
1

Coevolutionary Free Lunches
David H. Wolpert, dhw@email.arc.nasa.gov

William G. Macready, wgm@email.arc.nasa.gov
NASA Ames Research Center

Moffett Field, CA, 94035

Abstract— Recent work on the mathematical foundations of op-
timization has begun to uncover its rich structure. In particular,
the “No Free Lunch” (NFL) theorems state that any two algo-
rithms are equivalent when their performance is averaged across
all possible problems. This highlights the need for exploiting
problem-specific knowledge to achieve better than random per-
formance. In this paper we present a general framework covering
more search scenarios. In addition to the optimization scenarios
addressed in the NFL results, this framework covers multi-armed
bandit problems and evolution of multiple co-evolving players. As
a particular instance of the latter, it covers “self-play” problems.
In these problems the set of players work together to produce
a champion, who then engages one or more antagonists in a
subsequent multi-player game. In contrast to the traditional
optimization case where the NFL results hold, we show that in
self-play there are free lunches: in coevolution some algorithms
have better performance than other algorithms, averaged across
all possible problems. We consider the implications of these
results to biology where there is no champion.

I. INTRODUCTION

Recently, the mathematical foundations of optimization have
begun to be uncovered [?], [?], [?], [?], [?], [?], [?], [?],
[?]. One particular result in this work, the “No Free Lunch”
(NFL) theorems, establishes the equivalent performance of
all optimization algorithms when averaged across all possible
problems.1 As an example of these theorems, recent work has
explicitly constructed objective functions where random search
outperforms evolutionary algorithms [?]. There has also been
much work extending these early results to different types
of optimization (e.g. to multi-objective optimization [?]). The
web site www.no-free-lunch.org offers a list of recent
references.

However, all this previous work has been cast in a man-
ner that does not cover repeated game scenarios where the
“objective” or “fitness” function for one player or agent can
vary based on the response of another player. In particular,
the NFL theorems do not cover such scenarios. These game-
like scenarios are usually called “coevolutionary” since they
involve the behaviors of more than a single agent or player
[?].

One important example of coevolution is “self-play,” where
from the system designer’s perspective, the players “cooper-
ate” to train one of them as a champion. That champion is
then pitted against an antagonist in a subsequent multi-player
game. The goal is to train that champion player to perform
as well as possible in that subsequent game. For a checkers
example see [?].

1More precisely, the algorithms must be compared after they have examined
the same number of distinct configurations in the search space.

Early work on coevolutionary scenarios includes [?], [?],
[?]. More recently, coevolution has been used for problems
that on the surface appear to have no connection to a game (for
an early application to sorting networks see [?]). Coevolution
in these cases enables escape from poor local optima in favor
of better local optima.

We will refer to all players other than the one of direct atten-
tion as that player’s “opponents,” even when, as in self-play,
the players can be viewed as cooperating. Sometimes when
discussing self-play we will refer to the specific opponent to
be faced by a champion in a subsequent game — an opponent
not under our control — as the champion’s “antagonist.”

In this paper we present a mathematical framework that
covers both traditional optimization and coevolutionary sce-
narios. It also covers other scenarios such as multi-armed
bandits. We then use that framework to explore the differences
between traditional optimization and coevolution. We find
dramatic differences between the traditional optimization and
coevolutionary scenarios. In particular, unlike the fundamental
NFL result for traditional optimization, in the self-play domain
there are algorithms that are superior to other algorithms for
all problems. However in the typical coevolutionary scenarios
encountered in biology, where there is no champion, NFL still
holds.

Section II summarizes the previous NFL work that we
extend, and Section III motivates these extensions. Section IV
presents the resultant extended NFL framework, and provides
example illustrations of the framework. Section V applies the
NFL extensions to self play, and Section VI demonstrates
that NFL results need not apply in this case. We conclude
in Section VII.

II. BACKGROUND

Motivated by the myriad heuristic approaches to combinato-
rial optimization a number of researchers have sought insight
into how best to match optimization algorithms to problems.
The importance of this task was highlighted in [?]. We review
the approach taken in that paper as it forms the starting point
for our coevolutionary extensions.

We consider search over a finite space X and assume
that the associated space of possible “fitness” or “objective
function” values Y is also finite. The sizes of the spaces
are |X| and |Y | respectively. The space of possible fitness
functions, F = Y X , contains |Y ||X| possible mappings from
X to Y . A particular mapping in F is indicated as f ∈ F .
All of the results mentioned in this section be extended to the
case of stochastic fitness functions specified by conditional



2

distributions P (y ∈ Y | x ∈ X) rather than single-valued
functions from X to Y . (This is explicitly demonstrated below
when we introduce the generalized version of the original
NFL framework.) However for pedagogical simplicity here
we restrict attention to single-valued f ’s. We are interested
in the performance of algorithms when averaged across some
distribution P (f) of such single-valued fitness functions.

The formalization of algorithms used in [?] is motivated
by the behavior of algorithms like genetic algorithms, simu-
lated annealing, and tabu search. All such algorithms sample
elements of the search space (i.e., select an x ∈ X), and
evaluate the fitness y = f(x) ∈ Y of that sample. New x’s are
selected based upon previously sampled x’s and the associated
fitness values. At an iteration at which a total of m distinct
x’s have been examined we write those x’s and associated
fitness values as an ordered set of m distinct configurations:
dm ≡ {(dx

m(1), dy
m(1)), · · · , (dx

m(m), dy
m(m))}.2 Configura-

tions in dm are ordered according to the time at which the
algorithm sampled them. Thus, dx

m(t) is the t’th sampled x and
dy

m(t) = f(dx
m(t)) is the associated fitness. The ordered sets

of all X and Y values is indicated as dx
m and dy

m respectively.
Algorithms are compared on the basis of the samples dm that
they generate.

It is important to note that the x’s in dx
m must all be distinct.

This means that algorithms are compared only on the basis
of the unique x’s they have examined. This does not mean
that algorithms that do revisit x’s (as genetic algorithms and
simulated annealing typically do) cannot be compared. Rather,
it means they must be compared based on the number of
distinct x’s they have examined. Further discussion of this
point is found in [?].

Based upon these definitions an algorithm is a (perhaps non-
deterministic) mapping from a set of samples dm to a new
(i.e., not yet visited) point in the search space, dx

m+1(m +
1). That mapping is specified by the probability distribution
Pm(dx

m+1(m + 1) = x|dm) defined over X which gives the
probability of the algorithm selecting x at time m+1. To en-
sure that search space points are not revisited we require zero
probability on previously visited x’s. Thus, Pm(dx

m+1(m +
1) = x|dm) = 0 for all x ∈ dx

m. The algorithm begins with
the selection of a starting configuration as specified by an
initial distribution P1(d

x
1(1) = x). An algorithm a is then a

specification of the probability distributions P1, P2, etc. (This
definition of a search algorithm was also used in [?] in the
case where the mapping was assumed to be deterministic.)
With every visit to a new search space element the set of
samples is extended from dm to include the new x and its
fitness, i.e., dm+1 = dm∪{x, f(x)} so that dx

m+1(m+1) = x
and dy

m+1(m + 1) = f(x). While covering many classes
of algorithms (like simulated annealing, genetic algorithms,
tabu search, etc), not all algorithms are of this type (e.g.,
enumerative algorithms like branch and bound). The results
presented here do not necessarily apply to algorithms outside
the class we consider.

The efficacy of a search algorithm is assessed with a
performance measure, Φ(dy

m), which is a function of all the

2This set was called a trace in [?].

fitness values seen by the algorithm by step m. It is important
to note that this measure of performance differs from the
typical concerns of computationally complexity. We are not
concerned with run times or memory issues. The performance
of an algorithm a after having visited m distinct x’s, averaged
over a class of optimization problems specified with a distribu-
tion P (f), is E(Φ|m, a) =

∑

f∈F Φ(dy
m)P (dy

m|f,m, a)P (f).
When P (f) is uniform over any set of functions which
is closed under permutations3 then it can be shown that
P (dy

m|m, a) =
∑

f P (dy
m|m, a, f)P (f) is independent of a

[?], [?], [?]. Thus, the expected performance of any pair of
algorithms is equal under that average. The most general form
for P (f) for which NFL results remain valid is derived in [?].

[?] considers many extensions of this basic result and
shows that algorithms may be distinguished once we look
beyond simply average performance. Results independent of
the distribution over problems P (f) may also be derived [?].

Our purpose here is to extend the framework discussed
above to coevolutionary settings where there is more than
a single player. As we shall see, such an extension can
be developed which addresses many problems of interest in
both evolutionary and coevolutionary optimization. Before
presenting that extended framework formally, we motivate its
extensions through consideration of an idealized coevolution-
ary optimization problem, and the k-armed bandit.

III. MOTIVATION

A. Self Play

We can view the NFL framework reviewed above as a
“game” in which a single player is trying to determine what
“move” x it should make to optimize Φ(dy

m). As an example of
another type of problem we would like to study we consider
self-play. This extension involves moves of more than one
player, even though there is still a single Φ and f . For example,
in the case of two players the fitness function depends upon
the moves of both players, indicated as x and x.

To illustrate this consider a multi-stage game involving
the two players [?], [?], like checkers [?]. Have the players
be computer programs. In this setting x and x are the two
complete computer programs that compete with each other,
rather than the plays they make at any particular stage. These
programs, fixed at the beginning of the game, specify each
player’s entire strategy of what play to make in response to
what set of preceding observations. It is these programs that
are of interest. In noncooperative game theory these programs
are called “normal form strategies”. In other applications, x
might represent an algorithm to sort a list, and x a mutable
set of lists to be sorted. The payoff f then reflects the ability
of the algorithm to sort the lists in x.

In self-play we fix attention to the payoff to one of the
two players, the “champion”, with the other player being the
“opponent”. A fitness function f(x, x) gives the reward to the
champion (e.g., +1 for a pair of strategies in which it wins,
0 for an indeterminate or drawing pair, and −1 for a losing
pair). Now concatenate the strategies of our player (x) and the

3P (f) is closed under permutations if for any permutation σ : X → X of
inputs then P (f) = P (f ◦ σ).



3

opponent (x) into a single joint point x = [x, x]. By doing this
we do not need to generalize fitness functions when we extend
the NFL framework; the fitness function remains a mapping
from X = X ×X into Y . Now, however, X is the space of
joint (champion, opponent) game strategies.

In the more general form of self-play this approach is
extended by having several players compete in a tournament,
and from the results of that tournament selecting a single
best agent. That best agent constitutes the champion, who will
compete against an antagonist in a subsequent game. The goal
is to design the tournament to produce the champion with the
best possibility of beating the antagonist. We would like to
assess the efficacy of various such designs, and to see if NFL-
like results also hold in this game setting.

When designing a self-play tournament there are two differ-
ent choices to make. First, one must decide how the “training
games” are selected, i.e., how each set of all the players’
strategies for the next round of the tournament are chosen
based on the results of the preceding rounds. Second, one
must decide how to use the outcomes of all those games to
select the champion.

As in the original NFL work, the m distinct
training games and their fitnesses are indicated as
dm ≡ {(dx

m(1), dy
m(1)), · · · (dx

m(m), dy
m(m))}. Analogously

we write the probabilistic mapping that selects each new
training game’s strategies based on the results of the preceding
ones as a set of conditional distributions. We write that set as
the “algorithm” a, exactly as in the original NFL framework.

Choosing a champion is done with a function A which
maps a completed sequence of training games, dm, into a
champion strategy/move. We parameterize that champion as
the associated subset of all joint strategies X consistent with
it. For example, say that our champion strategy takes the role
of the first player in a 2-player subsequent game with a single
antagonist. In other words, our champion is a choice of a
(hopefully) optimal first player’s strategy. So we choose that
champion by selecting a particular value x∗ for the strategy x
of the first player in the subsequent game. Since that choice of
strategy doesn’t restrict the antagonist’s responses, we indicate
it as the subset of all x ∈ X with x = x∗, i.e. the subset
{(x, x)|x ∈ X}. So A maps dm to such a subset of X . (In
the more general approach of Sec. V A is allowed to map
probability distributions over X , not just subsets of X .)

How do we judge the performance of the champion when
we do not know how the antagonist will act? One possibility
is to measure the performance of the champion against the
antagonist who performs best against the champion. If the
champion plays the game according to x∗, then this worst
case measure may be written as minx f(x∗, x) where x ranges
over all possible opponent strategies. Having defined A(dm)
as above we can also write the worst case performance
as minx∈A(dm) f(x). A good champion will maximize this
worst possible performance. Here we see the first difference
from the original single-player NFL scenario. In that original
optimization setting performance is solely a function of dy

m

(the observed game outcomes), here however, the maximin
criteria has an explicit dependence on the fitness function f .
As we shall see, it is this dependence which will give rise to

free lunches in which there can be a priori differences between
algorithms.

Other possible means of quantifying the performance of
the champion are possible, and in some cases preferable.
Subtleties in evaluating the performance of game-playing
strategies are considered in [?], [?], [?]. In this work we
concentrate on the maximin measure, but we expect that if the
performance measure depends explicitly on f then generically
NFL type results will not hold.

B. Bandit Problems

The k-armed bandit problem is simple, but captures much
of the essence of the critical exploration/exploitation tradeoff
inherent in optimization. In this problem an agent is faced with
repeatedly choosing between k stochastic processes having
different means. With each selection (either process 1, process
2, · · · , process k) the agent receives a reward stochastically
sampled from the process it chooses. The agent’s goal is to
maximize the total reward collected over m selections. One
simple strategy is to sample each process n times for a total of
kn training points, and for the remaining m−kn time steps to
sample that process which has the higher empirical mean based
on the n points sampled from each process. An algorithm of
this type was proposed (erroneously) as justification for the
schema theorem of genetic algorithms [?], [?].

In order to allow NFL-like analyses to apply to algorithms
for bandit problems we must generalize the notion of a fitness
function. In this case the fitness of any given x value (x = i for
selecting process i) is not deterministic, but stochastic, given
by sampling the associated process. To capture this we extend
the definition “fitness function” from a X → Y mapping
to mapping from X → Z, where Z is a space capturing
probabilistic models. This is illustrated below.

IV. GENERAL FRAMEWORK

As we have seen from these two examples to increase the
scope of NFL-like analyses we need to make two slight exten-
sions. Firstly, we must broaden the definition of performance
measures to allow for dependence on f , and secondly, we need
to generalize fitness functions to allow for non-determinism.
The resultant framework is closely related to the one used
in the very first work on NFL, preceding its application to
the problem of search, namely NFL for supervised machine
learning [?], [?], [?].

A. Formal framework specification

We assume two spaces, X and Z. To guide the intuition,
a typical scenario might have x ∈ X be the joint strategy
followed by our players, and z ∈ Z be one of the possible
probability distributions over some space of possible rewards
to the champion.

In addition to X and Z, we also have a fitness function

f : X → Z. (1)

In the example where z is a probability distribution over
rewards, f can be viewed as the specification of an x-
conditioned probability distribution of rewards. In particular,



4

single-valued fitness functions are special cases of such an f ,
where each f(x) — each x-conditioned probability distribu-
tion — is a delta function about some associated reward value.
Different such f give different single-valued mappings from
x to rewards. The introduction of Z into the framework is
what allows for noisy payoffs, and to allow it to cover bandit
problems.

We have a total of m time-steps, and represent the samples
generated through those time-steps as

dm ≡ (dx
m, dz

m) ≡
(

{dx
m(t)}m

t=1, {d
z
m(t)}m

t=1

)

.

As in classic NFL each dx
m(t) is a particular x ∈ X .

Each dz
m(t) is a (perhaps stochastic) function of f

(

dx
m(t)

)

.
For example, say z’s — values of f(x) — are probability
distributions over reward values. Then dz

m(t) could consist of
the full distribution f

(

dx(t)
)

. Alternatively, it could consist
of a moment of that distribution, or even a random sample
of it. In general, we allow the function specifying dz

m(t) to
vary with t. However that freedom will not be exploited here.
Accordingly, we will leave that function implicit, to minimize
the notation. As shorthand we will write d(t) to mean the pair
(

dx
m(t), dz

m(t)
)

.
A search algorithm, a, is an initial distribution P1(d

x
m(1))

of the initially selected point dx
m(1) ∈ X , together with a set

of m − 1 separate conditional distributions Pt(d
x
m(t) | dt−1)

for t = 2, . . . ,m. Such an algorithm specifies which x to next
choose, based on the samples observed so far, for any time-
step t. As is usual, we assume that the next x has not been
previously seen. This is reflected as an implicit restriction on
the conditional distributions Pt(d

x
m(t) | dt−1).

Finally, we have a (potentially vector-valued) cost function,
C(dm, f), which is used to assess the performance of the
algorithm. Often our goal is to find the a that will maximize
E(C) for a particular choice of the mapping forming the
dz

m(t)’s from the f(dx
m(t))’s. This expectation E(C) is formed

by averaging over any stochasticity in the mapping from
f ’s to associated dz

m(t)’s. It also averages over those fitness
functions f consistent (in the sense of Bayes’ theorem) with
the observed samples dm. (See below for examples.)

The NFL theorems concern averages over all f of quantities
depending on C. For those theorems to hold — for f -averages
of C to be independent of the search algorithm — it is
crucial that for fixed dm, C does not depend on f . When that
independence is relaxed, the NFL theorems need not hold. As
we have seen such relaxation occurs in self-play; it is how one
can have free lunches in self-play.

B. Examples of the framework

Example 1: One example of this generalized framework
is the scenario considered in the original NFL theorems.
There we can identify Z with a distribution over Y where
Y is a subset of R (for convenience we take X and Y
countable). For single-valued fitness functions, as remarked
above, such distributions must be delta functions. In this case
the implicit mapping from f(dx

m(t)) to the associated dz
m(t)

is given simply by evaluating the real value f has at dx
m(t).

As an alternative formulation, for such fitness functions we

can instead define z ∈ Z to be the same as Y . (Recall that
Z need not be a space of probability distributions; that’s only
the choice of Z used for illustrative purposes.) In the more
general version of the original NFL scenario Z is a non-delta
function over Y , and the mapping f(dx

m(t)) to the associated
dz

m(t) is given by forming a sample of f(dx
m(t)).

In the scenario of the original NFL theorems a does not
allow revisits. In addition we take C(dm, f) = Φ(dm) (recall
the definition of the performance measure Φ in section II).
As already noted, for NFL to hold it is critical that the cost
function does not depend on f . It is also crucial that the search
algorithm a not allow revisits. Both apply to the formulation
given here. Accordingly, the NFL theorems generically apply
to scenarios which can be cast as an instance of this example.

Example 2: While the variables are interpreted differently
(e.g., x is now a joint strategy, not a single sample point),
the formal specification of self-play in terms of our extended
framework is almost identical to that of the original (noisy
fitness function) NFL scenario. The only formal difference
between the scenarios arises in the choice of C.

In self-play we use the set of repeated games, together with
any other relevant information we have (e.g., how the game
against the antagonist might differ from the games heretofore),
to choose the champion strategy to be used in the subsequent
game against the antagonist. As we have seen, this dependence
is given by a function A(dm) mapping dm to a subset of X .
Since it measures performance against the antagonist, C must
involve this specification of the champion.

Formally, C uses A to determine the quality of the search
algorithm that generated dm as follows:

C(dm, f) = min
x∈A(dm)

E(f). (2)

where E(f) is the expected value of the distribution of rewards
our champion receives for a joint strategy with the antagonist
given by x:

E(f) =
∑

y∈Y

yPf (y | x) =
∑

y∈Y

y[[f(x)](y)] (3)

where [[f(x)](y)] is the distribution f(x) evaluated at y.
This cost function is the worst possible payoff to the

champion. There are several things to note about it. First, it still
applies if the number of players in any game is greater than
2 (the number of players just determines the dimensionality
of x, and the form of the function A). Also A arises nowhere
in our formulation of self-play but in this specification of C.
Finally, note that the C of self-play depends on f .

Say we have a 2-player self-play scenario and the antagonist
has no care for any goal other than hurting our champion. Say
that the antagonist is also omnipotent (or at least very lucky),
and chooses the x which achieves its goal. Then the expected
reward to the champion is given by Eq. (2). Obvious variants
of this setup replace the worst-case nature of C with some
alternative, have A be stochastic, etc.

Whatever variant we choose, typically our goal in self-play
is to choose a and/or A so as to maximize E(C), with the
expectation now extending to average all possible f . The fact
that C depends on f means that NFL need not apply though.



5

Examples of this are presented below, in Sections V, V-B, and
VI.

Example 3: Another example is the k-armed bandit problem
introduced for optimization by Holland [?], and analyzed
thoroughly in [?]. The scenario for that problem is identical to
that for the NFL results, except that there are no constraints
that the search algorithm not revisit previously sampled points,
Y = R, and every z is a Gaussian. The fact that revisits are
allowed (since typically m > k) means that NFL need not
apply.

Example 4: In the general biological coevolution scenario
[?], [?], [?] there is a set of “players” who change their
strategies from one game to the next, just like in self-play.
Unlike in self-play though, each player has an associated
frequency in the population of all players, and that frequency
also varies through the succession of games. This means that
the two scenarios are quite different when formulated with
our framework. Moreover, the formulation for the general
coevolution scenario involves definitions of Z, f , etc., that
would appear counter-intuitive if we were to interpret them
the same way we do in self-play.

We formulate the general coevolution scenario with our
framework by having a set of N agents (or players, or cultures,
or lineages of genomes, or lineages of genes, etc), just like
in self-play. Their strategy/move spaces are written Xi, as in
self-play. Now however X is extended beyond the current joint
strategy to include the joint “population frequency” value of
those strategies. Formally, we write

X = (X1, u1)× · · · × (XN , uN ), (4)

and interpret each xi ∈ Xi as a strategy of i and each ui ∈ R

as a frequency with which i occurs in the overall population
of all players.4

To be more precise, we interpret xi(t) as i’s current strat-
egy. However we interpret ui(t) as i’s previous population
frequency, i.e., the population frequency, at the preceding
timestep, of the strategy that i followed then. In other words,
we interpret the ui component of dx

m(t) as the population
frequency at timestep t−1 of the strategy followed by agent i
then, a strategy given by the Xi component of dx

m(t− 1). So
the information concerning each agent i is “staggered” across
pairs of successive timesteps. This is done so that a can give
the sequence of joint population frequencies that accompanies
the sequence of joint strategies, as described below.

When i is a single agent, this choice of X accomodates
learning in i by allowing the strategy of i, xi ∈ Xi, to change
from one timestep to the next. When i is a “lineage of a
gene” it is not the strategy (i.e., the gene) that changes from
one timestep to the next, but the associated frequency of that
strategy in the population. This too is accomodated in our
choice of X; changes in X from one time-step to the next can
involve changes in the joint-frequency without any changes
in the joint-strategy. More generally, our formulation allows
both kinds of changes to occur simultaneously . In addition,

4Typically
P

i ui = 1 of course, though we have no need to explicitly
require this here. Indeed, the formalism allows the ui not to be population
frequencies, but rather integer-valued population counts.

mutation, e.g., modification of the gene, can be captured with
this framework. This is done by having some i’s that at certain
times have 0 population frequency, but then stochastically
jump to non-0 frequency, representing a new agent that is a
mutant of an old one.

Have each z be a probability distribution over the possible
current population frequencies of the agents. So given our
definition of X , we interpret f as a map taking the previous
joint population frequency, together with the current joint
strategy of the agents, into a probability distribution over the
possible current joint population frequencies of the agents

As an example, in evolutionary game theory, the joint strat-
egy of the agents at any given t determines the change in each
one’s population frequency in that time-step. Accordingly, in
the replicator dynamics of evolutionary game theory, f takes a
joint strategy x1×. . . xN and the values of all agents’ previous
population frequencies, and based on that determines the new
value of each agent’s population frequency. More precisely,
dz

m(t) is a sample of that distribution f(dx
m(t)).

In this general coevolution scenario, our choice for a,
which produces dx

m(t + 1) from dx
m(t), plays two roles.

These correspond to its updates of the strategy components of
dx

m(t) and of the population frequency components of dx
m(t),

respectively. More precisely, one of the things a does is update
the population frequencies from those of the previous timestep
t− 1 (which are stored in dx

m(t)) to the ones given by dz
m(t).

This means directly incorporating those population frequencies
into the {ui} components of dx

m(t+1). The other thing a does,
as before, is determine the joint strategy [x1, . . . , xN ] for time
t + 1. At the risk of abusing notation, as in self-play we can
write the generation of the new strategy of each agent i by
using a (potentially stochastic and/or time-varying) function
written ai. In sum then, an application of a to a common dt is
given by the simultaneous operation of all those N distinct ai

on dt, as well as the transfer of the joint population frequency
from dz(t). The result of these two processes is dx(t + 1).

Note that the new joint strategy produced by a may depend
on the previous time-step’s population frequencies, in gen-
eral. As an example, this corresponds to sexual reproduction
in which mating choices are stochastic, so that how likely
agent i is to mate with agent j depends on the population
frequencies of agents i and j.5 However in the simplest version
of evolutionary game theory, the joint strategy is actually
constant in time, with the only thing that varies in time
being the population frequencies, updated in f . If the agents
are identified with distinct genomes, then in this version of
evolutionary game theory reproduction is parthenogenic.

The choice of C depends on what one wishes to know
about a sequence dm and f . Typical analyses performed in
population biology and associated fields have C be a vector
with N components, each component j depending only on
the associated dt(j). As an example, typically in evolutionary
game theory each component is j’s population frequency at

5Obvious elaborations of the framework allow X to include relative rewards
between agents in the preceding round, as well as the associated population
frequencies. This elaboration would allow mate selection to be based on
current differential fitness between candidate mates, as well as their overall
frequency in the population.



6

t− 1.
In general in such biological analyses there is no notion of a

champion being produced by the search and subsequently pit-
ted against an antagonist in a “bake-off.” (Famously, evolution
is not teleological.) Accordingly, unlike in self-play, there is
no particular significance to results for alternative choices of
C that depend on f in such analyses. This means that so long
as we make the approximation, reasonable in real biological
systems, that x’s are never revisited, all of the requirements
of Example 1 are met. This means that NFL applies.

Some authors have promoted the use of the general coevo-
lution scenario as a means of designing an entity to perform
well, rather than as a tool for analyzing how a system happens
to develop. In general, whether or not NFL applies to such a
use will depend on the details of the design problem.

For example, say the problem is to design a value y that
maximizes a provided function g(y), e.g., design a biological
organ that can function as an optical sensor. Then, even if
we are in the general coevolutionary scenario of interacting
populations, we can still cast the problem as an instance of
the choices of Z, f , etc., of Example 1. In particular, for
our design problem C does not involve any “subsequent game
against an antagonist”, and C is independent of f . So the NFL
theorems hold; the extra details of the dynamics introduced
by coevolution don’t affect the validity of those theorems,
which is independent of such details. On the other hand,
say the problem is to design an organism that is likely to
avoid extinction (i.e., have a non-zero population frequency)
in the years after a major change to the ecosystem. For this
problem the coevolution scenario is a variant of self-play; the
“years after the major change to the ecosystem” constitute the
“subsequent game against an antagonist”. In this situation NFL
may not hold.

There are other ways one can express the general coevo-
lution scenario in our framework, i.e., other choices for the
roles of f , a, etc. The advantage of the one used here is how it
formally separates the different aspects of the problem. f plays
the role of the laws of Nature which map joint strategies and
population frequencies to new population frequencies (e.g.,
the replicator dynamics). All variability in how one might
update strategies — cross-over, mutation, etc. — are instead
encapsulated in a. In particular, if one wishes to compare two
such update schemes, without knowing anything about f ahead
of time or being able to modify it, that means comparing two
different a’s, while f is fixed and not something we can have
any knowledge about.

V. APPLICATION TO SELF-PLAY

In section III-A we introduced a model of self-play. In the
remainder of this paper we show how free lunches may arise
in this setting, and quantify the a priori differences between
certain self-play algorithms.

To summarize self play, we recall that agents (game strate-
gies) are paired against each other in a (perhaps stochastically
formed) sequence to generate a set of 2-player games. After
m distinct training games between an agent and its opponents,
the agent enters a competition. Performance of the agent is

measured with a payoff function. The payoff function to the
agent when it plays strategy x and it’s opponent plays x is
written as f(x) where x = (x, x) is the joint strategy. We
make no assumption about the structure of strategies except
that they are finite.

We define the payoff for the agent playing strategy x
independent of an opponent’s reply, g(x), as the least payoff
over all possible opponent responses: g(x) ≡ minx f(x, x).
With this criterion, the best strategy an agent can play is
that strategy which maximizes g (a maximin criterion) so that
its performance in competition (over all possible opponents)
will be as good as possible. We are not interested in search
strategies just across the agent, but more generally across the
joint strategies of the agent and its opponents. (Note that
whether that opponent varies or not is irrelevant, since we
are setting its strategies.) The ultimate goal is to maximize
the agents performance g.

We make one important observation. In general, using a
random pairing strategy in the training phase will not result in
a training set that can be used to guarantee that any particular
strategy in the competition is better than the worst possible
strategy. The only way to ensure an outcome guaranteed to
be better than the worst possible is to exhaustively explore all
possible responses to strategy x, and then determine that the
worst value of f for all such joint strategies is better than the
worst value for some other strategy, x′. To do this requires
that m is greater than the total number of possible strategies
available to the opponent, but even for very large m unless all
possible opponent responses have been explored we can not
make any such guarantees.

Pursuing this observation further, consider the situation
where we know (perhaps through exhaustive enumeration of
opponent responses) that the worst possible payoff for some
strategy x is g(x) and that another joint strategy x′ = (x′, x′)
with x 6= x′ results in a payoff f(x′) < g(x). In this case
there is no need to explore other opponent responses to x′

since it must be that g(x′) < g(x), i.e., x′ is maximin inferior
to x. Thus, in designing an algorithm to search for good
strategies, any algorithm that avoids searching regions that are
known to be maximin inferior (as above) will be more efficient
than one that searches these regions (e.g., random search).
This applies for all g, and so the smarter algorithm will
have an average performance greater than the dumb algorithm.
Roughly speaking, this result avoids NFL implications because
varying uniformly over all g does not vary uniformly over all
possible f , which are the functions that ultimately determine
performance.

In the following sections we develop this observation fur-
ther.

A. Definitions

We introduce a few definitions to explore our observation.
We assume that there are l strategies available to an agent, and
label these using X ≡ [1, · · · , l]. For each such strategy we
assume the opponent may choose from one of l(x) possible



7

strategies forming the space X(x).6 Consequently, the size of
the joint strategy space is |X| =

∑l
x=1 l(x). For simplicity

we take X(x) to be independent of x so that X = [1, · · · , l]
and |X| = ll. If the training period consists of m distinct joint
strategies, even with m as large as |X|−l, we cannot guarantee
that the agent will not choose the worst possible strategy in
the competition as the worst possible strategy could be the
opponent response that was left unexplored for each of the l
possible strategies.

As always, a sample of configurations (here configurations
are joint strategies) is a sample of distinct points from the input
space X , and their corresponding fitness values. For simplicity
we assume that fitness payoffs are a deterministic function
of joint strategies. Thus, rather than the more general output
space Z, we assume payoff values lie in a finite totally ordered
space Y . Consequently, the fitness function is the mapping
f : X → Y where X = X×X is the space of joint strategies.
As in the general framework, a sample of size m is represented
as

dm =
{(

dx
m(1); dy

m(1)
)

, · · · ,
(

dx
m(m); dy

m(m)
)}

where dx
m(t) =

{

d
x
m(t), dx

m(t)
}

and dy
m(t) = f(d

x
m(t), dx

m(t))
and t ∈ [1, · · · ,m] labels the samples taken. In the above defi-
nition d

x
m(t) is the t’th strategy adopted by the agent, dx

m(t) is
the opponent response, and dy

m(t) is the corresponding payoff.
As usual, we assume that no joint configurations are revisited,
and that an algorithm a defined exactly as in the classic
NFL case is used to generate sample sets dm. A particular
coevolutionary optimization task is specified by defining the
payoff function that is to be maximized. As discussed in [?],
a class of problems is defined by specifying a probability
density P (f) over the space of possible payoff functions. As
long as both X and Y are finite (as they are in any computer
implementation) this is conceptually straightforward.

There is an additional consideration in the coevolutionary
setting, namely the decision of which strategy to apply in the
competition based upon the results of the training samples.
In the framework we have outlined this choice is buried in
the performance measure through the function A(dm). Recall
that A(dm) is a function which, given a sample of games and
outcomes, returns a probability distribution over a subset of
X . In the case where A(dm) is deterministic and selects the
champion strategy x∗ based on dm then the subset output by
A is {(x∗, x) | x ∈ possible opponent responses to x∗}.

If A is deterministic the natural empirical measure of the
performance of the search algorithm a obtained during training
is

Ĉ = min
x∈A(dm)

T

dx
m

f(x).

Though we shall not pursue it here, it is a simple matter to
allow for non-deterministic A. In such cases A(dm) might
stochastically define an optimal strategy x∗ through specifica-
tion of dm-dependent probability density ρ(x∗|dm) over X . In
this situation, performance could be defined as the weighted

6Note that the space of opponent strategies varies with x. This is the typical
situation in applications to games with complex rules (e.g., checkers).

average
∑

x∗∈X

ρ(x∗|dm) min
x∈X(x∗)

f(x∗, x),

where the min over x is over possible opponent responses
to x∗. It is also straightforward to include a distribution over
opponent responses if that were known.

To summarize, search algorithms are defined exactly as
in classical NFL, but performance measures are extended to
depend both on f and A. The best a for a particular f and A
are those that maximize C.

The original version of NFL (for traditional optimization)
defines the performance differently because there is no oppo-
nent. In the simplest case, the performance of a (recall that
there is no champion-selecting procedure) might be measured
as C = maxt∈[1,m] d

y
m(t). One traditional NFL result states

that the average performance of any pair of algorithms is
identical, or formally,

∑

f P (C|f,m, a) is independent of a.7

A natural extension of this result considers a non-uniform av-
erage over fitness functions. In this case the quantity of interest
is
∑

f P (C|f,m, a)P (f) where P (f) weights different fitness
functions.

A result akin to this one in the self-play setting would state
that the unform average

∑

f P (C | f,m, a,A) is independent
of a. However, as we have seen informally, such a result cannot
hold in general since a search process with an a that exhausts
an opponent’s repertoire of strategies has better guarantees
than other search processes. A formal proof of this statement
is presented in section VI.

B. An Exhaustive Example

Before proving the existence of free lunches we provide a
small exhaustive example to illustrate our definitions, and to
show explicitly why we expect free lunches to exist. Consider
the case where the player has two possible strategies, i.e.,
X = {1, 2}, the opponent has two responses for each of
these strategies, i.e., X = {1, 2}, and there are two possible
fitness values, Y = {1/2, 1}. The 16 possible functions
are listed in Table I. We see that the maximin criteria we
employ gives a biased distribution over possible performance
measures: 9/16 of the functions have g =

[

1/2 1/2
]

, 3/16
have g =

[

1/2 1
]

, 3/16 have g =
[

1 1/2
]

, and 1/16 have
g =

[

1 1
]

where g =
[

g(x = 1) g(x = 2)
]

.
If we consider a particular population, say d2 =

{(1, 2; 1/2), (2, 2; 1)}, the payoff functions that are consistent
with this population are f9, f10, f13, f14 and the corresponding
distribution over g functions is δ(g − [1/2 1/2])/2 + δ(g −
[1/2 1])/2. Given that any population will give a biased
sample over g functions, it may not surprising that there are
free lunches. We expect that an algorithm which is able to
exploit this biased sample would perform uniformly better than
another algorithm which does not exploit the biased sample of
g’s. In the next section we prove the existence of free lunches
by constructing such a pair of algorithms.

7Actually far more can be said, and the reader is encouraged to consult [?]
for details.



8

(x, x) f1 f2 f3 f4 f5 f6 f7 f8 f9 f10 f11 f12 f13 f14 f15 f16

(1, 1) 1/2 1 1/2 1 1/2 1 1/2 1 1/2 1 1/2 1 1/2 1 1/2 1
(1, 2) 1/2 1/2 1 1 1/2 1/2 1 1 1/2 1/2 1 1 1/2 1/2 1 1
(2, 1) 1/2 1/2 1/2 1/2 1 1 1 1 1/2 1/2 1/2 1/2 1 1 1 1
(2, 2) 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1 1 1 1 1 1 1 1

x g1 g2 g3 g4 g5 g6 g7 g8 g9 g10 g11 g12 g13 g14 g15 g16

1 1/2 1/2 1/2 1 1/2 1/2 1/2 1 1/2 1/2 1/2 1 1/2 1/2 1/2 1
2 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1 1 1 1

TABLE I

EXHAUSTIVE ENUMERATION OF ALL POSSIBLE FUNCTIONS f(x, x) AND g(x) = minx f(x, x) FOR X = {1, 2}, X = {1, 2}, AND Y = {1/2, 1}. THE

PAYOFF FUNCTIONS LABELED IN BOLD ARE THOSE CONSISTENT WITH THE POPULATION d2 = {(1, 2; 1/2), (2, 2; 1)}.

VI. CONSTRUCTION OF FREE LUNCHES

In this section a proof is presented that there are free
lunches for self-play by constructing a pair of search algo-
rithms such that one explicitly has performance equal to or
better than the other for all possible payoff functions f . We
normalize the possible Y values so that they are equal to
1/|Y |, 2/|Y |, · · · , 1. Thus, regardless of how Y values are
assigned by the fitness function, our measure gives the fraction
of possible fitness values having lesser or equal fitness, and
thus forms a sort of normalized ranking.

As discussed earlier, we assume that all l agent strategies
offer the same number of possible opponent responses, l. We
consider algorithms that explore m = l distinct joint samples.
Agent strategies are labeled by x ∈ {1, · · · l} and opponent
responses are labeled by x ∈ {1, · · · l}. For simplicity we take
l = l.

In the following section we consider three different algo-
rithms and show different expected performance for all of
them. For those not interested in the details of the derivation
of the performances a summary of results appears at the end
of the section.

A. Algorithms Having Different Expected Performance

Algorithm a1 explores the joint strategies (1, 1), · · · , (1,m)
and algorithm a2 explores the joint strategies
(1, 1), · · · , (m, 1), i.e., a1 exhausts opponent responses
to x = 1 while a2 only samples one opponent response to
each of it’s m possible strategies. For the champion-selection
rule, A(dm), we apply the Bayes optimal rule: select the
strategy x that has the highest expected g(x) when averaged
uniformly over payoff functions consistent with the observed
population.

To start, we determine the expected performance of an algo-
rithm that does not have the benefit of knowing any opponent
responses. In this case we average the performance, g(x), for
any element x, over all |Y |ll functions.8 We note that for any
given agent strategy x, the |Y |ll possible function values at
the joint strategies (x, ·) are replicated |Y |ll/|Y |l = |Y |l(l−1)

times. The number of times that a g(x) value of 1− i/|Y | is
attained in the first |Y |l distinct values is (i + 1)l − il. Thus
the average g(x) value, which we denote 〈g〉, is

〈g〉 =

|Y |−1
∑

i=0

(

1−
i

|Y |

)

nl(i).

8Recall that |X| = ll.

where nl(i) =
[

(i + 1)/|Y |
]l
−
[

i/|Y |
]l

. This average value
is obtained for all strategies x. In the continuum limit where
|Y | → ∞ the expected value of g is simply

〈g〉 = 1/(1 + l).

This serves as a baseline for comparison; any algorithm that
samples some opponent responses has to do better than this.

Next we consider the algorithm a1, which exhaustively
explores all opponent responses to x = 1. Because m = l
there are |Y |l possible dm that this algorithm might see. For
each of these sample sets, dm, we need to determine g(1), and
the average g values for each of the other strategies x 6= 1. This
average is taken over the |Y |l(l−1) functions that are consistent
with dm. Of course we have g(1) = min dy

m and the expected
g(x) value for x 6= 1 are all equal to 〈g〉 (since we have
no samples from any strategies x 6= 1). Since the champion-
choosing rule maximizes the expected value of g the expected
performance of a1 for this sample set is max(min dy

m, 〈g〉).
Averaged over all functions the expected performance of a1

is
〈g〉1 =

1

|Y |l

∑

dy
m

max (min dy
m, 〈g〉)

where the sum is over all |Y |l possible samples. Converting
the sum over all samples into a sum over the minimum value
of the population we find

〈g〉1 =

|Y |−1
∑

i=0

max

(

1−
i

|Y |
, 〈g〉

)

nl(i)

=

b|Y |(1−〈g〉)c
∑

i=0

(

1−
i

|Y |

)

nl(i) + 〈g〉

|Y |−1
∑

i=d|Y |(1−〈g〉)e

nl(i).

If we define ig ≡ d|Y |(1− 〈g〉)e then we obtain

〈g〉1 =

ig−1
∑

i=0

(

1−
i

|Y |

)

nl(i) + 〈g〉

{

1−

(

ig
|Y |

)l
}

.

In the continuum limit we have

〈g〉1 = (1− 〈g〉)l 1 + 〈g〉l

1 + l
+ 〈g〉

(

1− (1− 〈g〉)l
)

=
1

1 + l

[

1 +

(

l

1 + l

)1+l]

where we have recalled the expected value 〈g〉 = 1/(1 + l).
We note that as l → ∞ the performance of algorithm a1 is
(1 + e−1) times that of 〈g〉.



9

The analysis of algorithm a2 is slightly more complex. In
this case each game occurs at a different x. For any given
observed set of samples the optimal strategy for the agent is
to choose that x∗ which has the largest fitness observed in the
population. With this insight, we observe that when summing
over all functions, there are |Y |l−1 possible completions to
max dy

m for the remaining l − 1 unobserved responses to x∗.
We must take the minimum over these possible completions to
determine the expected value of g. Thus, the expected payoff
for algorithm a2 when averaging over all functions is

〈g〉2 =
1

|Y |l

∑

dy
m

|Y |−1
∑

i=0

min
(

max dy
m, 1−

i

|Y |

)

nl−1(i).

We proceed in the same fashion as above by defining9 id ≡
|Y |(1−max dy

m) (which depends on dy
m) so that

〈g〉2 =
1

|Y |l

∑

dy
m

[

max dy
m

id−1
∑

i=0

nl−1(i) +

|Y |−1
∑

i=id

|Y | − i

|Y |
nl−1(i)

]

=
1

|Y |l

∑

dy
m

[

max dy
m

(

idy
m

|Y |

)l−1

+

|Y |−1
∑

i=i
d

y
m

|Y | − i

|Y |
nl−1(i)

]

.

The sum over populations is now tackled by converting it to a
sum over the |Y | possible values of max dy

m. The number of
sequences of length l having maximum value j is j l−(j−1)l.
Moreover, if max dy

m = j/|Y | then id = |Y | − j and so

〈g〉2 =

|Y |
∑

j=1

[

j

|Y |

{

1−
j

|Y |

}l−1

+

|Y |−1
∑

i=|Y |−j

|Y | − i

|Y |
nl−1(i)

]

nl(j −1)

The continuum limit in this case is found as

〈g〉2 = l

∫ 1

0

dyj yl−1
j

{

yj(1− yj)
l−1+

(l − 1)

∫ 1

1−yj

dy (1−y)yl−2

}

=

∫ 1

0

dyj yl
j(1−yj)

l−1+

∫ 1

0

dyj yl−1
j

−

∫ 1

0

dyj yl−1
j (1−yj)

l−1

= B(l + 1, l) + 1/l −B(l, l)

where B(x, y) is the beta function defined by B(x, y) =
Γ(x)Γ(y)/Γ(x + y). For large l the Beta functions almost
cancel and the expected performance for a2 varies as 1/l,
which is only slightly better than the performance of the
algorithm that does not have access to any training data.

Summary of results:

For reference we summarize these results, and the condi-
tions under which the results have been derived. We have
considered a two player game where the player and opponent
each have l possible strategies available to them. Training
algorithms sample m = l distinct games and their fitnesses.
Fitness values lie uniformly between 0 and 1, and measure

9There is no need to take the ceiling because id is automatically an integer.

the normalized ranking so that, e.g., the configuration having
fitness 1/2 is fitter than half of all possible fitnesses.

Performance is measured by the maximin criterion (i.e.,
the worst-case performance of the strategy against an oppo-
nent), and averaged over all possible fitness functions. Three
algorithms were considered: random search which random
selects l distinct training games; algorithm a1 which applies
a single given strategy and determines the opponents best
response to that strategy; and algorithm a2 which samples a
single opponent response to all its l possible strategies. In
all cases the champion strategy is selected with the Bayes
optimal rule which chooses the strategy having the highest
expected performance given the observed data. The expected
performance in each of these algorithms is:

Random:
1

1 + l

a1 :
1

1 + l

[

1 +

(

l

1 + l

)1+l]

a2 : B(l + 1, l) + 1/l −B(l, l)

where B(x, y) = Γ(x)Γ(y)/Γ(x + y).
Figure 1 plots the expected performance of a1, a2, and

random search as a function of l (recall that m = l = l).
Algorithm a1 outperforms algorithm a2 on average for all
values of l.

B. Performance Difference

Though a1 outperforms a2 on average, it is interest-
ing to determine the fraction of functions where a1 will
perform no worse than a2. This fraction is given by
|Y |−ll

∑

f θ
(

perf1(f) − perf2(f)
)

where perf1(f) is the per-
formance of algorithm a1 on payoff function f , perf2(f) is the
performance of algorithm a2 on the same f , and θ is a step
function defined as θ(x) = 1 if x ≥ 0 and θ(x) = 0 otherwise.
The Bayes optimal payoff for a1 for any given payoff function
f is10

perf1(f) =

{

minx f(1, x) if minx f(1, x) > 〈g〉

minx f(2, x) otherwise
.

Similarly, the performance of algorithm a2 is given by

perf2(f) = min
x

f(x∗2, x)

where x∗2 is the strategy having the highest fitness observed
in the sample games dm.

To determine the performance of the algorithms for any
given f we divide f into its relevant and irrelevant components
as follows:

j1
|Y |

≡ f(1, 1),
j2
|Y |

≡ f(2, 1)

k1

|Y |
≡ min

x
{f(1, x)|x 6= 1},

k2

|Y |
≡ min

x
{f(2, x)|x 6= 1}

n

|Y |
≡ max

x
{f(x, 1)|x 6= 1, 2},

p

|Y |
≡ min

x
{f(x∗2, x)|x∗2 6= 1, 2, x 6= 1}

10We have arbitrarily assumed that a1 will select strategy 2 if it does not
select strategy 1. This choice has no bearing on the result.



10

0 5 10 15 20 25 30
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

P
er

fo
rm

an
ce

PSfrag replacements

〈g〉
〈g〉1
〈g〉2

l

Fig. 1. Expected performance of algorithm a1 (indicated as 〈g〉1), which exhaustively enumerates the opponents response to a particular strategy, and
algorithm a2 (indicated as 〈g〉2), which samples only one opponent response to each strategy. For comparison, we also plot 〈g〉, which is the expected
performance of an algorithm that does no sampling of opponent responses.

In the definition of p, x∗2 is the strategy chosen by a2; if a2

does not choose strategy x∗2 = 1 or 2, the specific value of x∗2
is irrelevant. Given these definitions, the performances of the
two algorithms are

perf1(f) =
1

|Y |

{

min(j1, k1) if min(j1, k1) > |Y |〈g〉

min(j2, k2) otherwise

and

perf2(f) =
1

|Y |











min(j1, k1) if max(j1, j2, n) = j1

min(j2, k2) if max(j1, j2, n) = j2

min(n, p) otherwise

respectively.
In summing the above expressions over f we replace the

sum over f with a sum over j1, j2, k1, k2, n, and p using
the appropriate multiplicities. The resulting sums are then
converted to integrals in the continuum limit and evaluated
by Monte Carlo. Details are presented in Appendix A.

The results are shown in Figure 2, which plots the fraction
of functions for which perf1 ≥ perf2. This plot was generated
using 107 Monte Carlo samples per l value.

C. Other Champion-Selection Criteria

We have shown the existence of free lunches for self-play by
constructing a pair of algorithms with differing search rules a1

and a2, but with the same champion-selecting rule (select the
strategy with the highest expected g(x)), and showed different
performance. Unsurprisingly, we can construct algorithms with
different expected performance which have the same search
rules, but which have different champion-selecting rules. In
this section we provide a simple example of such a pair of
algorithms. This should help demonstrate that free lunches are
a rather common occurrence in self-play settings.

Each process of the pair we construct use the same search
rule a (it is not important in the present context what a is), but
different deterministic champion-selecting rules A.11 In both
cases a Bayesian estimate based on uniform P (f) and the dm

at hand is made of the expected value of g(x) = minx f(x, x)
for each x. Since we strive to maximize the worst possible
payoff from f , the optimal champion-selection rule selects the
strategy that maximizes this expected value while the worst
champion-selection rule selects the strategy that minimizes
this value. More formally, if E(C|dm, a, A) differs for the
two choices of A, always being higher for one of them, then
E(C|m, a,A) =

∑

dm
P (dm|a)E(C|dm, A) differs for the

two A. In turn,

E(C|m, a,A) =
∑

f,C

[C × P (C | f,m, a,A)× P (f)]

∝
∑

f,C

[C × P (C|f,m, a,A)]

for the uniform prior P (f). Since this differs for the two A,
so must

∑

f P (C | f,m, a,A).
Let g̃(x) be a random variable representing the value of g(x)

conditioned on dm and x, i.e., it equals the worst possible
payoff (to the agent) after the agent applies strategy x and
the opponent replies. In the example of section V-B we have
Eg̃(1) = 1/2 and Eg̃(2) = 3/4

To determine the expected value of g̃(x) we need to know
P (g̃(x) | x, dm) =

∑

f P (g̃(x) | x, dm, f)P (f) for uniform
P (f). Of the entire population dm only the subset sampled
at x is relevant. We assume that there are k(x, dm) ≤ m
such values.12 Since we are concerned with the worst possible

11The notation A is meant to be suggestive of the fact that A(dm) is the
x (first) component common to all joint configurations in A(dm).

12Of course, we must also have k(x, dm) ≤ l(x) for all populations dm.



11

0 5 10 15 20 25 30 35 40 45 50
0.62

0.64

0.66

0.68

0.7

0.72

0.74

PSfrag replacements

l

〈θ
(p

er
f 1
−

pe
rf

2
)〉

Fig. 2. The fraction of functions in the continuum limit where perf
1
≥ perf

2
The figure was generated with 107 Monte Carlo samples of the integrand for

each value of l.

opponent response let r(x, dm) be the minimal Y value
obtained over the k(x, dm) responses to x, i.e. r(x, dm) =
minx∈dx

m
dy

m(x, x). Since payoff values are normalized to lie
between 0 and 1, 0 < r(x, dm) ≤ 1. Given k(x, dm) and
r(x, dm), P (g̃ | x, dm) is independent of x and dm and so we
indicate the desired probability as πk,r(g̃).

In appendix B we derive the probability πk,r in the case
where all Y values are distinct (we do so because this results
in a particularly simple expression for the expected value of g̃)
and in the case where Y values are not forced to be distinct.
From these densities we the expected value of g̃(x) can be
determined. In the case where Y values are not forced to be
distinct there is no closed form for the expectation. However,
in the continuum limit where |Y | → ∞ we find (see appendix
C)

E(g̃(x) | x, dm) =
1− (1− r(x, dm))l(x)−k(x,dm)+1

l(x)− k(x, dm) + 1
. (5)

where we have explicitly noted that both k and r depend both
on the strategy x as well as the training population dm. As
shorthand we define Cm(x) ≡ E(g̃(x) | x, dm).

The best strategy given the training population is the deter-
ministic choice Abest(dm) = arg maxx Cm(x) and the worst
strategy is Aworst(dm) = arg minx Cm(x). In the example of
section V-B with the population of size 2, Abest(d2) = 2 and
Aworst(d2) = 1.

As long as Cm(x) is not constant (which will usually be
the case since the r values will differ) the performances of
the two champion-selecting rules will differ, and the expected
performance of Abest will be superior.

D. Better Training Algorithms

In the previous sections we constructed Bayes-optimal algo-
rithms in limited settings by using specially constructed deter-
ministic rules a and A. This alone is sufficient to demonstrate

the availability of free lunches in self-play contexts. However,
we can build on these insights to construct even better (and
even worse) algorithms by also determining (at least partially)
the Bayes-optimal search rule, (a,A), that builds out the
training set, and selects the champion strategy. That analysis
would parallel the approach taken in [?] used to study bandit
problems. and would further increase the performance gap
between the (best, worst) pair of algorithms.

E. The Role of Opponent “Intelligence”

All results thus far have been driven by measuring perfor-
mance based on g(x) = arg minx f(x, x). This is a very
pessimistic measure as it assumes that the agent’s opponent
is omniscient, and will employ the strategy most detrimental
to the agent. If the opponent is not omniscient and cannot
determine x∗ = arg minx f(x, x), how does this affect the
availability of free lunches?

Perhaps the simplest way to quantify the intelligence of
the opponent is through the fraction, α, of payoff values
known to the opponent. The opponent will use these known
values to estimate its optimal strategy x∗. The α = 1 limit
corresponds to maximal intelligence where the opponent can
always determine x∗ and, as we have seen, gives free lunches.
In the α = 0 limit the opponent can only make random replies,
and so that the expected performance of the agent will be the
average over the opponent’s possible responses.

One way to approach this problem is to build the opponent’s
bounded intelligence into the agent’s payoff function g and
proceed as we did in the omniscient case. If |X| is the number
of joint strategies, then there are

(

|X|
α|X|

)

possible subsets of
joint strategies of size α|X|.13 We indicate the list of possible
subsets as S(X,α|X|), and a particular subset by Si ∈ S. For

13We assume that α is an integral multiple of 1/|X|.



12

this particular subset, x∗ is estimated by selecting the best
response out of the Si payoff values known to the opponent.
Of course, it may be the case that there are no samples in Si

having the agent’s strategy x and in that case the opponent
can only select a random response. In this case the agent will
obtain the average payoff

∑

x f(x, x)/l(x). If we assume that
all subsets of size α|X| are equally likely, then the agent’s
payoff function against an opponent with bounded intelligence
is given by

gα(x) =

(

|X|

α|X|

)−1
∑

Si∈S(X,α|X|)

arg min
(x,x)∈Si

f(x, x).

This generalization reduces to the previously assumed g in the
maximally intelligent α = 1 case. In Table II the functions
g1/4, g2/4, g3/4, and g4/4 are listed for the example of
section V-B. As expected the payoff to the agent increases
with decreasing α (a less intelligent opponent). However, we
also observe that for the same population, d2, the average
[g(x = 1) g(x = 2)] values are

[

5/8 7/8
]

for α = 1/4,
[

29/48 41/48
]>

for α = 2/4,
[

9/16 13/16
]>

for α =

3/4, and
[

1/2 3/4
]>

for α = 4/4. For this population, d2

(a,Abest) continues to beat (a,Aworst) by the same amount
independent of α.

VII. CONCLUSIONS

We have introduced a general framework for analyzing NFL
issues in a variety of contexts. When applied to self-play we
have proven the existence of pairs of algorithms in which one
is superior for all possible joint payoff functions f . This result
stands in marked contrast to similar analyses for optimization
in non-self-play settings. Basically, the result arises because
under a maximin criteria the sum over all payoff functions
f is not equivalent to a sum over all functions minx f(·, x).
We have shown that for simple algorithms we can calculate
expected performance over all possible payoff functions and
in some cases determine the fraction of functions where one
algorithm outperforms another. On the other hand, we have
also shown that for the more general biological coevolutionary
settings, where there is no sense of a “champion” like there
is in self-play, NFL still applies.

Clearly we have only begun an analysis of coevolutionary
and self-play optimization. Many of the same questions posed
in the traditional optimization setting can be asked in this more
general setting. Such endeavors may be particularly rewarding
at this time given the current interest in the use of game theory
and self-play for multi-agent systems [?].

APPENDIX

A. Performance Comparison

In this appendix we evaluate the fraction of functions for
which a1 performs better or equal to algorithm a2 where a1

and a2 are defined as in Section VI-B.
The function θ

(

perf1(f)− perf2(f)
)

is equal to 1 if

cd1 + e1cd2 + e2cd1d2 + e1cd1 + cd2 + e3cd1d2

j1 1
j2 1
k1 (|Y | − k1 + 1)l−1 − (|Y | − k1)l−1

k2 (|Y | − k2 + 1)l−1 − (|Y | − k2)l−1

n nl−2 − (n− 1)l−2

p (|Y | − p + 1)l−1 − (|Y | − p)l−1

TABLE III

MULTIPLICITIES OCCURRING WHEN CONVERTING THE SUM OVER f TO A

SUM OVER THE ALLOWED VALUES OF j1, j2, k1, k2, l, AND p.

where c = (min(j1, k1) > |Y |〈g〉), d1 = (max(j1, j2, n) =
j1), d2 = (max(j1, j2, n) = j2), e1 = (min(j1, k1) ≥
min(j2, k2)), e2 = (min(j1, k1) ≥ min(n, p)), e3 =
(min(j2, k2) ≥ min(n, p)). In the above Boolean expression
we have used the condensed notation ab ≡ a∧b, a+b ≡ a∨b,
and a = ¬a. It is convenient to factor the Boolean expression
as

c
(

d1 + e1d2 + e2d1d2

)

+ c
(

e1d1 + d2 + e3d1d2

)

.

To give the fraction of functions where a1 performs better
than a2 this expression is to be summed over j1, j2, k1, k2,
n, and p with appropriate multiplicities. The multiplicities are
given in Table III.

In the continuum limit this sum becomes the integral
∫ 1

0

dj1

∫ 1

0

dj2

∫ 1

0

dk1 P (k1)

∫ 1

0

dk2 P (k2)

∫ 1

0

dnP (n)×

∫ 1

0

dpP (p)
{

c(d1+e1d2+e2d1d2)+c(e1d1+d2+e3d1d2)
}

where P (k1) = (l−1)(1−k1)
l−2, P (k2) = (l−1)(1−k2)

l−2,
P (n) = (l−2)nl−3, P (p) = (l−1)(1−p)l−2, and condition c
is modified to min(j1, k1) > 〈g〉. Though this integral is dif-
ficult to evaluate analytically, it is straightforward to evaluate
by Monte Carlo importance sampling of (j1, j2, k1, k2, n, p)
using the respective probability distributions. Samples from
P (u) = q(1− u)q−1 are obtained by sampling values v from
U(0, 1) and transforming so that u = 1− v1/q; samples from
P (w) = qwq−1 are obtained via w = v1/q .

B. Determination of πk,r(g̃): distinct Y

To determine πk,r(g̃) we first consider the case where all
Y values are distinct and then consider the possibility of
duplicate Y values. Though we only present the non-distinct
case in the main text we derive the distinct Y case here because
we can obtain a closed-form expression for the probability and
because it serves as a simpler introduction to the case of non-
distinct Y .

To derive the result we generalize from a concrete example.
Consider the case where |Y | = 10, l(x) = 5, and k = 3. A
particular instantiation is presented in Figure 3. In this case
r = 4/10, which is not the true minimum for responses
to x. The probability that r is the true minimum is simply
k/l(x). If r is not the true minimum then P (g̃|dm) is found
as follows. P (g̃ = 1/10|dm) is the fraction of functions



13

α f1 f2 f3 f4 f5 f6 f7 f8 f9 f10 f11 f12 f13 f14 f15 f16

1/4 1

2
, 1

2

3

4
, 1

2

3

4
, 1

2
1, 1

2

1

2
, 3

4

3

4
, 3

4

3

4
, 3

4
1, 3

4

1

2
, 3

4

3

4
, 3

4

3

4
, 3

4
1, 3

4

1

2
, 1 3

4
, 1 3

4
, 1 1,1

2/4 1

2
, 1

2

17

24
, 1

2

17

24
, 1

2
1, 1

2

1

2
, 17

24

17

24
, 17

24

17

24
, 17

24
1, 17

24

1

2
, 17

24

17

24
, 17

24

17

24
, 17

24
1, 17

24

1

2
, 1 17

24
, 1 17

24
, 1 1, 1

3/4 1

2
, 1

2

5

8
, 1

2

5

8
, 1

2
1, 1

2

1

2
, 5

8

5

8
, 5

8

5

8
, 5

8
1, 5

8

1

2
, 5

8

5

8
, 5

8

5

8
, 5

8
1, 5

8

1

2
, 1 5

8
, 1 5

8
, 1 1, 1

4/4 1

2
, 1

2

1

2
, 1

2

1

2
, 1

2
1, 1

2

1

2
, 1

2

1

2
, 1

2

1

2
, 1

2
1, 1

2

1

2
, 1

2

1

2
, 1

2

1

2
, 1

2
1, 1

2

1

2
, 1 1

2
, 1 1

2
, 1 1, 1

TABLE II

EXHAUSTIVE ENUMERATION OF ALL 16 POSSIBLE AGENT PAYOFFS, gα(x = 1), gα(x = 2), FOR BOUNDEDLY INTELLIGENT OPPONENTS HAVING

INTELLIGENCE PARAMETER α = 1/4, α = 2/4, α = 3/4, AND α = 4/4. SEE TABLE I FOR THE CORRESPONDING f FUNCTIONS AND FOR THE α = 1 g

FUNCTION. THE PAYOFF FUNCTIONS LABELED IN BOLD ARE THOSE CONSISTENT WITH THE POPULATION d2 = {(1, 2; 1/2), (2, 2; 1)}.

Y 1/10 2/10 3/10 4/10 5/10 6/10 7/10 8/10 9/10 10/10
f(x, ·) * * * * *
dy

m at x * * *
P (g̃|dm) 6/21 5/21 4/21 6/21 0 0 0 0 0 0

Fig. 3. Row 1 indicates the Y values obtainable on a particular payoff function f for each of the l(x) = 5 possible opponent responses. Row 2 gives the
Y values actually observed during the training period. Row 3 gives the probabilities of g̃ assuming a uniform probability density across the f which are
consistent with dm. The expected value of P (g̃|dm) is 2.48/10.

containing Y values at {1/10}∪d
y|x
m .14 Since the total number

of possibilities consistent with the data is
( |Y |−k

l(x)−k

)

this fraction

is
( |Y |−k−1

l(x)−k−1

)

/
( |Y |−k

l(x)−k

)

= (l(x) − k)/(|Y | − k). Similarly,

P (g̃ = 2/10|dm) is
( |Y |−k−2

l(x)−k−1

)

/
( |Y |−k

l(x)−k

)

because we know
that the function can not contain a sample having fitness less
than 2/10.

Thus, in the general case, we have

πk,r(g̃) =
1
(

a
b

)

{

θ(r − g̃)

(

a− |Y |g̃

b− 1

)

+ δg̃,r

(

a− |Y |r + 1

b

)}

where a = |Y | − k, b = l(x) − k, θ(x) = 1 iff x > 0, and
δg̃,r = 1 iff g̃ = r. Since it is easily verified that

(

a− |Y |r + 1

b

)

+

|Y |r−1
∑

g̃′=1

(

a− g̃′

b− 1

)

=

(

a

b

)

this probability is normalized correctly. The expected value of
g̃ is therefore

E(g̃|dm) =
1

|Y |
(

a
b

)

{

r

(

a− |Y |r + 1

b

)

+

|Y |r−1
∑

g̃′=1

g̃′
(

a− g̃′

b− 1

)}

.

Evaluating this sum we find

E(g̃|dm) =

[

|Y |

(

a

b

)]−1{(
a + 1

b + 1

)

−

(

a + 1− |Y |r

b + 1

)}

=
|Y |−1

b + 1

(a + 1)b+1 − (a + 1− |Y |r)b+1

ab

where the falling power, ab, is defined by ab ≡ a(a− 1)(a−
2) · · · (a−b+1). For the case at hand where |Y | = 10, l(x) =
5, and k = 3 we have a = 7 and b = 2. Since r = 4/10 the
expected value is E(g̃|dm) = 1

10

(

83−43
)

/
(

3 ·72
)

= 52/21 ≈
2.48/10.

14By d
y|x
m we mean the set of Y values sampled at x.

C. Determination of πk,r(g̃): non-distinct Y

In Figure 4 we present another example where l(x) = 5,
k = 3, and r = 4/10. In this case, however, there are duplicate
Y values. The total number of functions consistent with the
data is |Y |l(x)−k = |Y |b. In this case it is easiest to begin
the analysis with the case g̃ = r. The number of functions
having the minimum of the remaining b points equal to |Y |
is 1. Similarly, the number of functions having a minimum
value of (|Y |−1) is 2b−1. 2b counts the number of functions
where the b function values can assume one of Y or Y − 1.
The −1 accounts for the fact that 1 of these functions has a
minimum value of Y and not Y − 1. Generally, the number
of functions having a minimum value of r′ is (|Y | − |Y |r′ +
1)b − (|Y | − |Y |r′)b. All r′ ≥ r will result in the minimal
observed value r so that the total number of functions having
an observed minimum of r is

|Y |
∑

r′=r

[

(|Y | − |Y |r′ + 1)b− (|Y | − |Y |r′)b
]

= (|Y | − |Y |r + 1)b.

Thus the probability of g̃ = r is

πk,r(g̃ = r) = |Y |−b(|Y | − |Y |r + 1)b.

We turn now to determining the probabilities where g̃ < r.
Of the b remaining Y values the probability that the mini-

mum is g̃ is

πk,r(g̃) = |Y |−b
{

(|Y | − |Y |g̃ + 1)b − (|Y | − |Y |g̃)b
}

.

Combining these results we obtain the final result

πk,r(g̃) = θ(r − g̃)
{(

1− g̃ +
1

|Y |

)b

− (1− g̃)b
}

+

δr,g̃

[

1− r +
1

|Y |

]b

.



14

Y 1/10 2/10 3/10 4/10 5/10 6/10 7/10 8/10 9/10 10/10
f(x, ·) * * ** *
dy

m at x * **
P (g̃|dm) 19/100 17/100 15/100 49/100 0 0 0 0 0 0

Fig. 4. Row 1 indicates the Y values obtainable on a particular payoff function f for each of the l(x) = 5 possible opponent responses. Row 2 gives the
Y values actually observed during the training period. Row 3 gives the probabilities of g̃ assuming a uniform probability density across the f which are
consistent with dm. Note that unlike Fig. 3 there are some duplicate Y values. The expected value of P (g̃|dm) is 2.94/10.

Given πk,r(g̃) the expectation value of g̃ is found as

E(g̃|dm) = r
(

1− r +
1

|Y |

)b

+

r−1/|Y |
∑

g̃=1/|Y |

g̃
{(

1− g̃ +
1

|Y |

)b

− (1− g̃)b
}

=

r
∑

r′=1/|Y |

(

1−
(

r′ −
1

|Y |

)

)b

where we have cancelled appropriate terms in the telescoping
sum. If we define Sk(n) ≡

∑n
i=1 ik then we can evaluate the

last sum to find

E(g̃|dm) = |Y |−b
{

Sb(|Y |)− Sb(|Y | − |Y |r)
}

.

Though there is no closed form expression for Sk(n), a
recursive expansion of Sk(n) in terms of Sj(n) for j < k
is

Sk(n) =
1

k + 1

{

nk+1 −

k−1
∑

j=0

(−1)k−j

(

k + 1

j

)

Sj(n)

}

.

The recursion is based upon S0(n) = n.
In the concrete case above where |Y | = 10, r = 4/10, and

b = 2 the expected value is 1
10294/100 = 2.94/10.

D. Continuum Limit

In the limit where |Y | → ∞ we can approximate the
expectation E(g̃|dm) given by the sum

E(g̃|dm) =
r
∑

r′=1/|Y |

(

1− (r′ − 1/|Y |)
)b

=

r−1/|Y |
∑

r′=0

(1− r′)
b

by the integral

E(g̃|dm) =

∫ r

0

dr′ (1− r′)
b

=
1

b + 1

{

1− (1− r)b+1
}

.

(6)
The prediction made by this approximation at |Y | = 10, r = 4,
and b = 2 is 2.61/10 as opposed to the correct result of
2.94/10. However, had |Y | = 1000 and r = 400 the accurate
result would have been 261.65/1000 while the approximation
gives 261.3/1000.


