the Pareto set, each parameter
set is better than the others for at least one of the ob-
jectives but no parameter set is better than another for
all of the objectives. So, within the Pareto set every pa-
rameter set is considered equal in a multiobjective sense.
Because of errors (in the measurements and in the model
structure), the Pareto set is not unique.

The multicriteria calibration methodology only needs
one optimization run to estimate the Pareto set and is
efficient because knowledge gained on the most likely
position of the global optimum is retained between
steps. The method does not require sampling every pa-
rameter set within the Pareto set to find the global op-
timum. The solutions obtained using this method have
been shown experimentally to be a good representation
of the Pareto set, even though not every Pareto solution
is computed (Yapo et al. 1997). The methodology also
finds compromise solutions, because multiple objectives
are considered simultaneously in the derivation of the
Pareto set. Although moving away from a parameter set
that contains a local minimum for one of the objectives
worsens that objective, it subsequently finds parameter

sets that improve the other objectives. Other single-ob-
jective calibration procedures find parameter sets that
minimize each objective function, but because the op-
timization runs are performed separately there is no
guidance to the position of these compromise parameter
sets. This is a key advantage of the multicriteria method.

b. Observed data

The dataset measured at Cabauw (518589N, 48569E)
is a very high quality dataset described in detail by
Beljaars and Bosveld (1997). The Cabauw site consists
mainly of short grass divided by narrow ditches, with
no obstacle or perturbation of any importance within a
distance of about 200 m from the measurement site. The
climate in the area is characterized as moderate maritime
with prevailing westerly winds. The Cabauw data were
used in PILPS phase 2a to drive a suite of land-surface
schemes and then to validate these models’ performance
(Chen et al. 1997). The data available at Cabauw include
downward shortwave radiation, downward longwave ra-
diation, air temperature, wind at 20 m height, specific
humidity at 20 m height, sensible heat flux (SH), latent
heat flux (LH), ground temperature, net radiation (Rnet),
and ground heat flux with a 30 min interval for 1987.
This meteorological forcing is used to drive CHASM
in these experiments through a single year with a 30-
min time step.

The default parameters (Table 2) were provided as
part of the PILPS phase-2a experiment (Chen et al.
1997), and very considerable care was taken in provid-
ing the highest-quality set of parameters possible. Bel-
jaars and Bosveld (1997) discuss these data in more
detail, but the Cabauw site was chose for PILPS phase
2a following extensive review and the recognition that
it was a dataset of unusually high quality in regard to
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the meteorological forcing, the observed turbulent en-
ergy fluxes, and the associated parameters required by
a land surface model.

c. Description of CHASM

CHASM was developed to explore aspects of land-
surface energy balance representation (Desborough
1999). CHASM can be run in a variety of complexity
modes within the same modeling environment. Each
mode of CHASM utilizes the same parameterization
(with the exception of the surface energy balance) and
parameters, so switching between modes allows the im-
pact of the addition or removal of a specific aspect of
the surface energy balance to be explored. Six CHASM
modes are used in this study, ranging from a simple
Manabe-type bucket model to a complex mosaic type
(i.e., Deardorff 1978) structure with separate energy bal-
ances for each mosaic tile (e.g., Koster and Suarez 1992)
and explicit treatment of transpiration, canopy intercep-
tion, and bare-ground evaporation. These six modes
(EB, RS, RSI, RSGI, SLAM-1T, and SLAM) are shown
in Table 1 and are described below.

A common hydrological module originally described
by Manabe (1969) is combined with each CHASM
mode. The root zone is treated as a bucket with finite
water-holding capacity, and beyond this capacity runoff
occurs. The use of a simple hydrological model of this
kind has been shown to work well in midlatitude regions
(Robock et al. 1995). Runoff also occurs when the frac-
tion of snow cover on the ground exceeds 95%. Apart
from moisture in the root zone, water can also be stored
as snow or, depending on the mode, on the canopy. All
modes share a common six-layer soil temperature mod-
ule. Each tile is divided into area fractions of vegetation,
snow, and ground. Snow cover fractions for ground and
foliage surfaces are calculated as functions of the snow-
pack’s depth and density and the vegetation’s roughness
length (Pitman and Desborough 1996; Desborough and
Pitman 1998). The vegetation fraction is further divided
into wet and dry fractions if the surface configuration
mode allows for canopy interception. Each tile has a
prognostic bulk temperature for the storage of energy
and a diagnostic skin temperature for the calculation of
surface energy fluxes.

The simplest mode of CHASM, EB, is constructed
from one tile. The aerodynamic resistance to turbulent
transport for heat and moisture is calculated without
atmospheric stability correction. Moisture available for
evaporation is stored in the root zone and on the surface
as snow, resulting in two evaporation sources to which
the aerodynamic resistance is applied. The RS mode is
the same as EB but with a temporally invariant surface
resistance added to the resistance pathway of snow-free
evaporation. The aerodynamic resistance is calculated
with an atmospheric stability correction. The RSI mode
is the same as RS but with explicit parameterization for
canopy interception of precipitation. This results in three

evaporation sources because water can evaporate from
the canopy store. The canopy is divided further into
fractions of wet and dry areas depending on the pre-
cipitation and evaporation rates. The RSGI mode builds
onto the RSI mode through the addition of bare-ground
evaporation. Moisture can be stored at the surface for
evaporation, and bare-ground evaporation is affected by
moisture availability. SLAM-1T builds on RSGI by in-
cluding a time-variable canopy resistance, which re-
places the temporally invariant surface resistance. The
most complex mode, SLAM, is the same as SLAM-1T
but the land–atmosphere interface is divided into two
tiles with the first representing a combination of bare
ground and exposed snow and the other reserved for
vegetation. The tiles are not necessarily the same size
and are area-weighted depending on the individual frac-
tions of the land surface type. A separate surface energy
balance is calculated for each tile, which allows for
temperature variations across the land–atmosphere in-
terface, a feature not present in the less complex modes.

d. Experimental design

CHASM includes 14 parameters for soil and vege-
tation that were available for calibration (Table 2). In
addition, three state variables were initialized at the be-
ginning of the simulation, and the initial value was used
as part of the calibration of the model. The ranges of
the parameters and the initial values of the state vari-
ables are shown in Table 2. To explore the relative value
of different observational quantities for calibrating
CHASM, four calibration studies were performed. For
simplicity of notation, a closed pair of curly braces will
denote a calibration test; hence {SH, LH} denotes a
multicriteria calibration experiment using observed sen-
sible heat and latent heat fluxes for calibration, {SH,
Rnet} used sensible heat and net radiation, {LH, Rnet}
used latent heat and net radiation, and {SH, LH, Rnet}
used sensible heat, latent heat, and net radiation. Root-
mean-square error (rmse) was used as objective function
for all experiments. We examined the sensitivity of our
results to two other objective functions used by Gupta
et al. (1998) (the Nash–Sutcliffe coefficient of efficiency
and the mean absolute error), and the results reported
in this paper are insensitive to the choice of objective
function. We also examined the sensitivity of the results
to different seeds and different sets of points initially
sampled from the feasible parameter space. These tests
indicated that the results presented in this paper were
insensitive to the initial sampling point.

3. Applying the multicriteria method to CHASM

a. Parameter estimation for the two-variable
calibration

Figure 1 shows the results for the three experiments
in which CHASM was calibrated against two observed
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FIG. 1. Pareto fronts simulated for the three experiments: (a) {LH, SH}, (b) {RNET, SH}, and (c) {RNET, LH}, for
three modes of CHASM (see Table 1).

quantities ({SH, LH}, {SH, Rnet}, or {LH, Rnet}). Re-
sults are plotted for modes RSI, RSGI, and SLAM, be-
cause these modes represent the key range of complexity
available with CHASM. Each simulation shows a Pareto
front as a curve, where each point on the curve repre-
sents a parameter set that provides a solution that is
equally good if both of the observed quantities are taken
into account.

There are two key results in Fig. 1. First, the length
of the Pareto front varies between the modes of
CHASM, that is, with simpler modes (e.g., RSGI and
RSI), more extreme values of rmse are simulated for
both the quantities plotted. Second, the position of
Pareto set varies among modes, with the most com-
plex mode (SLAM) always lying closer to a zero rmse.
This implies that a more complex model can be cal-
ibrated better than a simpler model and indicates that
a more realistic representation of the surface energy
balance provides a greater opportunity to calibrate a

model against observed data. The improved calibra-
tion is not related to the number of parameters being
calibrated because these do not vary between CHASM
modes.

Figure 2 shows the results from all six modes for
{SH, Rnet} (the results from the other experiments give
similar results). The results from the simulations for
each mode using the default parameter set [as used in
Chen et al. (1997) and see Table 2] are identified in Fig.
2. In all cases, the Pareto set obtained through calibra-
tion is a major improvement over the results obtained
using the default parameter set, which implies that cal-
ibration is useful irrespective of the complexity of the
model. The improvement in rmse is mainly in reducing
errors associated with Rnet (i.e., calibration improves
SH relatively little) except with SLAM, for which cal-
ibration improves both fluxes significantly. Figure 2 also
shows that the results simulated by CHASM tend to
improve little as more complex modes are employed
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FIG. 2. Results from six modes of CHASM from the {RNET, SH} experiment: (a) EB, (b) RS, (c) RSI, (d) RSGI, (e) SLAM-1T, and (f )
SLAM. The results from simulations using the default parameter set (Table 2) are also noted.

until the complexity of SLAM is reached, at which there
is a marked improvement in both the length of the Pareto
curve (implying more precise calibration) and in the
position of the Pareto curve (implying a more accurate
simulation).

The results from Figs. 1 and 2 show that the lowest
rmse values obtained using CHASM were about 25 W
m22 for LH and 13 W m22 for SH (Fig. 1). This rmse
error is the ‘‘residual’’ error that cannot be explained
by a failure to specify parameter values correctly. This
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FIG. 3. Results from six modes of CHASM from the {RNET, LH, SH} experiment: (a) EB, (b) RS, (c) RSI, (d) RSGI, (e) SLAM-1T, and
(f ) SLAM. The results from simulations using the default parameter set (Table 2) are also shown (‘‘3’’).

residual therefore stems from either errors in the ob-
servational dataset or in model parameterization. Given
the quality of the Cabauw dataset, the errors probably
are related mostly to model error, and, given that a
large fraction of the error is in LH rather than SH, this
suggests that the modeling of hydrological processes
should be the focus for future attempts to improve the
model.

b. Parameter estimation in the three-criteria
calibration

The multicriteria calibration method can be used to
calibrate a model using three observed quantities si-
multaneously. The final experiment conducted was
therefore {SH, LH, Rnet}. Figure 3 shows the rmse
ranges calculated for each mode using the default pa-
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rameters (Table 2) and shows the Pareto front simulated
by each mode.

The smallest rmse values are obtained for SLAM,
with the other modes showing similar rmse values (Fig.
3). The three-criteria calibration shows a long Pareto
front with outliers for all modes. However, in the case
of SLAM, the absence of significant outliers means that
the extremes of rmse values are lower than the result
from the default simulation. With SLAM, the calibration
of the model improves the simulation of sensible heat
(by 20%–30%), latent heat (by 9%–14%), and net ra-
diation (by 11%–15%) over using default parameters.
For simpler modes, although the minimum rmse values
simulated for each mode are an improvement over the
default, the maximum values are either equivalent to,
or worse than, the default. However, this generally is
caused either by one or two outliers at the extreme of
the Pareto front (see for example EB or RSI in Fig. 3)
or by a small fraction of the Pareto front (e.g., RSGI
in Fig. 3). The vast majority of calibrated solutions for
all modes represent a substantial improvement over sim-
ulations using the default parameters.

When default values are compared with the optimized
parameter ranges, many of the calibrated parameter val-
ues fall well outside of the range of the default parameter
range. Figure 4 shows the ranges of five key parameters
and the default value prescribed by Chen et al. (1997),
and it shows that SLAM always calibrates to a tighter
range for each parameter. This result is not related to
number of parameters being calibrated given that this
number does not vary among CHASM modes. For al-
bedo, the default value specified for the PILPS phase-
2a experiments is similar to the range predicted by the
multicriteria calibration method for each mode. In con-
trast, all modes calibrate to a higher value of ALEAFM
and a lower value of FVEGM than the default value,
although in both cases SLAM is the closest to the de-
fault. The calibrated value of Z0V is very much higher
in most modes, with the notable exception of SLAM,
which predicts a value close to the default. Overall, the
default parameter values (which are the best estimates
for the Cabauw site) are most closely approximated by
SLAM. Anomalous parameter values are obtained for
the other modes. This result suggests that the multicri-
teria method finds anomalous parameter values to com-
pensate for poor model design in the intermediate
modes, whereas in the most complex mode, with the
highest percentage of explicit and physically realistic
parameterizations, the multicriteria method does find
generally reasonable parameter values with which to
optimize model performance. Thus, a default parameter
value that is very different from the calibrated range
may indicate that the multicriteria method finds param-
eter values that minimize the total error in the system,
not just errors associated with parameter uncertainty.
Although the feasible parameter space restricts the mul-
ticriteria method from choosing values that are non-
physical (the feasible parameter space is shown in Table

2), the values derived using the multicriteria method
may not be correct because of the presence of errors in
model structure and errors in observations.

Despite this caveat, the calibrated modes of CHASM
perform much better than when using the default param-
eters. To show the improvement more clearly, Figs. 5
and 6 show two 5-day time series of sensible heat, latent
heat, and net radiation for 1–5 July and 27–31 December
for SLAM. The net radiation is simulated very well in
both December (Fig. 5) and July (Fig. 6). The default
simulations for sensible and latent heat in December
show some anomalous behavior (e.g., toward the end of
day 3), but overall the calibrated performance is slightly
better. In July, SLAM using default parameters clearly
overestimates sensible heat and underestimates latent heat
every day by about 150 W m22. The time series generated
with the parameter sets that produced the maximum and
minimum rmse values in experiment {RNET, SH, LH}
are clear improvements over the default. Both sensible
and latent heat are simulated very well in both December
and July, and the systematic errors in the simulation of
these fluxes obtained using the default parameter set are
almost completely removed. If daily modeled and ob-
served fluxes are compared for the whole of July and
January, the improvement in CHASM’s performance re-
sulting from calibration is clear. Figure 7 shows the line
of best fit (and accompanying variance r2 value for sen-
sible heat, latent heat, and net radiation). Net radiation
is simulated very well (Figs. 7a,b). In July, a significant
improvement is clear in the simulation of sensible and
latent heat from the default in terms of the trend line.
The r2 value increases from 0.88 (default) to 0.91 (cal-
ibrated) for the sensible heat (Figs. 7c,e). In January, the
r2 values are also improved by calibration for both sen-
sible and latent heat. Figure 8 shows r2 and the statistic
that describes the slope m for sensible and latent heat.
In the case of the sensible heat flux (Fig. 8a) there is a
clear improvement in the r2 values in the calibrated ex-
periments but little improvement in the slope. In July,
there is a small improvement in the r2 values, but the
slope is considerably improved in the calibrated exper-
iments. For the latent heat flux (Fig. 8b), the improvement
in January is in both the slope and the r2 values. In July,
there is no improvement in the r2 value, but the slope is
improved. Overall, calibration moves the solutions to-
ward the 1-to-1 interception point in Fig. 8, indicating
that the calibration has improved both the r2 and slope
statistics.

4. Discussion and conclusions

In this paper, we investigated the ability of the mul-
ticriteria method to estimate optimized parameters for
six CHASM modes that vary in terms of the surface
energy balance complexity. The aim of this paper was
to examine the multicriteria method using CHASM and
to explore the relationship between calibration and mod-
el complexity. In phase 2a of PILPS (Chen et al. 1997),
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FIG. 4. Calibrated ranges for five parameters for six modes of CHASM: (a) vegetation albedo, (b) maximum fractional vegetation cover,
(c) maximum leaf area index, (d) water holding capacity, and (e) vegetation roughness length. The median is in the center of the box, the
edge of the box shows the interquartile range, and the bars show the size of a single standard deviation.

errors were reported in the simulation of sensible and
latent heat by a range of models. Our hope was to use
the multicriteria method to see whether the potential
existed to use the methodology to isolate errors resulting
from the specification of parameter values given that

the effective value of parameters varies across land sur-
face schemes (Chen et al. 1997; Desborough 1999).

The results show that the multicriteria method works
in a consistent and robust manner with all six modes of
CHASM, and thus the method works with a range of
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FIG. 5. Simulation of (a) net radiation (W m22), (b) sensible heat (W m22), and (c) latent heat (W m22) for SLAM
during 27–31 Dec obtained using the maximum and minimum parameter sets from the Pareto front shown in Fig. 3
for CHASM. The dots represent observed quantities, and the gray line is the result using default parameter values. The
solid black line and dashed black line represent the simulations using the parameter sets from the extreme points of
the Pareto solution set (see Table 2).

levels of complexity. Results were shown generally to
vary relatively little as a function of complexity until
the most complex mode, SLAM, was used, which cal-
ibrated most accurately (minimizing the rmse) and most
precisely (with the shortest Pareto front). When three
criteria were used to calibrate the model ({LH, SH,
Rnet}), SLAM was shown to perform better than the
other modes. However, although the most complex

mode calibrates better than the simpler modes, all modes
show significant improvement in performance following
the calibration of parameter values in comparison with
the simulations obtained using the default parameters.
SLAM performed best but still retained some residual
error. The largest error was in evaporation, providing a
guide to where further model development should take
place. Further, many of the default parameters, provided
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FIG. 6. As in Fig. 5 but for 1–5 Jul.

by Beljaars and Bosveld (1997), fall outside the range
obtained via calibration. One example is the maximum
leaf area index (ALEAFM), specified as 2.0, for which
the best simulations actually were achieved with values
of about 3.5. This result may be a peculiarity of CHASM
or may be a problem with the observed value for this
parameter. The use of the multicriteria methodology pro-
vides a way of identifying peculiarities in the parameter
data and an avenue for further investigation. However,
it is a concern that CHASM calibrates to fairly high
values of vegetation roughness length for all modes bar
SLAM and RSGI. This result suggests that optimal per-

formance may be achieved via anomalous parameter
values that help to compensate for poor model design.
This issue needs to be investigated further with a wide
range of meteorological forcing data, a variety of surface
vegetation types, and examination of the results against
data not used in calibration.

One of the key reasons for pursuing this research was
the wish to identify the cause of the scatter generally
found in the PILPS results (e.g., phase 2a, Chen et al.
1997). Errors in the observations, in the model param-
eterization, and in the parameter values specified for the
model can all contribute to the scatter identified by
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FIG. 7. Lines of best fit for time-step data for (a) net radiation, (c) sensible heat, and (e) and latent heat for Jul. (b),
(d), (f ). The same, respectively, for Jan. The gray line is for the simulation using the default parameters, and the solid
black line and dashed black line represent the simulations using the parameter sets from the extreme points of the
Pareto solution set (see Table 2). The r2 values are given for each simulation.

PILPS. Figure 4 shows that the effective parameter val-
ues that maximize the performance of a land surface
scheme vary according to the nature of the scheme and
that forcing all schemes to use the same parameter data
will have different implications for different models.

The multicriteria methodology provides a means to re-
move differences resulting from the specification of pa-
rameter values. Allowing all schemes to calibrate to the
same data, in an objective way, should maximize the
schemes’ performance. Because the same observational
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FIG. 8. Values for r2 and for the slope m for (a) sensible heat flux and (b) latent heat flux. The gray symbols are for Jan, and the black
symbols are for Jul for the minimum (n) and maximum (v) solutions from the three-calibration experiment and the default experiment (3).

data would be used for each land surface scheme, a
comparison of residual errors among a range of models
would permit the identification of the relative merits of
the schemes, independent of implications resulting from
choices of parameter values. According to the results of
this paper, climate models should include a parameter-
ization of the surface energy balance that is relatively
complex. Intermediate levels of complexity, such as
adding canopy resistance to a Manabe-type parameter-
ization with a constant surface resistance, would not
appear to be effective. This conclusion needs to be ex-
plored with a large range of climate-forcing datasets. It
is hoped that such an exploration will lead to specific
guidance on how to improve land surface models.

The results reported in this paper were derived using
point-based data and are not easily extrapolated into the
climate-model environment. However, Sen et al. (2001)
have explored the impact of calibrating a model in the
same way as reported here and then using the calibrated
parameters within a climate model. They found that
point-based calibration can be used to derive parameters
that then can be used in a climate model to improve the
simulated climate. Our results, which show that cali-
bration improves all modes of CHASM, suggest that we
would find improvements in the simulated climate if we
used calibration-derived parameter datasets.

In conclusion, an exploration of the multicriteria
method with CHASM opens up a range of useful di-
rections for exploring the performance of land surface
schemes without the difficulty of choosing parameter
values in ways that do not bias results to one particular
model (i.e., the effective parameter dataset that best suits
one model disadvantages another in any objective in-
tercomparison exercise). The methodology can also pro-
vide a means to examine the large differences apparent

in PILPS and other land surface intercomparison results,
and we hope to examine this area in the future.
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