Future Freight Railroad Control Systems: What Will They Look Like?

National Transportation Safety Board Positive Train Control Seminar

Randolph R. Resor Vice President, Costing & Economic Analysis ZETA-TECH Associates, Inc.

resor@zetatech.com

Current Freight Railroad Train Control Technologies are "Mature"

Timetable and train order

- Timetable and train order operation first used by railroads in the early 19th Century
- Transmission of movement authorities by voice radio, with the same functionality, replaced written train orders in the 1980s
- Automatic Block Signals
 - First installed in New Jersey in 1893
 - Provides broken rail protection, train separation
- "Centralized Traffic Control" or "Traffic Control System"
 - Current "state of the art" train control system
 - First deployed on Toledo & Ohio Central Railroad in 1927

But if it's not broke...

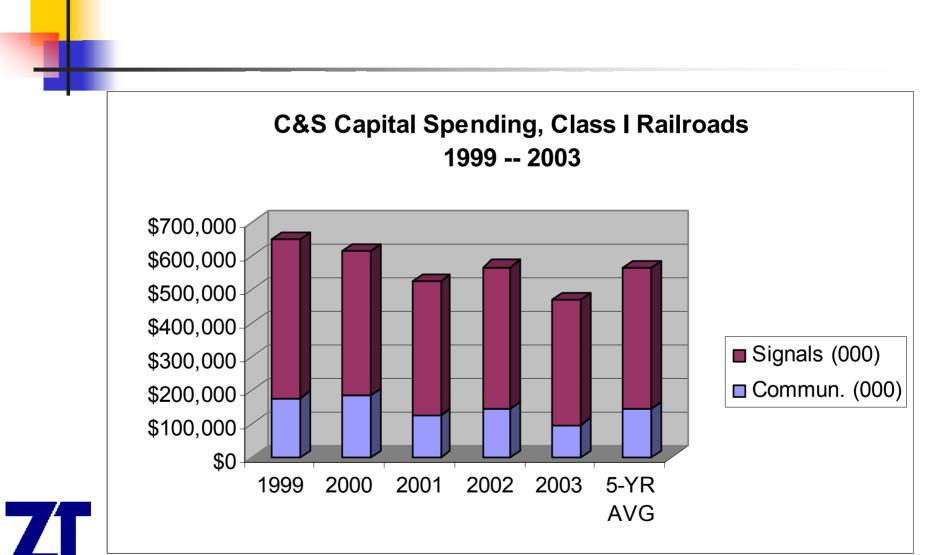
- Current control systems are managing to handle record rail traffic levels
- Control-system-related accidents are at low levels
- Technical problems such as "false clear" signals are rare
- As far as railroad train control is concerned, then, why should the future look different from the past?

Reasons for Looking for a New Technology

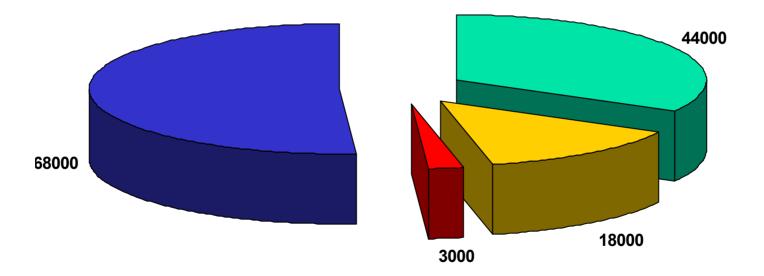
- Current control systems must be replaced as they wear out.
- IF NOT NOW, then WHEN is it sensible to look for better technology instead of replacing in kind?
- GPS and wireless networking, which could form the basis of a better control system, have been widely applied in other transportation modes...why not rail?

Limited Trials of New Technology are Under Way...

- BNSF "ETMS" (Enhanced Train Management System) in southern Illinois
- CSX "CBTM" (Communications Based Train Management) in South Carolina
- North American Joint PTC Project in Illinois
- CBTC (Communications Based Train Control) on MTA New York City Transit


...But (Except for New York) the Level of Expenditures is Small Compared to Spending on Conventional Systems

- Total spending on the Illinois project has been about \$100 million over 10 years... about half from the railroad industry, the rest from FRA
- The two other freight railroad pilot projects have involved much smaller dollar amounts so far


The Class I railroads have spent an average of \$564 million annually over the last five years on C&S capital investment

Source: STB

Route Mileage by Signal Control Type*

■ CTC ■ ABS ■ Cab ■ Dark

*Data from Volpe Rail Network, VNTSC. Volpe Rail Network describes the U.S. Class I network as of 1996. The network contains 133,000 route miles, of which 65,000 are equipped with some type of signal control.

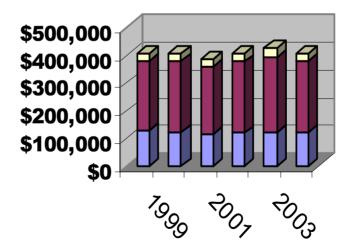
resor@zetatech.com

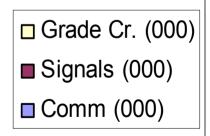
Estimated Replacement Cost of Current Control System

- A recent *Railway Age* article ("C&S Buyers' Guide") cited a cost of \$140,000 per mile for new CTC (including grade crossing protection)
- At these costs, replacement of the signal equipment on the existing 65,000 miles of signaled track with modern CTC equipment would cost more than \$9 billion.

Railroads are Replacing Existing Equipment on About a 20-year Cycle

- Total signal capital expenditures by Class I railroads over the last five years averaged \$418 million annually
- At \$140,000 per mile, that was enough to replace about 3,000 miles of CTC per year




This means that...

- Stockholders will pay more than \$9 billion over the next 22 years to replace 75-year old technology IN KIND, with no gain in functionality
- Is this the best strategy for the railroad industry to follow?

...And It's Not Cheap to Maintain, Either

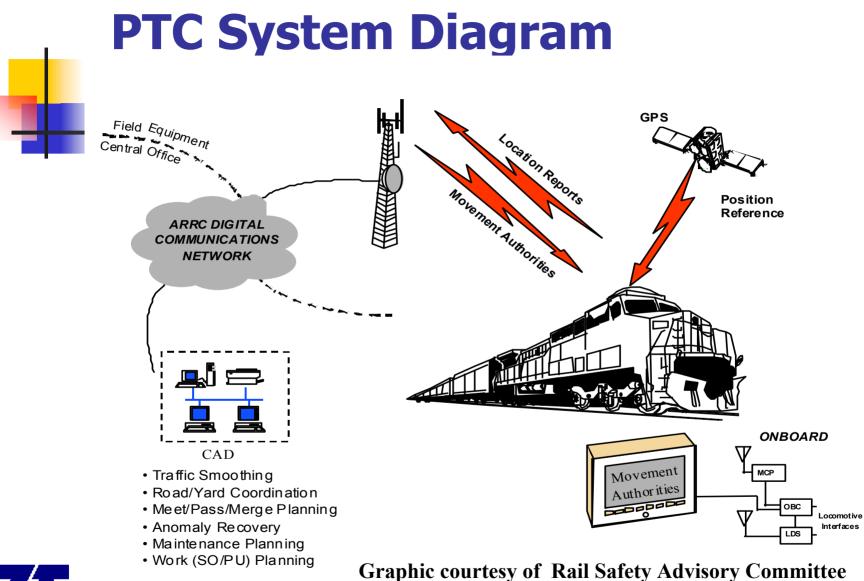
C&S Operating Expenses 1999 -- 2003

But based on historical trends and current spending, the future of freight railroad train control systems...

- ...will consist of replacement of existing ABS and CTC with "modern" CTC, which offers:
 - No increase in functionality
 - No enforcement

Is There a Better, Cheaper, Safer Way?

 Maybe. Communications-based systems have been in testing since the 1980s. They include Burlington Northern's ARES, the AAR/CN ATCS, the North American Joint Positive Train Control Project...and the CBTC project at MTA New York City Transit



Communications-based control systems – what do they do?

The primary CBTC functions are:

- management of track occupancies through centralized route and block interlocking logic
- issuance of movement authorities via the data link to equipped trains and work vehicles
- tracking of equipped train location and track occupancies via the data link;
- speed enforcement for equipped trains
- enforcement of limits of authority for equipped trains
- pacing for fuel economy for equipped trains
- monitoring and control of wayside systems
- reporting of equipped train diagnostics and operating parameters
- general exchange of instructions and messages.

ZETA-TECH

resor@zetatech.com

Let's Talk About New York

- MTA New York City Transit is a transit system, not a railroad...but the system has:
 - 722 main track miles
 - 180 interlockings
 - 6,000 rapid transit cars
 - 4 million riders per day

Why has New York Adopted CBTC?

- Decision was made to switch to CBTC because existing control systems were functionally obsolete and expensive to maintain
- NYCT expects CBTC to be safer and have a lower life-cycle cost than the equipment it replaces
- Revenue operation will begin in May on schedule and on budget – on the Canarsie Line

Cost per Segment (2001 \$)

Segment	Unit	Estimated Cost Per Unit	
		Low	High
Vehicle	Each	\$30,000	\$75,000
Wayside	Track Mile	\$16,000	\$24,000
Central	Each	\$100 million	\$500 million
Office			

Totals to be Equipped

Category	Class I Totals	
Locomotives	20,506	
Locomotives	20,000	
Route Mi	99,250	
	One for each	
Central Office	Class I	

Total Estimated Cost, PTC

Sagmant	System Cost		
Segment	Low	High	
Vehicles	\$615,180,000	\$1,537,950,000	
Wayside	\$1,588,000,000	\$2,382,000,000	
Central	\$100,000,000	\$500,000,000	
Total	\$2,303,180,000	\$4,419,950,000	

Source: "Quantification of the Business Benefits of Positive Train Control", FRA, 3/16/2004

resor@zetatech.com

But Remember...

- This cost is not *in addition to* the \$564 million annually being spent by railroads on C&S capital investments
- The PTC investment will replace some of the C&S investment
- How much?

Net Cost of PTC

- With PTC, railroads will retain home signals at control points, plus relay cases, switch machines, other wayside equipment
- PTC will replace existing code line, where this still exists
- PTC will also replace communications lines and signals between control points, plus grade crossing track circuits

A Recap

- Cost of CTC: \$140,000 per mile
- Cost of replacing code line, wayside signals, crossing protection: \$90,000 per mile
- Continuing capital expenditure required to retain and periodically replace equipment at control points after PTC is in place: \$50,000 per mile

Comparison: Signals vs. PTC (\$ in billions)

	Signals	PTC Low	PTC High
Control Points	\$3.25	\$3.25	\$3.25
Other	\$5.85	\$2.30	\$4.42
Total	\$9.10	\$5.55	\$7.67
Net Savings		\$3.55	\$1.43

The Bottom Line

- Railroads will still have to spend \$50,000 per mile on regular replacement of power switches, home signals, relay cases and other equipment at interlockings
- This totals to \$3.25 billion, of the previously estimated \$9.1 billion replacement cost of signals
- In addition, railroads will have to spend between \$2.3 billion and \$4.4 billion on PTC
- Net savings to the industry over 22 years: somewhere between \$1.43 billion and \$3.55 billion, as compared to retaining and replacing existing signal systems

Also...

- In addition to a capital cost savings, the railroads will also realize:
 - 100% control system coverage
 - Real-time location information for all trains
 - Positive enforcement of ALL movement authorities, even on "dark" territory

In Addition, Potential Railroad Business Benefits May Include

- Line capacity enhancement
- Improved service reliability
- Faster over-the-road running times
- More efficient use of cars and locomotives (due to real-time location information)
- Reduction in loco failures (due to real-time diagnostic data)
- Larger "windows" for track maintenance
- Fuel savings (from "pacing" of trains)

According to Robert Turner, Senior VP, Corporate Affairs, Union Pacific Railroad, the following is the cost of a one MPH reduction in system average velocity:

	#	Annual Cost	Total
Locos	250	\$161,173	\$40,293,250
Cars	5,000	\$4,713	\$23,565,000
Workers	180	\$59,650	\$10,737,000
			\$74,595,250

If UP is about 20% of the industry, a one MPH improvement should be worth about \$373 million annually to the Class I industry, and a 2.5 MPH improvement about \$932 million

So the question is, if....

- It costs less than replacing the existing signal system...
- Covers the entire network, rather than 50% of it...
- Enforces authorities, eliminating most humanfactors accidents...
- Potentially offers major savings through improvements to railroad operating efficiency...

Why hasn't the industry adopted it?