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[1] The performance of five modes of a land surface model, the Chameleon Surface
Model (CHASM), was investigated after calibration via the multicriteria method to
monthly totals of evaporation and runoff from the Valdai data set. The use of CHASM
allows for an exploration into the relationship between surface energy balance complexity
and optimal performance by isolating the impacts of different parameterizations of the
surface energy balance. When compared to quantities used within the calibration process,
CHASM’s performance was significantly increased with calibration over default
simulations regardless of calibration length or mode complexity. Within the calibration
period, CHASM’s performance increased with increasing complexity in the representation
of the surface energy balance. Outside the calibration period there was little improvement
to simulations from additional complexity in the surface energy balance representation
above the simplest mode. Calibration is shown to reduce the scatter between modes
suggesting that some of the differences between models in PILPS Phase 2d may be
explained by the specification of parameter values. For simulations of quantities not used
in calibration, performance can be reduced as a result of calibration. This implies that
evaporation and runoff may not be the best quantities for calibration in order to improve
model performance. It is suggested that the best quantities to calibrate may be mode and
model specific. INDEX TERMS: 3322 Meteorology and Atmospheric Dynamics: Land/atmosphere

interactions; 1878 Hydrology: Water/energy interactions; 1818 Hydrology: Evapotranspiration; KEYWORDS:

land surface, complexity, calibration, PILPS, multicriteria
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1. Introduction

[2] The development of land surface models (LSMs) over
the last thirty years has seen a tendency to add complexity
through the replacement of implicit representations of
processes [e.g., Manabe, 1969] with more explicit method-
ologies [e.g., Deardorff, 1978; Sellers et al.,1996]. Adding
complexity to a LSM may improve performance but
whether this comes from more physically realistic parame-
terizations or from changes in the effective values of
parameters is unclear. Desborough [1999] developed a
framework which enabled a single LSM to be used in a
variety of configurations to explore the relationship between
model performance and the complexity of the surface
energy balance (SEB) parameterizations. He used this

framework to investigate whether increasing the complexity
of the SEB parameterization improved LSM performance.
[3] LSM performance can be related to both the parameter-

izations and the parameter values used within a model. It is
therefore necessary to remove variations in the effective
values of parameters, between models, such that parameters
are effectively identical and have the same physical meaning.
This cannot be achieved just by using numerically identical
parameters. The Chameleon Surface Model (CHASM) pro-
vides a modeling framework whereby step-wise changes to
the SEB complexity can be explored within a common
modeling environment without changing the effective values
of the parameters [Desborough, 1999]. However, CHASM
uses prescribed parameter values from measurements or
other estimates which can lead to erroneous conclusions as
to the superiority of one LSM over another [Bastidas et al.,
1999] since any parameter value may be more suited to one
modeling approach over another. Bastidas et al. [1999]
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suggested that a comparison of the optimal performances of a
model through objective calibration is the preferred method
to base conclusions. There are several objective techniques
available to select and adjust the parameters in LSMs [e.g.,
Sellers et al., 1989; Franks and Beven, 1997]. Recently,
parameter estimation using multicriteria methods (MCM)
[Gupta et al., 1998] and in particular the multiobjective
complex evolution algorithm [Yapo et al., 1998] have been
shown to provide an effective way to reduce the errors
associated with parameter uncertainty by calibrating a LSM
to several quantities simultaneously, thus enabling a LSM to
achieve optimal performance [Gupta et al., 1999].
[4] The purpose of this paper is to explore the relation-

ship between the complexity of the SEB representation and
model performance. By calibrating each mode of CHASM,
the best performance at each level of complexity can be
achieved. This permits conclusions to be reached regarding
the relationship between model SEB complexity and per-
formance. A secondary aim is to estimate the amount of
scatter in default simulations which may be attributed to the
effective value of parameters. This would provide a step
towards reducing scatter in PILPS-like land surface model
intercomparison exercises.

2. Chameleon Surface Model (CHASM)

[5] CHASM was designed to explore the impact of SEB
complexity on model behavior [Desborough, 1999]. The

model utilizes the same parameterizations and parameters
(Table 1) for most of the components of the model over a
wide complexity range in the SEB configuration. CHASM’s
SEB configurations range from a simple homogenous sur-
face (as in the Manabe [1969] bucket) to a complex
Deardorff [1978] type structure with separate energy balan-
ces for each mosaic tile [e.g., Koster and Suarez, 1992] and
explicit treatment of transpiration, canopy interception and
bare ground evaporation. To resolve the SEB, CHASM
combines similar elements throughout a grid square to form
tiles (called a ‘‘grouped mosaic approach’’ [e.g., Koster and
Suarez, 1992]). Each tile is divided into fractions of vege-
tation, snow and ground. Snow cover fractions for ground
and foliage surfaces are calculated as functions of the snow
pack depth and density and the vegetation roughness length.
The vegetation fraction is divided into wet and dry fractions
if the SEB mode allows for canopy interception. Each tile
has a prognostic bulk temperature and a diagnostic skin
temperature. Parameters are included for albedo and rough-
ness length for each type of cover and seasonality parameters
for leaf area index and vegetation fraction.
[6] CHASM’s hydrology follows Manabe [1969] in that

the root zone is treated as a bucket with finite water holding
capacity and beyond this capacity runoff occurs. Water can
also be stored as snow or depending on the mode, on the
canopy following interception or on the surface for bare
ground evaporation. The use of a simple hydrology model
has been shown to work well in midlatitude regions [Robock
et al., 1995]. Soil temperature is simulated using four layers
using a finite difference method and a zero-flux boundary
condition at the base of the profile. Each tile, depending on
the mode, can have up to four evaporation sources for canopy
evaporation, transpiration, bare ground evaporation and
snow sublimation. Again depending on the mode, resistances
may be applied to reduce evaporation and transpiration rates.
[7] Table 2 lists the different modes of CHASM used in

this study in increasing order of complexity, and Figure 1
shows resistance diagrams for each mode. EB, the simplest
mode of CHASM, is constructed from one tile. The aero-
dynamic resistance to turbulent transport for heat and

Table 1. Description of Those Parameters Calibrated in CHASM

With Their Maximum Feasible Rangesa

Calibrated Parameter Descriptions

Model Parameters Feasible Parameter Range

Bare ground albedo 0.05–0.45
Snow albedo 0.4–0.95
Vegetation albedo 0.16–0.26
LAI seasonality parameter 3–5
Maximum LAI 0–5
Maximum fractional vegetation cover 0.6–0.95
Fractional vegetation cover seasonality 0–0.95
Canopy resistance (s/m) 0–250
Snow density (kg/m3) 50–450
Available water holding capacity (kg/m3) 100–300
Soil color index 0–3
Bare ground roughness length (m) 0.0003–0.01
Snow surface roughness length (m) 0.0001–0.0007
Vegetation roughness length (m) 0.08–0.06
Model state variables

Aerodynamic surface temperature (K) 260–300
Snow mass (kg/m3) 20–165
Available moisture in root zone (kg/m2) 35–235
aThe state variables are included here since they are included in the

calibration to avoid initialization problems [following Gupta et al., 1999].

Table 2. Summary of the Features Which Identify Each of the

Different SEB Configurations (Surface Modes) of CHASM

Surface
Mode

Stability
Correction

Surface
Resistance

Canopy
Interception

Bare Ground
Evaporation

Temperature
Differentiation

EB - - - - -
RS B B - - -
RSI B B B - -
RSGI B B B B -
SLAM B B B B B

Figure 1. (opposite) Illustration of CHASM’s modes. (a) mode EB with two evaporation sources: from the vegetation and
soil (Etr) and from the snow (En) and two moisture storage terms: root zone (Wr) and snow (Wn) (b) the RS-mode. Where
the aerodynamic resistance (ra) is calculated with an atmospheric stability constant (r a* is calculated without stability
correction) and canopy resistance (rs) is added to the resistance pathway of Etr; (c) RSI which includes canopy interception
(Wc). RSI has three evaporation sources, Etr, evaporation of intercepted water (Ec) and En, and three moisture storage terms
Wr, Wc and Wn; (d) RSGI which includes a bare ground parameterization, an extra soil moisture storage term (Wg) and an
extra evaporative source from the soil (Eg); and (e) SLAM which includes two tiles with separate SEBs plus a variable
canopy resistance (rc), which is applied to the evaporation pathway, Etr. Other terms include air density (ra), A

t which is the
area extent of the tile, awet is the fraction of the canopy that is wet. q* is the saturated vapor pressure of the surface, qs is the
vapor pressure of the air, ag is the fraction of soil, an is the fraction of snow and av is the vegetation fraction.
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moisture is calculated without atmospheric stability correc-
tion. Moisture available for evaporation is stored in the root
zone and on the surface as snow resulting in two evapo-
ration sources to which the aerodynamic resistance is
applied. The RS mode is the same as EB but with a
temporally invariant surface resistance added to the resist-
ance pathway of snow-free evaporation. The aerodynamic
resistance is calculated with an atmospheric stability cor-
rection. The RSI mode is the same as RS but with explicit
parameterizations for canopy interception of precipitation.
This results in three evaporation sources since water can
evaporate from the canopy store. The canopy is further
divided into fractions of wet and dry areas, depending on
the precipitation and evaporation rates. The RSGI-mode
builds onto the RSI mode through the addition of bare
ground evaporation. Moisture can be stored at the surface
for evaporation and bare ground evaporation is affected by
moisture availability. SLAM builds on RSGI by including a
time variable canopy resistance which replaces the tempo-
rally invariant surface resistance. The land atmosphere
interface is divided into two tiles with the first representing
a combination of bare ground and exposed snow and the
other reserved for vegetation. The tiles are not necessarily
the same size and are area-weighted depending on the
individual fractions of the surface type. A separate SEB is
calculated for each tile which allows for temperature varia-
tions across the land atmosphere interface.
[8] Overall, CHASM has proven useful for explaining

some of the results obtained by PILPS [e.g., Desborough,
1999] by identifying the role of differences in effective
parameters in explaining interscheme variations. This is
due to maintaining a common modeling environment by
ensuring that most parameters retain the same effective
value when switching between modes. Further, the number
of parameters being calibrated in each mode of CHASM
does not vary. These factors allow the effect of increasing
the complexity of the SEB configuration on model per-
formance to be explored by sequentially adding explicit
parameterizations.

3. Forcing and Calibration Data Sets

[9] The observational data from Valdai (57.6�N, 33.1�E)
have been used to explore land surface processes before
[e.g., Robock et al., 1995; Vinnikov et al., 1996; Schlosser et
al., 1997, 2000] (PILPS Phase 2d). The data span 18 years,
permitting an examination of seasonal and interannual
model performance. The vegetation cover is mainly grass-
land meadow. Near surface air temperatures rise above 15�C
in summer and fall below �10�C in winter providing almost
continuous snow cover between November and April. The
majority of precipitation falls in the summer and autumn
months with an annual average of 730 mm.
[10] The atmospheric data were measured at a grassland

plot [Schlosser et al., 1997]. Atmospheric pressure, air
temperature and humidity were recorded at a height of 2
m and wind speed at a height of 10 m. Shortwave radiation
and longwave radiation were derived following Schlosser et
al. [1997].
[11] Soil moisture samples were taken from 14 represen-

tative sites close to the end of each month. Soil moisture
was calculated using the thermostat-weight (gravimetric)

technique described by Robock et al. [1995]. The errors in
soil moisture measurements in the top 1 m of soil are less
than 1 cm and the seasonal variations of total soil moisture
in the top 1 m between the 14 sites are very small [Vinnikov
et al., 1996]. Following Schlosser et al. [1997] the soil
moisture from 11 of the sites were averaged.
[12] Schlosser et al. [1997] suggests that a high degree of

confidence can be placed on the runoff measurements
obtained in the warmer months. However, when the stream
is frozen in winter or when the stream overflows in spring-
time the runoff measurements are less accurate. Modifica-
tions to the observed runoff were made by Schlosser et al.
[1997] according to variations in the observed averaged
water table depth.
[13] Monthly measurements of evaporation from the

catchment were described by Federov [1977] during May
to October using weighing lysimeters (1960–1973). Esti-
mations of evaporation for the remaining months (Novem-
ber to April) were calculated using the Budyko [1956]
algorithm for potential evaporation. Schlosser et al. [1997]
compared the monthly evaporation calculated from the
residual of the water balance from the top 1 m of soil with
the lysimeter measurements and found that their seasonal
cycles were in good agreement.

4. Multicriteria Calibration Methodology

[14] Relatively little work in land surface modeling has
focused on the errors caused by parameter uncertainty
despite the common use of calibration in hydrology where
accuracy and forecasting skill is important. The multicriteria
calibration methodology was developed by Gupta et al.
[1998] from a single-criteria method [Duan et al., 1994].
Gupta et al. [1998] have used the multicriterial method-
ology to estimate reasonable ranges of optimal parameters
for the BATS LSM.
[15] The first step in using the multicriteria calibration

methodology is to define the feasible parameter range for
each parameter to be calibrated (see Table 1 for a list of
parameters calibrated). This range, the feasible parameter
space, is then sampled. The distance between model results
and observations (the model output residual) is then calcu-
lated using one or more objective functions. The objective
function is generally derived from maximum likelihood or
Bayesian theory to measure a specific statistical character-
istic of the output residual [Gupta et al., 1998]. Since model
calibration is a multiobjective problem it is unlikely that any
single objective function is best suited for model calibration
hence the multicriteria calibration methodology allows for
several objective functions to be used to measure different
statistical properties of the output residual.
[16] Once the feasible parameter space (Table 1) has been

sampled, the multicriteria calibration methodology selects a
set of parameter values which, based on the shape of the
objective function space from the previous step, minimizes
each of the objectives and therefore reduces the error (model
output residual). The methodology terminates when the
process has converged to a ‘‘Pareto set’’ or ‘‘solution set’’.
A Pareto set contains a prespecified number of parameter
sets where each parameter set gives solutions that are better
than all others for at least one of the objectives. Thus, no
parameter set is better than another for all of the objectives,
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and within the Pareto set every parameter set is considered
equal in a multiobjective sense. Due to measurement and
modeling errors the Pareto set consists of several solutions.
The Pareto set obtained using the multicriteria calibration
methodology has been shown to be a good representation of
the Pareto Set, even though not every Pareto solution is
computed [Yapo et al., 1998]. The methodology also finds
compromise solutions because multiple objectives are con-
sidered simultaneously in the derivation of the Pareto set.
Although moving away from a parameter set that contains a
local minimum for one of the objectives, worsens that
objective it subsequently finds parameter sets that improve
the other objectives. Other single objective calibration pro-
cedures find parameter sets that minimize each objective
function, but because the optimization runs are performed
separately there is no guidance to the position of these
compromise parameter sets.

5. Experimental Methodology

[17] Each of the five modes of CHASM were calibrated
to monthly totals of evaporation and runoff. Calibrating to
an observational frequency (e.g. monthly totals) that differs
from forcing data frequency (e.g. 30-minutes) had not been
attempted before, but proved to be possible. Since there are
no observations for the parameters required by CHASM, all
14 parameters values were derived via the MC method, as
well as initial values of the 3 state variables listed in Table 1.
The initial boundaries for each parameter (the feasible
parameter space) were chosen from the literature. Calibra-
tion lengths one to eight years using data over the period
1966–1973 (i.e. 1966, 1966–67, 1966–68,. . . . ., 1966–73
and 1967–73, 1968–73, 1969–73,. . . . ., 1972–73, 1973)
were conducted as well as the remaining single years: 1967,
1968, 1969, 1970, 1971, 1972. No spin-up period was used
for the calibration runs whereas for default simulations,
each mode was allowed to equilibrate. The conclusions
were found to be insensitive to the use of three different
objective functions (e.g. Root Mean Squared Error (RMSE),
mean absolute error and Nash-Sutcliffe error [Gupta et al.,
1998]) and so only the results from using RMSE are
reported in this paper. The results were also examined using
six different initial sampling points (the first step in the MC-
method) and different termination points (i.e. the number of
solutions in the Pareto set was varied from 150 to 1000) and
results were found to be insensitive.

6. Results

[18] The performance of an LSM should be assessed
against quantities used within the calibration period, both
within and outside the calibration period as well as against
quantities not used in calibration. This section is therefore
divided into three parts: first, simulations of runoff and
evaporation over the calibration period; secondly simula-
tions of evaporation and runoff outside the calibration period
and finally simulations of soil moisture and sensible heat.

6.1. Simulations of Runoff and Evaporation Over
the Calibration Period

[19] Figure 2 shows the Pareto fronts for five modes of
CHASM. They are formed by plotting the RMSE for both

objective functions using each of the 150 different param-
eter sets that form the Pareto set using CHASM over the full
8-years of the observational record. The corresponding
simulations for evaporation RMSE and runoff RMSE for
each parameter set then forms the Pareto front. Figure 2 also
shows the single solution generated by each mode of
CHASM using the default parameter set (which is the best
estimate of the model parameters available). Figure 2 shows
three key findings. First, in all cases the calibration of
CHASM leads to a large number of solutions which are
superior in both the simulation of runoff and evaporation
compared to the default solution. Some of the tails of the
Pareto front have a worse RMSE for runoff than the default
solution, but these are a minority of solutions and the RMSE
for evaporation is almost always superior to the default
simulation. This demonstrates that calibration of each mode
of CHASM improves default model performance when
compared to quantities within the calibration period.
[20] A second result shown in Figure 2 is that the perform-

ance of more complex modes of CHASM is superior to more
simple modes. This is true in the case of default parameters
as well as calibrated parameters. The position of the Pareto
fronts are sequential in terms of mode complexity with
SLAM performing best and EB performing worst. It is
noteworthy, however, that the length of the Pareto front in
the increasing runoff RMSE direction is large for the
intermediate modes. Desborough [1999] found that these
modes were sensitive to small changes to the constant
surface resistance parameter which is unique to these modes.
Therefore small changes in parameters via calibration may
give these model structures too many degrees of freedom
which results in small improvements to evaporation at the
expense of a large degradation to runoff simulations. EB and
SLAM, which do not include the constant surface resistance
are therefore less likely to produce anomalous runoff simu-
lations. In the calibrated simulations, there is a greater
improvement in the simulations of evaporation compared
to runoff as complexity is added. This is due to changes in

Figure 2. The Pareto fronts for all five modes obtained
from calibration using the multicriteria method over the full
8 years of observational record. SLAM = cross, RSGI =
circle, RSI = star, RS = triangle, EB = square. Default
simulations have the same but larger symbol.
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the SEB configuration between modes while the subsurface
hydrology parameterizations remains constant.
[21] A third result is that after calibration there are fewer

differences between the modes in terms of performance
compared to the default simulations. This result suggests
that some of the scatter found in PILPS may be explained
by the specification of parameter values rather than differ-

ences in model structure. While the exact values of param-
eters were specified in PILPS, our results imply that the
effective values of these parameter varied significantly
across models.
[22] Figure 3 shows the equivalent figures to Figure 2, but

rather than calibrated against the full eight years of the
observed record, are calibrated separately against 1, 2, 3 . . .

Figure 3. Same as Figure 2 except the calibration length is varied from 1 to 8 years. Only lengths 1, 2,
3, 4, 5 and 8 are shown.
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8 years of the record. Figure 3 shows that calibrating against
a variety of data lengths produces the same key result that
the more complex the mode of CHASM, the better the
eventual solution. There are differences between the results,
but SLAM is always superior to the less complex modes
and EB is usually the worse. This is not a function of more
calibrated parameters in the more complex modes (the
number of parameters is invariant across modes), rather it
is due to the inclusion of the more explicit representation of
processes.

6.2. Simulations of Runoff Outside the
Calibration Periods

[23] For simulations outside the calibration period a repre-
sentative parameter set from each Pareto set was selected, In
selecting this parameter set, a compromise was made
between the two objectives i.e. for the intermediate modes
in Figures 3 and 4, a representative parameter set was not
chosen halfway up the long Pareto tails in the increasing
runoff RMSE direction, as these parameter sets only offer
marginal decreases of evaporation RMSE at the expense of
large degradations of runoff RMSE. Our choice of a
parameter set was subjective but a modeler would clearly

never choose extremes from the Pareto front. The same
method was applied to all calibration lengths across all
modes and represents each calibrated mode’s behavior.
[24] The performance of an LSM also needs to be

assessed using runoff data from periods to which the model
has not been calibrated. Figure 4 shows the 10 year average
RMSE for runoff for each mode of CHASM and for each
period of calibration for calibrated and default simulations.
In the case of runoff, to which CHASM was calibrated in
the preceding eight years, the calibrated solutions are
superior to the default solutions in all cases except the three
year calibration using the RSGI mode. Calibrating each
mode leads to significant reductions in both the RMSE, and
the interannual error (as shown by the error bars). Even
calibrating against one year of runoff data leads to signifi-
cantly improved performance of CHASM when compared
to observed data a decade later (note all single years 1967–
1973 (not shown) produced the same result). This improve-
ment in model performance is both in the ten year average
and in the standard deviation based on each of the ten year
annual averages of monthly observations. This indicates that
calibration of the modes of CHASM leads to superior
performance in the simulation of runoff during periods to

Figure 4. Ten-year annual averages for runoff RMSE (mm/month) outside the calibration period
(1974–1983). Simulations for calibration lengths 1–8 years and the default are shown. The error bars
represent standard deviations calculated from annual totals.
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which the model was not calibrated, even if only one year of
calibration data are available. SLAM generally performs
marginally better than the other models with RMSE values
of approximately 18 mm month�1 while the other modes
perform similarly to each other with RMSEs of approxi-
mately 20 mm month�1. This suggests that after calibration,
performance is improved only if a very complex SEB
configuration is used (e.g. SLAM). The additional complex-
ity levels of the intermediate modes do not lead to signifi-
cantly better performance than EB.
[25] Figure 5 shows the improvement in the simulation of

monthly runoff following calibration of the five modes of
CHASM. The open circles (filled circles) show monthly
runoff over the ten year period from the default (calibrated)
simulations. The scatter is clearly reduced following cali-
bration for all modes. The regression line (Figure 5) is
improved following calibration and the bias in these cali-
brated simulations is very small. The overall statistics for
each simulation are shown for the ten-year average of
simulated runoff in Figure 6. Results for the simulation of
runoff outside of the calibration period following calibration
against 1, 2, 5 and 8 years are shown. Figure 6 shows that
the correlation coefficient (R) and slope of the line (m) are
reduced over the 10-year period following a single year of
calibration. This improvement is more pronounced if longer

periods of calibration are used, although calibrating against
2 years of data leads to marginally better performance than
5 years of calibration. The best performance is achieved
following 8 years of calibration. This result is most likely
site and climate specific and is affected by the nature of the
atmospheric forcing used for individual simulations. In
choosing atmospheric forcing, it is beneficial to use years
which contain significant interannual variability.

6.3. Simulations of Soil Moisture and Sensible Heat

[26] CHASM was not calibrated to soil moisture at any
time (although the water holding capacity was calibrated).
If the model is calibrated to evaporation and runoff over
the first eight years of the observational record, Figure 7
shows that the performance in the simulation of soil
moisture in all three intermediate models (RS, RSI, RSGI)
is worse than the default results. The default version of
these modes performs reasonably and is only matched by
calibrating against 7 or 8 years of data using RSGI mode
or 4 years of data in the RSI mode. In contrast, experi-
ments using SLAM produce simulations of soil moisture
which are comparable with the default mode almost all
cases, and using EB, the calibrated results are superior to
the default results provided this mode is calibrated for
more than one year. The error bars which represent the

Figure 5. Monthly totals of simulated runoff (8-year calibration) against observations. Each mode
simulation includes the regression line for both calibrated (black) and default (grey) simulations.
Calibrated mode values are shown as black dots while default values are unfilled circles.
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standard deviation based on each of the ten year annual
averages of monthly observations are improved in the EB
mode more than in the other models. This might suggest
that calibrating this simple mode adds value in both the
mean and variability, however this gain may be at the
expense of a poor simulation of quantities not used in
calibration (see Discussion).

[27] Figure 8 shows the 18-year averages for sensible heat
and evaporation (converted to latent heat) fluxes for all
modes (calibrated and default). Unfortunately there are no
observational data available for sensible heat but the range
simulated by the calibrated modes (9–29 W m�2) is much
larger compared to the range simulated by the default modes
(24–29 W m�2). Sensible heat simulated by EB were
approximately 2.5 times less than its default version and
half the averages simulated by the calibrated SLAM mode.
Thus, although the calibrated versions of EB and SLAM
have performed similarly for runoff, evaporation and soil
moisture, their simulations vary significantly for the 18-year
average of sensible heat fluxes. This result casts some
doubts to the effectiveness of calibrating CHASM to just
one aspect of the land surface such as the hydrological
quantities, runoff and evaporation. Gupta et al. [1999]
found a similar result using BATS for grassland and semi-
arid sites. They found that overall performance was only
increased after calibrating to the dominant heat flux and an
appropriate state variable.

7. Discussion

[28] This paper has used five modes of CHASM to assess
the model’s calibrated and noncalibrated performance using
observed data from Valdai. The most significant result is
that additional complexity in the SEB representation
appears to improve model performance and lead to better
validation within the calibration period. SLAM, when
calibrated, always performs best of the five modes within
the calibration period and the simplest mode (EB) performs

Figure 6. Correlation coefficients (R) and the correspond-
ing slopes for the regression line (m) calculated from
monthly totals of simulated runoff and monthly runoff totals
from observations for the 1-year, 2-year, 5-year and 8-year
calibration periods. Default simulations are grey, calibrated
simulations are black. SLAM = X, RSGI = circle, RSI = star,
RS = triangle and EB = square. A perfect match to
observations is represented by the intersection of the two
dashed lines (i.e. at the point (1,1)), where the horizontal
(vertical) dashed line represents a perfect R-value (m-value).

Figure 7. Ten-year annual averages for soil moisture
RMSE (mm/month) outside the calibration period (1974–
1983). Simulations for calibration lengths 1–8 years and the
default are shown. The error bars represent standard
deviations calculated from annual totals. The maximum
water holding capacity is calibrated and ranged from 150–
300 km m�2.

Figure 8. The 18-year averages of simulated sensible heat
and latent heat fluxes. Observations for latent heat fluxes are
indicated by the dashed line [from Schlosser et al., 2000].
Square-EB, triangle-RS, asterix-RSI, circle-RSGI and cross-
SLAM. The small symbols represent the default modes
while the larger symbols represent the calibrated modes.
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worst. This is not related to the number of parameters being
calibrated which do not vary between modes. In all cases,
calibration improves model performance over estimated
parameter values when compared to variables used in the
calibration.
[29] When assessing the predictive skill of each mode

against runoff data outside the calibration period, all modes
generally out-performed their default modes regardless of
the length of the calibration period. However, there was no
advantage in performance by increasing the SEB complex-
ity from the simplest structure (EB) unless the most com-
plex structure (SLAM) was used. In addition, SLAM was
only marginally superior compared with the other modes
suggesting that there is little advantage to increasing com-
plexity in the representation of the SEB in LSMs (at least
for the simulations of water balance terms at this midlatitude
grassland site), if the model is to be used in a predictive
mode.
[30] We have shown that increasing SEB complexity

leads to some improvement in calibration, however, there
may be other factors that enable a model to calibrate close to
observations. According to Gupta et al. [1998], the total
error in the system, as represented by the distance between
the model output and observations, is equal to the aggre-
gation of model error, measurement error and parameter
uncertainty. If measurement error is ignored for simplifica-
tion, the total error can be represented by Figure 9. Using

the multicriteria method, parameters are derived to reduce
the total error. The degree to which total error is reduced
via the choice of parameter values will depend on how
sensitive the modes are to small changes in parameter
values and to the relative size of the model error compared
to the model output residual. If the relative size of model
error is large compared to parameter uncertainty, then
parameter values are derived based on inefficiencies in
model structure rather than only parameter uncertainty and
may lead to the derivation of inaccurate parameter values. A
combination of these factors may lead to a good perform-
ance to the quantities calibrated to but may decrease
performance when simulating quantities not used in cali-
bration (e.g. soil moisture and sensible heat).
[31] The poor performance by the intermediate modes of

CHASM for soil moisture simulations and the erratic
simulations of sensible heat across all the modes after
calibration may be explained by the combination of these
two factors. It may highlight a problem with calibrating to
one component of the land surface, and indicates that a
range of observed quantities may be needed to improve
overall performance. Figures 10 and 11 show a see-saw
analogy where the size of the fulcrum represents the model
output residual. To improve overall model performance via
calibration, the parameter error must be isolated in the
calibration process so that the beam lowers evenly as the
part of the fulcrum representing parameter uncertainty is
reduced. In reality it is impossible to isolate parameter
uncertainty completely so it is necessary to calibrate to
quantities that effectively lowers the beam evenly. This may
have been achieved with the calibration to runoff and
evaporation for SLAM as shown in Figure 10. However
for the other modes, calibrating to these quantities may have
unevenly lowered the beam (through derivation of inaccu-
rate parameter values) (Figure 11).
[32] To improve the overall performance of a mode after

calibration with the multicriteria method, the land surface
quantities either side of the fulcrum in Figures 10 and 11
need to be identified and used in the calibration process.
This will lead to the derivation of realistic parameter values
and therefore minimize poorer simulations of quantities not
calibrated to. However there are complications in exploring
this issue. From these results, the observational quantities

Figure 9. Hypothetical case illustrating the contributions
from parameter value error and model error that create the
model output residual or total error for runoff, which is
the distance between the model simulation (circle/cross) and
the runoff observation (circle). The relative range of the
runoff simulation due to changes to parameter values from
the feasible parameter space is also shown.

Figure 10. Analogy of multicriteria calibration problem
before calibration.

Figure 11. Analogy of multicriteria calibration problem
after calibration where the total error is reduced for
evaporation and runoff while the parameter error increases
for soil moisture and sensible heat.
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needed may be model and location specific and many
observational quantities may be needed to identify the best
ones for calibration. This may place an unrealistic require-
ment of observational data sets. However, Sen et al. [2001]
indicate that local scale calibration appears to improve the
simulation of the global scale climate hence there is some
evidence that gains are to be found by using calibration.
[33] Since large model error is more likely to cause the

derivation of unrealistic parameter values (Figures 9, 10 and
11) and subsequently cause inferior simulations for quanti-
ties not used in the calibration process, the choice of a
model with small model error is preferable. The degree to
which the simulations for quantities not used in the cali-
bration process, such as sensible heat or soil moisture, are
worsened by calibration may indicate the size of model
error. Based on this hypothesis, SLAM performed most
consistently after calibration to runoff and evaporation as
the simulations of soil moisture and sensible heat remained
similar to the default simulations. This is an indication that
SLAM has the least model error and therefore implies that
more complex SEB parameterizations perform better overall
compared to simpler methods. To make any conclusions to
the relationship between complexity and performance for
the other modes would need rigorous assessment against
sensible heat observations and other land surface quantities
not available at Valdai.

8. Conclusions

[34] The multicriteria method has provided an efficient
means to minimize the model output residuals of evapo-
ration and runoff through an objective selection of param-
eter values. It has worked well with each of the modes of
CHASM and has worked well against monthly data for
various calibration lengths from one to eight years. The
multicriteria method can be applied to other LSMs and to
different data sets that vary in length and resolution, and
could be used in future intercomparison work (e.g. PILPS)
for isolating differences resulting from parameterizations by
removing differences resulting from parameter values. Such
an approach would need to be followed in parallel with
noncalibrated intercomparisons.
[35] The results presented are based on the application of

the multicriteria method using quantities which are not ideal
(according to Gupta et al. [1999]) to properly constrain the
models. However, calibrating to these quantities provided a
useful insight to the relationship between model error and
complexity. Our key conclusions are as follows:
1. Calibration significantly improves model performance

over default simulations for quantities used in the calibra-
tion process, regardless of the mode or calibration length
(for calibration lengths one to eight years).
2. Over the calibration period and for quantities used in

the calibration process, performance is better with increas-
ing SEB complexity.
3. Calibration significantly reduces the scatter between

the simulations from the modes of CHASM after calibra-
tion. We infer from this that much of the scatter between the
PILPS Phase 2d models could be explained by the
specification of parameter values.
4. For quantities used in the calibration and based on 10-

year averages outside the calibration period, the most

complex mode performs best, but is only slightly better than
the simpler modes. This suggests that there is little
improvement to simulations from additional complexity
above the simplest mode.
5. Improvements in model performance via calibration

depend on small model error and calibrating to quantities
that properly constrain a model. Identifying these quantities
may be model specific. If so, a more complex model such as
SLAM is more likely to perform well overall regardless of
the quantities used in the calibration process.
[36] Thus, in summary the multicriteria method proved

useful in investigating the relationship between model
performance and model complexity. Any calibration leads
to superior model performance in comparison to no cali-
bration. We do not advocate the replacement of noncali-
brated intercomparison exercises with the approach followed
here. Rather we suggest that the use of calibration to
minimize the impact of variations in the effective parameter
values may, if used in conjunction with noncalibrated
intercomparisons, aid the identification of relationships
between choices of physical parameterizations and model
performance.
[37] Overall, we find that complexity improves model

performance during the calibration period. However, in the
absence of more observed data, which properly constrain
the model during calibration, our results suggest that addi-
tional SEB complexity adds little value in predicting the
future values of quantities not used in the calibration
process.
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