Future Freight Railroad Control Systems: What Will They Look Like?

National Transportation Safety Board Positive Train Control Seminar

Randolph R. Resor

Vice President, Costing \& Economic Analysis ZETA-TECH Associates, Inc.

March 3, 2005

Current Freight Railroad Train Control Technologies are "Mature"

- Timetable and train order
- Timetable and train order operation first used by railroads in the early 19th Century
- Transmission of movement authorities by voice radio, with the same functionality, replaced written train orders in the 1980s
- Automatic Block Signals
- First installed in New Jersey in 1893
- Provides broken rail protection, train separation
- "Centralized Traffic Control" or "Traffic Control System"
- Current "state of the art" train control system
- First deployed on Toledo \& Ohio Central Railroad in 1927

But if it's not broke...

- Current control systems are managing to handle record rail traffic levels
- Control-system-related accidents are at low levels
- Technical problems such as "false clear" signals are rare
- As far as railroad train control is concerned, then, why should the future look different from the past?

Reasons for Looking for a New Technology

- Current control systems must be replaced as they wear out.
- IF NOT NOW, then WHEN is it sensible to look for better technology instead of replacing in kind?
- GPS and wireless networking, which could form the basis of a better control system, have been widely applied in other transportation modes...why not rail?

Limited Trials of New Technology are Under Way...

- BNSF "ETMS" (Enhanced Train Management System) in southern Illinois
- CSX "CBTM" (Communications Based Train Management) in South Carolina
- North American Joint PTC Project in Illinois
- CBTC (Communications Based Train Control) on MTA New York City Transit
...But (Except for New York) the Level of Expenditures is Small Compared to Spending on Conventional Systems
- Total spending on the Illinois project has been about $\$ 100$ million over 10 years... about half from the railroad industry, the rest from FRA
- The two other freight railroad pilot projects have involved much smaller dollar amounts so far

In contrast...

The Class I railroads have spent an average of $\$ 564$ million annually over the last five years on C\&S capital investment

C\&S Capital Spending, Class I Railroads

 1999-- 2003

\square Signals (000)
\square Commun. (000)

Source: STB

Route Mileage by Signal Control Type*

CTC \square ABS \square Cab \square Dark

*Data from Volpe Rail Network, VNTSC. Volpe Rail Network describes the U.S.
Class I network as of 1996. The network contains 133,000 route miles, of which 65,000 are equipped with some type of signal control.

Estimated Replacement Cost of Current Control System

- A recent Railway Age article ("C\&S Buyers' Guide") cited a cost of $\$ 140,000$ per mile for new CTC (including grade crossing protection)
- At these costs, replacement of the signal equipment on the existing 65,000 miles of signaled track with modern CTC equipment would cost more than $\$ 9$ billion.

Railroads are Replacing Existing Equipment on About a 20-year Cycle

- Total signal capital expenditures by Class I railroads over the last five years averaged $\$ 418$ million annually
- At \$140,000 per mile, that was enough to replace about 3,000 miles of CTC per year

This means that...

- Stockholders will pay more than $\$ 9$ billion over the next 22 years to replace 75-year old technology IN KIND, with no gain in functionality
- Is this the best strategy for the railroad industry to follow?

...And It's Not Cheap to Maintain, Either

C\&S Operating Expenses 1999 -- 2003

\square Grade Cr. (000)
\square Signals (000)
-Comm (000)

Year

But based on historical trends and current spending, the future of freight railroad train control systems...

- ...will consist of replacement of existing ABS and CTC with "modern" CTC, which offers:
- No increase in functionality
- No enforcement

Is There a Better, Cheaper, Safer Way?

- Maybe. Communications-based systems have been in testing since the 1980s. They include Burlington Northern's ARES, the AAR/CN ATCS, the North American Joint Positive Train Control Project...and the CBTC project at MTA New York City Transit

Communications-based control systems - what do they do?

The primary CBTC functions are:

- management of track occupancies through centralized route and block interlocking logic
- issuance of movement authorities via the data link to equipped trains and work vehicles
- tracking of equipped train location and track occupancies via the data link;
- speed enforcement for equipped trains
- enforcement of limits of authority for equipped trains
- pacing for fuel economy for equipped trains
- monitoring and control of wayside systems
- reporting of equipped train diagnostics and operating parameters
- general exchange of instructions and messages.

PTC System Diagram

Graphic courtesy of Rail Safety Advisory Committee

Let's Talk About New York

- MTA New York City Transit is a transit system, not a railroad...but the system has:
- 722 main track miles
- 180 interlockings
- 6,000 rapid transit cars
- 4 million riders per day

Why has New York Adopted CBTC?

- Decision was made to switch to CBTC because existing control systems were functionally obsolete and expensive to maintain
- NYCT expects CBTC to be safer and have a lower life-cycle cost than the equipment it replaces
- Revenue operation will begin in May - on schedule and on budget - on the Canarsie Line

What Will PTC Cost?

Cost per Segment (2001 \$)

Segment	Unit	Estimated Cost Per Unit	
		Low	High
Vehicle	Each	$\$ 30,000$	$\$ 75,000$
Wayside	Track Mile	$\$ 16,000$	$\$ 24,000$
Central Office	Each	$\$ 100$ million	$\$ 500$ million

Totals to be Equipped

Category	Class I Totals
Locomotives	20,506
Route Mi	99,250
Central Office	One for each
Class I	

Total Estimated Cost, PTC

Segment	System Cost	
	Low	High
Vehicles	$\$ 615,180,000$	$\$ 1,537,950,000$
Wayside	$\$ 1,588,000,000$	$\$ 2,382,000,000$
Central	$\$ 100,000,000$	$\$ 500,000,000$
Total	$\$ 2,303,180,000$	$\$ 4,419,950,000$

Source: "Quantification of the Business Benefits of Positive Train Control", FRA, 3/16/2004

But Remember...

- This cost is not in addition to the $\$ 564$ million annually being spent by railroads on C\&S capital investments
- The PTC investment will replace some of the C\&S investment
- How much?

Net Cost of PTC

- With PTC, railroads will retain home signals at control points, plus relay cases, switch machines, other wayside equipment
- PTC will replace existing code line, where this still exists
- PTC will also replace communications lines and signals between control points, plus grade crossing track circuits

A Recap

- Cost of CTC: \$140,000 per mile
- Cost of replacing code line, wayside signals, crossing protection: \$90,000 per mile
- Continuing capital expenditure required to retain and periodically replace equipment at control points after PTC is in place: $\$ 50,000$ per mile

Comparison: Signals vs. PTC (\$ in billions)

	Signals	PTC Low	PTC High
Control Points	$\$ 3.25$	$\$ 3.25$	$\$ 3.25$
Other	$\$ 5.85$	$\$ 2.30$	$\$ 4.42$
Total	$\$ 9.10$	$\$ 5.55$	$\$ 7.67$
Net Savings	--	$\$ 3.55$	$\$ 1.43$

The Bottom Line

- Railroads will still have to spend $\$ 50,000$ per mile on regular replacement of power switches, home signals, relay cases and other equipment at interlockings
- This totals to $\$ 3.25$ billion, of the previously estimated $\$ 9.1$ billion replacement cost of signals
- In addition, railroads will have to spend between $\$ 2.3$ billion and $\$ 4.4$ billion on PTC
- Net savings to the industry over 22 years: somewhere between $\$ 1.43$ billion and $\$ 3.55$ billion, as compared to retaining and replacing existing signal systems

Also...

- In addition to a capital cost savings, the railroads will also realize:
- 100\% control system coverage
- Real-time location information for all trains
- Positive enforcement of ALL movement authorities, even on "dark" territory

In Addition, Potential Railroad Business Benefits May Include

- Line capacity enhancement
- Improved service reliability
- Faster over-the-road running times
- More efficient use of cars and locomotives (due to real-time location information)
- Reduction in loco failures (due to real-time diagnostic data)
- Larger "windows" for track maintenance
- Fuel savings (from "pacing" of trains)

According to Robert Turner, Senior VP, Corporate Affairs, Union Pacific Railroad, the following is the cost of a one MPH reduction in system average velocity:

	$\#$	Annual Cost	Total
Locos	250	$\$ 161,173$	$\$ 40,293,250$
Cars	5,000	$\$ 4,713$	$\$ 23,565,000$
Workers	180	$\$ 59,650$	$\$ 10,737,000$
			$\$ 74,595,250$

If UP is about 20% of the industry, a one MPH improvement should be worth about $\$ 373$ million annually to the Class I industry, and a 2.5 MPH improvement about $\$ 932$ million

So the question is, if....

- It costs less than replacing the existing signal system...
- Covers the entire network, rather than 50% of it...
- Enforces authorities, eliminating most humanfactors accidents...
- Potentially offers major savings through improvements to railroad operating efficiency...
- Why hasn't the industry adopted it?

