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Abstract

This paper studies the evolution of firms’ beliefs in a dynamic model of technol-
ogy adoption. Firms play a simple variant of the classic two-armed bandit problem,
where one arm represents a known, deterministic production technology and the
other arm an unknown, stochastic technology. Firms learn about the unknown
technology by observing both private and public signals. I find that because of the
externality associated with the public signal, the evolution of beliefs under a mar-
ket equilibrium can differ significantly from that under a planner. In particular,
firms experiment earlier under the planner than they do under the market equilib-
rium and thus firms under the planner generate more information at the start of
the model. This intertemporal effect brings about the unusual result that, on a per
period basis, there exist cases where firms in a market equilibrium over-experiment
relative to the planner in the latter periods of the model.
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1 Introduction

When a new technology is introduced into the marketplace, firms typically are unsure

about its true quality. Over time, firms learn through direct and indirect means how the

new technology compares with the old, existing one. The technology adoption literature

has studied the diffusion of information under restrictive informational constraints. Firms

either all hold the same beliefs about the new technology, or they hold heterogeneous

beliefs but learn and act in isolation. As shown in the herding literature however, the

combination of both heterogeneous beliefs and learning from others creates interesting

and potent effects on the sequential generation of information in an economy. This

paper adds to the literature by constructing a dynamic model of technology adoption

that incorporates both heterogeneous beliefs and social learning and by studying the

speed of adoption within such an environment.

The model in this paper embeds the classic two-armed bandit problem into a finite-

period equilibrium model of technology adoption.1 The adoption decision that firms face

is to determine which technology, or arm, to use to produce output each period. One

arm represents the “old” technology and has a known, deterministic output distribution

common to all players. The second arm represents the “new” technology and has an

unknown, stochastic output distribution common to all players. The mean output of the

stochastic technology, however, can be either higher or lower than that of the determin-

istic technology. There are no costs to operating either technology, nor are there costs

to switching from one technology to the other between periods.

This model departs from the usual two-armed bandit analysis through its informa-

tional structure. I assume that agents can observe only their own individual output and a

noisy signal of aggregate output. Experimenting with the new technology and observing

individual output conveys the usual learning-by-doing effect. As firms can observe only

their own output, this learning-by-doing effect is a private signal that generates hetero-

geneous beliefs among firms. This effect encourages firms to adopt the new technology,

as information has positive value.

In contrast to the individual, private aspect of experimentation, the noisy signal of

1Two good sources on one- and two-armed bandit problems are Rothschild (1974) and Berry and
Fristedt (1985).
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aggregate output is a public signal observed by all agents. Aggregate quantity contains

useful information as its value depends upon the true mean of the stochastic technology.

Intuitively, a signal of unexpectedly high aggregate quantity is more likely to occur if the

new, stochastic technology is superior to the old technology. Because it is observed by all

firms regardless of their actions, the public signal creates an informational externality.

As such, this signal generates the usual free-rider effect found in models with public

signals. Unlike the typical bandit problem, however, the public signal is not an ad

hoc specification but a function of the model equilibrium and the distribution of firms’

beliefs. As the informational value of the public signal varies with the measure of firms

that experiment with the new technology, the learning interaction among firms is tied

to economic fundamentals. A key feature of the public signal is the increase in its

informational value as the measure of adopting firms rises.

To solve the firm’s problem in this rich informational environment, I define an anony-

mous sequential game. Under this equilibrium, the following cutoff rule applies. Firms

holding beliefs greater than the cutoff belief adopt the stochastic technology; firms hold-

ing beliefs below the cutoff belief choose the deterministic technology; and firms holding

the cutoff belief employ a mixed strategy.

To determine whether the speed with which firms adopt the stochastic technology is

efficient, I define and solve the social planner’s problem. Because firms hold heteroge-

neous beliefs and there is aggregate uncertainty, I cannot formulate a classic planner’s

problem that maximizes expected aggregate quantity. So instead, I define an uninformed

social planner’s problem, where the planner seeks to maximize each firm’s expected out-

put conditional on the firm being no worse off relative to the market equilibrium out-

come. In essence, an uninformed planner coordinates firms’ actions so as to implement

a Pareto-optimal outcome that Pareto dominates the market outcome. The uninformed

social planner is the relevant point of comparison, as this formulation maintains the same

informational constraints that firms face under a market equilibrium.

Firms’ expected output increases under a social planner, because the planner can

coordinate firms’ experimentation strategies and take full advantage of the informational

externality associated with the public signal. To show that the standard result holds is

easy: ceteris paribus, the planner induces a higher level of adoption among firms in a
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given period than the market equilibrium does. More interesting, this model highlights

how the planner shifts the generation of information to earlier periods in the model

because information is more valuable the earlier it is generated. As a result of this

intertemporal substitution, the planner induces a lower level of experimentation than

firms under a market equilibrium in later periods of the model. This finding is at odds

with models with more restrictive informational frameworks, which predict that firms

always under-experiment relative to the social planner.

The under-adoption result is driven by two separate forces. First, the informational

externality of the public signal results in the planner’s use of a different experimentation

strategy relative to the market equilibrium. Consequently the sequential generation of

information across these two regimes differs, as does, therefore, the evolution of aggre-

gate beliefs across the two regimes. Second, the existence of private signals ensures that

firms hold heterogeneous beliefs. This heterogeneity and the nonmonotonic return on

information across beliefs imply that firms vary in the way they value additional infor-

mation. In the extreme, firms that believe that the risky technology is good or bad

with 100 percent probability do not value additional information. Hence, I can construct

a case in which the social planner, relative to the market equilibrium, generates more

information through higher experimentation, in the initial periods of the model. As a

consequence, in the later periods of the model, firms under the planner place less value

on additional information, and as a result initiate less experimentation than firms in a

market equilibrium.

This paper builds on three bodies of literature. The first is the field of social learning.

I use a framework close to Bolton and Harris (1999), who examine a multiperiod, mul-

tiplayer two-armed bandit problem and explore the strategic interactions among agents.

As they did in their paper, I try to answer the same basic questions about the speed

and diffusion of information among agents, but I do using an environment with hetero-

geneous beliefs and without strategic effects. I consider an economy with a measure 1 of

agents, resulting in perfect competition in information, as no single agent can influence

the aggregate outcome. This simplification allows for a more-complex modeling of the

public signal and makes an environment with both private and public signals tractable.

This additional complexity allows us to analyze the efficient dissemination of information
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in a world with heterogeneous beliefs.

Second is the literature on technology adoption under uncertainty. Using a two-

armed bandit framework where each arm has an unknown output distribution, Jensen

(1983) analyzes the belief dynamics of firms when they have access to private signals.

He demonstrates that a simple learning-by-doing mechanism will generate heterogeneous

beliefs, resulting in an ogive-shaped diffusion curve. Unlike this paper, Jensen (1983) does

not incorporate informational externalities and so predicts that firms learn efficiently.

Rob (1991) establishes that, in an ad hoc model of entry, a public signal can also generate

gradual learning even when beliefs are homogeneous. In addition, he shows that by

internalizing the informational externality associated with the public signal, the social

planner will induce a higher level of entry relative to firms in a market equilibrium,

ceteris paribus. Furthermore, he proves that the planner will always choose a higher

level of entry throughout all periods of the model. The present paper builds upon Rob’s

result by highlighting a subtle inefficiency in the rate of adoption in competitive markets

– the slower generation of information. I show how the planner wants not only to induce

more adoption to take advantage of the informational externality of the public signal but

also to make firms adopt earlier in the model because information is more valuable the

sooner it is revealed.

Third is the work on herding/information cascades by Banerjee (1992), Bikhchandani,

Hirshleifer, and Welch (1992), and more recently Dasgupta (2002). As is done in the

present paper, this field of research studies the sequential generation of information and

its effects on agents’ adoption, or entry, decisions. In addition, the previous papers study

agent behavior when both private and public signals exist. Unlike my paper, however,

the herding literature focuses on certain inefficiencies in the generation of information

that do not exist within this paper’s framework.

2 A Three Period Example

In this section I describe a three period example of the model. After outlining the

parameter values of the model, I intuitively describe the firm’s problem and present the

example’s results.
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2.1 Environment

There is a measure 1 of firms producing one good, where each firm seeks to maximize

output. The model has three periods, in each of which each firm decides which of two

production technologies to use. A firm’s objective is to produce the most output over all

three periods. The first technology is “safe”, always producing Y . The second technology

is “risky”, producing µ ∈ {µ, µ}, where µ < Y < µ. The probability distribution over µ

depends upon a parameter s ∈ {L,H}. Thus, the output of the deterministic technology

is known and common to all firms, whereas the output of the stochastic technology is

unknown and common to all firms. I assume that Y = 0.5, µ = 1, and µ = 0. I impose

symmetry on the distribution of s, and assume that Pr(µ|s = H) = Pr(µ|s = L) = 0.7.

Letting Ys denote the conditional expected output from using the stochastic technology,

the parameter choices imply that YL = 0.3 and YH = 0.7. In seeking to maximize output,

the firm needs to determine which production technology is better. Under the chosen

parameters, the safe technology is better if s = L and worse if s = H .

There are no costs involved with production nor with switching technologies. Ag-

gregate uncertainty is present in this environment as the parameter s is unknown. This

parameter has the same value over all three periods but is unobserved by the firm.

Firms have priors, denoted γ, over s ∈ {L,H}. As s can take only two values, let

γ = Pr(s = H).

Firms learn about s through two channels. First, they can experiment with the

stochastic technology and observe their individual output. Firms only can observe their

own output, and so this information is a private signal of s. Firms use Bayes rule to

update their beliefs over s. Given the prior belief γ, let γ(γ) denote a firms’ posterior

belief after observing µ. Similarly, let γ(γ) denote a firm’s posterior belief after observing

µ, and note that Bayes rule implies that γ < γ < γ for γ ∈ {0, 1}. The second channel of

learning occurs through a noisy signal of aggregate quantity, Q̃, which is observed at the

end of the period. Regardless of their actions, all firms see the same signal, making Q̃ a

public signal of s. As described in more detail later, Q̃ = Q + ε, where Q is the actual

aggregate quantity produced, and ε ∼ U [−b, b], where b > 0. The uniform distribution

of ε makes this model tractable, as it reduces the informational gain of the public signal

to two extremes: either firms learn the true value of s with certainty after observing Q̃,
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or they learn nothing after observing Q̃. In this example, the upper and lower bound

of the uniform distribution, b, is equal to 0.6. This interval is a large enough to ensure

that the probability of learning the true value of s from the public signal, denoted p̃, is

less than one. The probability that a firm will learn from the public signal is a function

of all firms’ actions. As section 3 will show, the more firms that adopt the stochastic

technology, the higher the probability that Q̃ reveals the true value of s. In other words,

the strength of the public signal is increasing in the measure of adopting firms.

With the public signal, the firm’s problem is a mixture of learning-by-doing and social

learning. The major forces at work, however, can be described intuitively by using the

framework of the firm’s static problem. This problem is

V (γ) = max
e∈[0,1]

{
(1 − e)Y + e(γYH + (1 − γ)YL)

}
, (1)

where e is the adoption strategy of the firm. Here, the firm compares the output from

the deterministic technology against the expected output from the stochastic technology.

The decision rule is a cutoff belief, above which the firm uses the stochastic technology

with probability 1. At the cutoff belief, the firm is indifferent between using either

technology. Below the cutoff, firms adopt the stochastic technology with probability 0.

In a multiperiod problem with learning, it is significant that V is increasing and

convex in γ. Attaching a signal of s to the stochastic technology means that the adopting

firm’s next-period belief will be either γ or γ. Bayes rule implies that γ < γ < γ and

γ[1−α(γ)] + γα(γ) = γ, where α(γ) is the prior probability of observing µ. By Jensen’s

inequality, the convexity of V tells us the sum of V (γ) and V (γ), weighted by the

probability of observing µ and µ, is greater than V (γ); information increases the next

period’s expected output. Although information is valuable, its value is not monotonic in

γ. Those firms that have ‘strong’ beliefs, with γ close to 0 or 1, gain less from additional

information than firms with γ close to 0.5.

The public signal blunts the return from the stochastic technology. This signal reveals

the true value of s with some positive probability. Thus, the learning benefits from

observing the stochastic technology accrue only when the public signal is uninformative.

Through the public signal, the adoption decisions of all firms influence the decision of

an individual firm. This influence complicates the notation required to formally describe
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the firm’s problem. The formal description adds little intuition, and so it appears in the

latter part of the paper. Consequently, in this example I will not lay out the firm’s full

problem and will only touch upon the equilibrium concept used in the model.

The equilibrium concept used in this model is an anonymous sequential game (ASG)

introduced by Jovanovic and Rosenthal (1988). In an ASG, all firms pursue output-

maximizing strategies that are best responses to all other firms’ optimal strategies. The

equilibrium is of an anonymous nature in that firms care only about the distribution of

firms’ beliefs, not about the individual identities of the firms on the distribution. The

state space for the firm’s problem, then, is the aggregate distribution of firms’ beliefs. In

the first period of the problem, the distribution of firms’ beliefs is simply the initial prior

that all firms hold, which I assume is a point mass known to all firms. The distribution of

beliefs in the second period, however, depends upon all firms’ actions as well as upon the

value of s. In equilibrium, firms can rationally deduce all other firms’ adoption decisions.

There is, however, uncertainty over whether 70 percent of adopting firms observed µ or

µ. Conditional on s, all firms agree on the aggregate distribution of firms’ beliefs. Firms

disagree, however, on the probability that s = H . This disagreement can be sustained

in equilibrium, as each firm is too small to affect the aggregate distribution of beliefs.

As a result, the state space for the firm’s problem consists of three elements: the firm’s

belief about the value of s, the distribution of firms’ beliefs conditional on s = L and

the distribution of firms’ beliefs conditional on s = H .

Later in the paper, I fully specify the firm’s problem and fully define an ASG. Here

one needs only to know that there is a unique equilibrium and that in every period the

firm’s policy rule is a cutoff function.

2.2 Solving the Model

The first step in solving the model is defining the set of feasible beliefs that firms can

hold in all periods of the model. I assume that firms start the model holding the same

prior belief, γ = 0.45, and, for simplicity, do not discount.2

2There is a range of prior beliefs for which the main results of this paper hold. With all other
parameters held fixed, the use of any prior belief with a point mass in the range of 0.442 to 0.456 will
generate the main over-adoption results of this paper. In addition, the main results of this paper can
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Table 1: Set of Feasible Beliefs, Pr(s = H)

1st Period 2nd Period 3rd Period
1 1

.82
.66 .66

.45 .45 .45
.26 .26

.13
0 0

As discussed before, the timing of the model is such that firms choose which tech-

nology to use, produce output, and then observe their individual output and the noisy

signal of aggregate output. After observing the signals of s, firms update their beliefs

and enter the next period. Given an initial belief, firms could hold five possible beliefs

in the second period, and seven in the third. Table 1 displays the set of feasible beliefs

in all three periods. At the end of the first period, all firms observe a public signal that

may reveal the true value of s. Hence, firms’ beliefs at the beginning of the second period

could equal 0 or 1. When the public signal is uninformative, the firms that adopt the

stochastic technology learn about s by observing their individual output. Under Bayes

rule, a firm’s possible posterior beliefs are either 0.66 or 0.26, depending on whether the

firm observed µ or µ, respectively.3 The firms that use the safe, deterministic technology

learn nothing and so continue to hold their prior belief of 0.45. In the third period,

the set of feasible beliefs continues to expand in this fashion. This set increases only by

two elements, as under Bayes rule those firms that observe both µ and µ end up with a

posterior belief equal to their initial prior belief, regardless of the order in which those

outputs are observed.

Using the set of possible beliefs and the assumed parameters, I solve the firm’s prob-

lem through backward induction. Solving the firm’s problem is difficult because the

second period’s state space, the two distributions of aggregate beliefs conditional on s, is

be generated for the case in which firms discount the future.
3The formula used to derive these posterior beliefs is later provided in equation 5.
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Figure 1: Second Period Distribution of Firms’ Beliefs under an ASG
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large. Standard computational techniques, however, can surmount this problem. These

details are described in appendix A.1.

2.3 Results

The first period’s cutoff belief is 0.45, the prior belief that all firms hold. All firms

employ the same mixed strategy of adopting the stochastic technology with 94 percent

probability. Given an uninformative public signal, this adoption strategy results in the

second-period conditional distributions of aggregate beliefs charted in figure 1. As shown

in this figure, measure 0.94 of firms adopt, receive a private signal and update their prior

beliefs. For the case in which s = L, 30 percent of adopting firms observe µ. As a result,

measure 0.28 = 0.3 ∗ 0.94 of firms hold the posterior belief γ = 0.66. The remaining

70 percent of adopting firms observe µ and hold the posterior γ = 0.26. Finally, firms

that do not adopt, and so learn nothing, enter the second period with their initial prior,

γ = 0.45. The symmetry in the model causes the distribution of beliefs when s = H to

be the mirror image of the distribution of beliefs when s = L.

In the second period, the conditional distributions of beliefs described above result in

the optimal policy rule that all firms with γ > 0.44 adopt the stochastic technology. Thus

all but those firms with γ = 0.26 adopt the stochastic technology. As shown in table 2, a

measure of 0.34 = 0.06+0.28 firms adopt the stochastic technology in the second period,

given s = L. For s = H the measure of adopting firms is 0.72 = 0.06 + 0.66.
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Table 2: Measure of Firms Adopting

Period ASG SP Difference
1 .94 1.00 -.06

s = L 2 .34 .30 .04
3 .10 .09 .01
1 .94 1.00 -.06

s = H 2 .72 .70 .02
3 .50 .49 .01

Note: ASG stands for anonymous sequential game,
and SP stands for social planner.

In the third and final period, the firm’s problem reduces to a static problem. Given

the symmetry of the parameter assumptions, the cutoff belief is γ = 0.5. Given firms’

adoption strategies in the second period, this policy rule results in measure 0.1 firms

adopting the risky technology in the third period, if s = L. If s = H , measure 0.5 firms

adopt.

2.4 Social Planner’s Problem

To analyze the efficiency of firms’ adoption decisions in an ASG, a comparable social

planner’s problem must be defined. The standard social planner’s problem, however,

is not applicable in this environment. As firms hold heterogeneous beliefs and the true

aggregate distribution of beliefs is unknown, which belief the planner should hold and how

that belief is updated are unclear. If a planner can observe all firms’ individual output,

then for any positive measure of adopting firms the planner will learn the true value of s

after one period. To make the planner’s problem an interesting comparison to the firm’s

problem under an ASG, I define an uninformed social planner’s problem. As detailed

later, this type of planner’s problem reduces to coordinating firms’ adoption decisions so

that the resulting outcome is Pareto-optimal and Pareto dominates the outcome under

an ASG. Under an uninformed social planner, firms are able to pursue adoption strategies

that take advantage of the externalities inherent in models with public signals.
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Figure 2: Second Period Distribution of Firms’ Beliefs under an SP
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The optimal adoption strategies under this planner’s problem are, as in an ASG,

cutoff beliefs. As before, when firms hold the cutoff belief, their optimal strategy is a

mixed strategy (see theorem 2 later in the paper). As with an ASG, I solve for the

planner’s adoption strategies by using backward induction. An additional twist to the

planner’s problem is the lack of a unique equilibrium; however, for the parameters chosen

in this example, there is a unique solution.4

Under a social planner, the optimal adoption strategy is for firms to adopt the risky

technology with probability 1. Assuming an uninformative public signal, this adoption

strategy results in the second-period conditional aggregate distribution of beliefs charted

in figure 2, which shows all firms massed at γ = 0.26 and γ = 0.66. Not surprisingly,

the optimal adoption strategy in the second period is for those firms with the belief γ to

adopt the stochastic technology with probability 1, and for those holding γ to use the

safe technology. As shown in table 2, this adoption strategy implies that the measure of

firms adopting the risky technology in the second period is 0.3 if s = L. For s = H , this

measure of adopting firms is 0.7.

As shown in table 2, both measures of adoption are lower than those under the

ASG equilibrium. Hence, the planner, in the first period, induces a higher level of

experimentation in the first period, but in the second period dictates a lower level of

experimentation for the case in which the public signal is uninformative. In essence,

4There is a unique solution in this example because in the first period the optimal adoption strategy
is a corner solution — everyone adopts with probability one. See appendix A.1 for more details.
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the planner has firms experimenting earlier to generate more information about s at

the beginning of the model. Relative to the ASG, this earlier experimentation not only

increases the strength of the public signal in the first period but also raises the variance of

the second period aggregate distribution of beliefs. Under a social planner, no firms hold

the initial prior — a belief where the return on observing the private signal is relatively

high. As a consequence, firms in the second period strongly believe either that s = H

or that s = L. This strong belief results in less overall experimentation in the second

period, than under an ASG.

With no dynamics in the last period of the model, the planner uses the same cutoff

belief of 0.5 that firms use under an ASG. Under this policy, the planner continues to

underexperiment relative to firms in an ASG (see table 2).

Summing over all three periods, the planner induces a higher measure of firms to

adopt the stochastic technology. In addition, by having significantly more firms adopt

in the first period, the planner increases the odds that the public signal will be more

informative in the initial period. When the public signal is uninformative, however, the

generation of information under the planner results in firms experimenting less in later

periods of the model relative the ASG equilibrium.

The remainder of this paper formally describes the model.

3 The Model

In this section, I formally describe the environment of the model and state the firm’s

technology-adoption problem. I then define an equilibrium.

3.1 The Environment

Given the environment in the example, the following generalities apply. The model has

T periods, and the probability distribution over µ is

1. P (µ|s = H) = ψ,

2. P (µ|s = L) = ψ, and
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3. 0.5 < ψ < 1,

where P (A) is the probability of the occurrence of event A occurring. These assumptions

imply that when s = H , a firm is more likely to produce µ than µ. In defining Ys =∑
µ∈{µ,µ} µ · P (µ|s), I assume values of µ and µ such that

4. YL < Y < YH, and

5. (Y − YL) = (YH − Y ).

Thus the stochastic technology has an expected output higher than that of the safe

technology only if s = H . The symmetry simplifies solving the model.

Aggregate uncertainty exists in this environment because the parameter s is unknown.

Firms have priors, denoted γ, over s ∈ S. As S is a two-element set, I let γ = P (s = H).

The aggregate distribution of firms’ beliefs is denoted δ, and the distribution of firms’

beliefs conditional on s is δs.

3.2 The Firm’s Problem

The firm’s problem is to maximize total discounted quantity produced over T periods. In

each period, firms make their adoption decisions, produce output, and then receive their

private and public signals. In all but the last period, learning has value in as much as it

provides information about the stochastic technology that is useful for future adoption

decisions. In this section, I first explain how firms learn and then describe the firm’s

dynamic technology adoption problem.

3.2.1 Learning

The central feature of the firm’s problem is in updating the firm’s beliefs about the pa-

rameter s. As detailed earlier, firms learn by using the risky technology and by observing

a public signal of aggregate quantity.

To model how a firm learns in this environment, I use a variation of the ASG frame-

work. Firms begin the model knowing the initial distribution of aggregate beliefs, δ̂,

which I assume is a point mass. Other firms’ beliefs and actions are inputs into the firm’s
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problem, as they influence the strength of the public signal. Over the course of the model,

firms observe a sequence of public signals and receive an individual sequence of private

signals. To track the evolution of the aggregate distribution of beliefs, a firm needs to in-

fer which firms are experimenting with the stochastic technology. Let the distributional

strategy τt(γ; δ̂, τ
t, Q̃t) ∈ [0, 1] provide such a description, where τ t = {τ0, τ1, . . . , τt−1}

and Q̃t = {Q̃0, Q̃1, . . . , Q̃t−1}. Given the initial distribution of beliefs, the distributional

strategy details the adoption strategy of a firm with belief γ given the history of past

adoption strategies and of past public signals. When τt is equal to 0, the firm’s strategy

is to adopt the stochastic technology with probability 0. Two sequences, (τ t, Q̃t), charac-

terize the state space at time t, given δ̂. These sequences allow each firm to deduce how

the conditional aggregate distributions of firms’ beliefs evolve, given the initial distribu-

tion of firms’ beliefs. Hence, an alternative characterization of the state space is the pair

of aggregate distributions of firms’ beliefs conditional on s, (δL, δH). Naturally, as firms

differ on the probability that s = H , they disagree on the unconditional distribution of

beliefs. Notational, it is simpler to use the pair of conditional distributions of beliefs to

describe the state space rather than the sequences of τ and Q̃. Let {δs} = (δL, δH) and

then re-define the distributional strategy as τ(γ; {δs}), dropping the dependence on δ̂.

Using the distributional strategy, I can define a firm’s expectations of aggregate quan-

tity and so specify how firms learn from the public signal. Aggregate output, conditional

on s, is given by

Qs(τt, {δs}) = Y

∫ 1

0

[1 − τt(x; {δs})]δs(x)dx+ Ys

∫ 1

0

τt(x; {δs})δs(x)dx. (2)

This function sums up each firm’s expected output to arrive at a deterministic aggregate

quantity, conditional on s and (δL, δH). The first part of Qs aggregates the output of

firms using the deterministic technology, and the second part sums up the expected

output of those using the stochastic technology. Conditional on s, the large number of

firms in the economy ensures that the expected output of the stochastic technology is

equal to the actual quantity produced.

With Qs defined, I can describe how beliefs are updated through the public signal.
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Recall that the public signal is defined as

Q∗ = Q+ ε, (3)

where Q denotes actual aggregate quantity and ε ∼ U(−b, b) for b > 0. Exogenous

noise is essential to prevent firms from always learning the true value of s with complete

certainty. Without ε, firms could simply invert Qs(τt, {δs}) and determine the true value

of s.5 Using the uniform distribution with a finite support simplifies the learning process,

as it implies that a firm either learns nothing from the public signal or learns the true

value of s completely. As shown in figure 3, the support of Q∗ differs depending on the

true value of s, when QL(τt, {δs}) 6= QH(τt, {δs}).6 For values of the public signal that

fall in the support of Q∗ for both values of s, a firm learns nothing because these noisy

signals are equally likely to have been generated in an economy where s = L as in one

where s = H . For values of Q∗ that are possible only given one of the values of s, a firm

immediately learns the true value of s.

The probability that firms learn the true value of s from the public signal is simply

the odds of drawing an ε that produces a Q∗ that is uniquely identified with a particular

underlying value of s. This probability is equal to

p̃(τt, {δs}) =
QH(τt, {δs}) −QL(τt, {δs})

2b
. (4)

A firm is more likely to learn the true value of s as the difference in the conditional

aggregate quantities increases. Also, as the support of the error term ε increases or

as the signal gets noisier, the probability of learning anything from the public signal

decreases. As expectations of Qs do not depend on individual beliefs, if firms agree

on (τt, {δs}), they all have the same probability of learning everything from the public

signal.

Private signals inform firms through a learning-by-doing mechanism. The private

signals that firms observe are their individual outputs, {µ, Y , µ}. Using Bayes rule, a

5As equation 4 makes clear, b > QH (τt,{δs})−QL(τt,{δs})
2 must hold in order for the noisy component

of Q∗ to prevent a firm from completely learning s.
6QH = QL only if the measure of adopting firms equals zero.
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Figure 3: Conditional Support of Q∗

QL - b QH - b QL QH QL + b QH + b

Q* = QH + �

Q* = QL + �

firm’s posterior belief, given a prior belief γ, is

γ(γ) =
(1 − ψ)γ

(1 − ψ)γ + ψ(1 − γ)
, if observe µ, or

γ(γ) =
ψγ

ψγ + (1 − ψ)(1 − γ)
, if observe µ, or

γ, if observe Y .

(5)

Note that 0 ≤ γ ≤ γ ≤ γ ≤ 1, where strict inequalities hold for γ ∈ (0, 1). Because the

safe technology is deterministic, firms that observe Y learn nothing about s. In cases

in which there is no confusion over the prior belief, I suppress the posterior functions’

dependence on γ.
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With the flow of public and private signals of s, the conditional distributions of

aggregate distributions evolve deterministically. To represent the case in which the public

signal is informative, I let δ0 and δ1 denote a point mass of beliefs at γ = 0 and γ = 1

respectively. When the public signal is uninformative, I let δ̃(τt, {δs}) return the pair of

posterior conditional distributions of aggregate beliefs, given the distributional strategy

and the prior conditional distributions.

3.2.2 Value Function

The firm’s problem is to pick a strategy over the choice of technologies to use in each

period. Its objective is to maximize total discounted output, which involves computing

the returns that learning has on future output. The firm’s problem is easiest to solve by

going backwards. In the last period, T , the firm’s problem given a belief γ is

VT (γ; τT , {δ}) = max
e∈[0,1]

{
(1 − e)Y + e

(
YHγ + YL(1 − γ)

)}
. (6)

If a firm chooses not to use the stochastic technology, that is e = 0, then it produces

Y with certainty. If it experiments however, then it expects YH with probability γ and

YL with probability (1 − γ). As these two state variables influence how a firm learns,

the distribution of firms’ beliefs and the set of distributional strategies do not matter

in the last period of the model. Solving the problem is straightforward and results in

firms following a cutoff rule, where only firms who hold a γ > 0.5 adopt the stochastic

technology. This cutoff point is a result of the assumptions of symmetry on {YL, Y , YH}.
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For each period except the last, t = 1, 2, . . . , T − 1, the firm’s problem is

Vt(γ; τ , {δs}) =max
e∈[0,1]

{
(1 − e)Y + e

(
YHγ + YL(1 − γ)

)
+

β

(
p̃(τt, {δs})

[
Vt+1[1; τ , δ1]γ + Vt+1[0; τ , δ0](1 − γ)

]
+

[1 − p̃(τt, {δs})]
[
(1 − e)Vt+1[γ; τ , δ̃(τt, {δs})] +

e
(
Vt+1[γ; τ , δ̃(τt, {δs})]α(γ) + Vt+1[γ; τ , δ̃(τt, {δs})][1 − α(γ)]

)])}
,

(7)

where α(γ) is the probability of observing µ given the firm’s belief γ and τ = {τt}T
t=1.

The first line of equation 7 is the firm’s current period output, and the remaining lines are

the expected output over the rest of the model horizon. The second line defines the case

in which the public signal is informative. This case occurs with probability p̃(τt, {δs}),
and results in the aggregate distribution of firms’ beliefs equaling δ0 (point mass at 0)

or δ1 (point mass at 1). Using its beliefs, the firm assigns probability γ to s = H , and

(1 − γ) to s = L. The third and fourth lines represent the case in which the public

signal is not informative. If the firm chooses not to adopt the stochastic technology,

then it learns nothing from its individual output and so will have the same belief in

the next period that it had in the current period. In this case, the firm’s continuation

value is Vt+1(γ, τ , δ̃(τt, {δs})). In contrast, if the firm adopts, then it learns by observing

its output and enters the next period either with the posterior belief γ or with γ. The

probability of observing µ is given by α and is a function of γ.

Because a firm has measure 0, its entry decision has no effect on the evolution of

aggregate beliefs. However, the distribution of firms’ beliefs and the distributional strat-

egy play an important role in the firm’s problem through p̃. When deciding whether to

experiment with the stochastic technology, the firm takes into account the probability of

learning everything through the public signal. As is clear in equation 7, a higher p̃ de-

values the informational gain from the private signal, making private and public signals

substitutable sources of information.
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3.3 Equilibrium

The equilibrium notation used in this model is a variation on an anonymous sequential

game.7 In this variation, for any belief, a firm’s optimal effort decision has to match the

prediction given by the distributional strategy τ = {τt}T
t=1. To state this equilibrium

concept formally, I first define V e
t (γ; τ , {δs}) as the expected output of a firm in period

t = 1, 2, . . . , T , taking action e ∈ [0, 1], with belief γ, given the pair {δs}.
I can then define that a distributional strategy τ is an equilibrium if it satisfies

∀ {δs}, ∀ e ∈ [0, 1], and for t = 1, 2, . . . , T ,

V
ẽt(γ,{δs})
t (γ; τ , {δs}) ≥ V e

t (γ; τ , {δs}), (8)

where ẽ(γ, {δs}) = τt(γ, {δs}). This condition is an optimality restriction, requiring that

τt assigns the decision e to a firm that maximizes that firm’s objective function, given

the state variables.

4 Analysis of the Firm’s Problem

In this section, I show how the gain from additional information is nonmonotonic in

beliefs. I then prove that the optimal policy rule is a cutoff rule.

Intuitively, the firm’s problem can be reduced to a comparison between the net present

value of the expected output of the firm over the model horizon given that it experiments

with the stochastic technology in the current period versus the case where it does not

7Mitchell (1997) extends the equilibrium concept of Jovanovic and Rosenthal (1988) for economies
with aggregate uncertainty, such as the one used in this paper.
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experiment and uses the deterministic technology. We know from equation 7 that

V 0
t (γ; τ , {δs}) =Y + βp̃(τt, δ)

[
Vt+1(1; τ , δ1)γ + Vt+1(0; τ , δ0)(1 − γ)

]
+

β[1 − p̃(τt, δ)]Vn+1(γ; τ , δ̃),

V 1
t (γ; τ , {δs}) =YHγ + YL(1 − γ) + βp̃(τt, δ)

[
Vt+1(1; τ , δ1)γ + Vt+1(0; τ , δ0)(1 − γ)

]
+

β[1 − p̃(τt, δ)]
[
Vt+1(γ; τ , δ̃)α(γ) + Vt+1(γ; τt, δ̃)[1 − α(γ)]

]
,

(9)

where δ̃’s dependence on τt and {δs} have been suppressed. Subtracting V 1
t − V 0

t results

in the indifference condition

0 = YHγ + YL(1 − γ) − Y +

β[1 − p̃(τt, δ)]
[
Vt+1(γ; τ , δ̃)α(γ) + Vt+1(γ; τt, δ̃)[1 − α(γ)] − Vt+1(γ; τ , δ̃)

]
. (10)

The first line of the indifference condition compares the return on current period output

from experimentation and the second line compares the future return. By assumption,

the term in the first line is negative for γ = 0 and positive for γ = 1, and has a

positive, linear slope in γ. Because of the properties of Bayes rule, the second line is

non-monotonic. For γ ∈ {0, 1}, γ = γ = γ and so the second line is equal to zero at

these two points. For intermediate values of γ, as γ < γ < γ, the value of the second line

depends on the curvature of V . The following lemma proves that V is strictly convex,

which, by Jensen’s inequality, implies that the second line is strictly positive for all

γ ∈ (0, 1). Thus, private signals are valuable as they increase future expected output,

but the informational gain is nonmonotonic in γ.

Lemma 1. For all n = 1, 2, . . . , N , Vt is increasing and strictly convex in γ.

Proof. Through induction, it is easy to show that Vt is increasing in γ. Similarly, I use

induction to show that Vt is strictly convex in γ. I prove convexity using the fact that

Vt = max{V 0
t , V

1
t } and that VT is strictly convex. Because V 0

t−1 is a linear transformation

of Vt, it is convex. In addition, dropping the dependence on (τ, {δs}), and letting Ft(γ) =
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Vt(γ)α(γ) + Vt(γ)[1− α(γ)], shows that V 1
t−1 is strictly convex for all t = 1, 2, . . . , T , as,

Ft(γ)α(γ) + Ft(γ)[1 − α(γ)] >

Vt(γ)α(γ) + Vt(γ)[1 − α(γ)] =

Ft(γ).

(11)

Despite the nonmonotonicity of the return to receiving a private signal, the optimal

policy rule for firms remains a cutoff rule. Theorem 1 proves this result.

Theorem 1. Under an anonymous sequential game, the distribution strategy τ is a cut-

off rule. Hence for every {δs} and t = 1, 2, . . . , T , there exists a cutoff belief γ̂ such

that

τt(γ, {δs}) = 0 for all γ < γ̂, and

τt(γ, {δs}) = 1 for all γ > γ̂.

Proof. See appendix A.2 for details of the proof.

This result is in line with the results in classic two-armed bandit problems, in which

information is also nonmonotonic in beliefs (see Jensen (1983) and Bolton and Harris

(1999), for example).

Now that I have defined the firm’s problem and can solve for the optimal policy rule

under an ASG, I consider the efficiency of the rate of adoption. Naturally, to evaluate

the speed with which firms adopt the stochastic technology, I need to solve for the rate

of adoption under a social planner. The next section details the planner’s problem.

5 Social Planner

In this section, I define the planner’s problem, prove that a cutoff rule solves the planner’s

problem, and compare this solution to the policy rule under an ASG. I show that the

standard result holds: Firms underexperiment relative to the planner in the current
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period, ceteris paribus. I then examine the sequential generation of information under a

planner.

5.1 The Social Planner’s Problem

As detailed earlier, the standard social-planner problem of maximizing aggregate quan-

tity is not applicable to this model. Therefore, I construct an uninformed planner’s

problem in which the planner, who has no information himself, acts as a simple coordi-

nating device and specifies strategies for agents as a function of their own beliefs. The

planner’s objective is to implement a distributional strategy that results in a Pareto-

optimal outcome, where firms are not worse off relative to the outcome from an ASG. I

let τ be the distributional strategy in an ASG, denote νt as the planner’s distributional

strategy in period t, and let ν = {νt}T
t=1. Then the planner’s problem is to choose the νt

that solves, for all γ,

Vt(γ; ν, {δs}) =max
νt

{
[1 − νt(γ)]Y + νt(γ)

[
YHγ + YL(1 − γ)

]
+

βp̃(νt, {δs})
[
Vt+1(1; ν, δ1)γ + Vt+1(0; ν, δ0)(1 − γ)

]
+

β[1 − p̃(νt, {δs})]Eνt [Vt+1]

}
,

s.t. Vt(γ; ν, {δs}) ≥ Vt(γ; τ , {δs}),

(12)

where

Eνt [Vt+1] = [1 − νt(γ)]Vt+1[γ; ν, γ̃] +

νt(γ)
[
Vt+1(γ; ν, δ̃)α(γ) + Vt+1(γ; ν, δ̃)[1 − α(γ)]

]
. (13)

This problem is almost identical to the firm’s problem, except that the planner explicitly

takes into account how the measure of adopting firms affects the strength of the public

signal. As can be seen in the problem above, νt appears both in the expected output of

the firm and in the argument of p̃. In the firm’s problem, the firm took p̃ as given and

chose an experimentation strategy.
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By setting ν ≡ τ , the planner can mimic the outcome obtained under an ASG. I show,

however, that the planner can make all firms better off by inducing more experimentation.

Having more firms adopt the stochastic technology benefits all firms through a higher p̃,

even those marginal firms that otherwise would not adopt under an ASG.

The following theorem proves that any solution to the social planner’s problem is a

cutoff rule.

Theorem 2. Any solution to the planner’s problem is a cutoff rule ν̂, such that all firms

with beliefs greater than ν̂ enter with probability 1 and all firms with beliefs less than ν̂

enter with probability 0. Firms holding the cutoff rule employ a mixed strategy.

Proof. The social planner’s problem can be divided into two stages. First, the planner

picks the measure of firms that will adopt the risky technology. Conditional on this

measure of entry, the planner then chooses the strategy that maximizes firms’ expected

output, such that each firm is weakly better off relative to the outcome in an ASG. From

the proof of theorem 1, we know that cutoff rules maximize firm’s expected output.

Hence, for any measure of entry that the planner implements, a cutoff rule is the optimal

strategy.

Unlike in an ASG, typically there is not a unique solution to the social planner’s problem.

However, given that cutoff rules solve the planner’s problem, I can compare the cutoff

rules that solve the planner’s problem with the distributional strategies in an ASG.

The following proposition shows that the planner, in the current period, always induces

a weakly greater measure of firms to experiment relative to the outcome in an ASG,

ceteris paribus. The planner experiments strictly more for “interior” solutions. Within

this environment, I define an interior solution as one where the cutoff belief is a mass

point in the distribution of firms’ beliefs and those firms at the cutoff belief employ a

mixed strategy.

Proposition 1. Compared with the measure of adopting firms under an ASG, a social

planner chooses a weakly higher level of experimentation in the current period, given the

same set of state variables. Further, given that τt is an interior solution to the firm’s

problem under an ASG, all cutoff rules that solve the equivalent planner’s problem are
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strictly less than τt. Hence, for interior solutions, the planner induces a strictly higher

level of experimentation relative to the measure of adopting firms under an ASG.

Proof. Because p̃ is an increasing function of the measure of firms that adopt the stochas-

tic technology, the planner must have at least the same measure of firms experiment as

occurs in an ASG. This implies that any cutoff rule used by the planner either has a

lower cutoff belief, or employs the same cutoff belief but uses a weakly higher probability

of entry compared with the cutoff rule in an ASG.

I now show that, given that τt is an interior solution, the planner has a strictly higher

measure of firms experiment with the stochastic technology. Because τt is an interior

solution, I can evaluate the derivative of Vt from the planner’s problem at the cutoff

belief. If γ̂ denotes the cutoff belief, then the derivative is

dVt

dνt

= − Y + YHγ + YL(1 − γ) +

β
dp̃

dνt

[
Vt+1(1; ν, δ1)γ + Vt+1(0; ν, δ0)(1 − γ) −Eνt [Vt+1]

]
+

β[1 − p̃(νt, {δs})]dEνt [Vt+1]

dνt
.

(14)

Because of the envelope condition, the first and third lines of this derivative are equal

to the firm’s indifference condition, shown by equation 10. We know that in an ASG

the firm holding the cutoff belief is indifferent between the two technologies. The second

line of equation 14, the return from the public signal, is negative, as dp̃
dνt

< 0 and the

term in the brackets is positive for γ ∈ (0, 1). Thus for the marginal firm under an ASG,
dVt

dτt
|γ̂ < 0. Hence the optimal cutoff point for the planner is strictly less than γ̂, the

cutoff belief under an ASG.

This result is in line with the literature and not unusual given the externalities associated

with the public signal. Its importance lies in showing that all the optimal cutoff rules a

planner might implement are weakly less than τt. This proposition also has significant

implications for the generation of information within the economy. In the first period

of the model, the state variables, or initial conditions, are the same for the planner’s

problem and for the firms in an ASG. By proposition 1, we know that, except in the case
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of corner solutions, the planner will induce a higher level of adoption than will firms in a

market equilibrium. This difference in strategies implies not only that p̃ is higher under a

planner but also that firms receive more private signals. As shown in the example at the

beginning of the paper, this faster generation of information is particularly significant in

that it lowers the return on information in later periods of the model. In certain cases,

this devaluation of information leads to the planner underadopting relative to firms in

the corresponding ASG. The following proposition formally states this result:

Proposition 2. Relative to an uninformed social planner, firms do not always under-

adopt the stochastic technology in all periods. Rather, parameters values exist such that

firms overadopt the risky technology in each period of the model except the first.

The three-period model considered earlier provides an example of this underadoption

result, which stands in contrast to the literature. In Rob (1991), the planner always

weakly experiments more than firms do in a market equilibrium. Further, Bolton and

Harris (1999) show that firms working as a team experiment to a larger extent than firms

acting individually at any point in time. This proposition builds upon these results by

demonstrating that firms underexperiment relative to the planner in the initial period

and when summing over all periods of the model. This underadoption result, however,

does not necessarily hold in each period of the model.

6 Conclusion

In this paper I examine the speed of adoption by firms in an environment with private

and public signals. The standard result holds: All else being equal, the planner chooses

a higher level of experimentation relative to firms in a market equilibrium. More in-

teresting, I study the generation of information over the model’s lifetime. I find that

the planner seeks to exploit the gains of experimenting earlier and so generates more

information in the initial periods of the model. Generating more private signals in the

beginning of the model results in firms decreasing the value of additional information

later in the model. Hence firms, under a planner, might underadopt relative to firms in

a market equilibrium in the latter periods of the model.
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A Appendix

A.1 Computational Details

This section of the appendix details the computational techniques used to solve both the

firm’s problem and the planner’s problem. I then show why the solution to the planner’s

problem in the last period is unique.

The large dimension of the second period’s state space, all possible {δs}, makes

implementing the standard backward induction algorithm difficult. Therefore, I solve

for the optimal adoption strategies under an ASG equilibrium and under an uninformed

social planner by using a two-step optimization algorithm.

I first explain this algorithm within the context of solving the model as an ASG. In

the third period of the model, the static nature of the firm’s problem implies that the

optimal cutoff rule is one-half. In the second period, a bisection routine can be used to

solve for the optimal cutoff rule by using the firm’s indifference condition, equation 10,

for a given {δs}. The two relevant conditional distributions of firms’ beliefs in the second

period, however, depend upon firms’ adoption strategies in the first period. Because

the optimal adoption strategy in the first period depends on adoption strategies in the

second period, I employ a pair of bisection routines to compute the optimal adoption

strategies in the first and second periods. The outer bisection routine solves the firm’s

indifference condition in the first period. To compute firms’ expected utility in the second

and third periods, however, this outer routine calls the second bisection routine. This

second, inner routine solves for the optimal cutoff belief in the second period, given a

guess of the policy rule in the first period. In this manner, I simultaneously numerically

solve for the optimal cutoff rules in the first and second periods of the model in an ASG.

I use a similar algorithm to solve the planner’s problem. The planner’s problem has

an additional twist as there are multiple solutions. I choose to find the optimal cutoff

belief that is closest to the cutoff rule used in an ASG. To find this particular solution to

the planner’s problem, I once again use a two-step optimization routine. In place of the

bisection routines, however, I employ an iterative search over the set of possible cutoff

beliefs and mixed strategies. This iterative search starts with a cutoff belief of one-half
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and a mixed strategy in which no firm holding cutoff belief enters.8 Every firm’s expected

utility is computed under this policy rule. Then, I consider a policy rule that involves

slightly more firms experimenting. If a mass of firms exist at the cutoff point, I increase

the probability of those firms entering. Otherwise, I lower the cutoff belief to the next

lowest mass point of firms’ beliefs and consider a low probability of adoption. Firms’

expected utilities are then re-evaluated and compared with the results under the previous

cutoff rule. If all firms are weakly better off, this new policy rule Pareto dominates the

previous one. I then try a policy rule with even more experimentation. At some point,

the outcome under the new policy rule will not Pareto dominate the previous outcome.

When this occurs, the previous policy rule must generate a Pareto-optimal outcome. By

construction, it is not Pareto dominated by the outcome associated with a policy rule

with a higher cutoff belief. Further, from the proof of theorem 1, we know that if an

outcome associated with a rule is not Pareto dominated by the outcome generated by a

cutoff belief slightly below it, then this outcome is not Pareto dominated by any outcome

generated by policy rules with lower cutoff beliefs.9 This policy rule is also the “highest”

cutoff rule that solves the planner’s problem, or is the one closest to the outcome under

an ASG. To check that I solved for the correct policy rule under the planner, I compare

each firm’s outcome under each regime and check that the planner’s rule induces weakly

more adoption and that each firm under the planner has weakly higher expected utility.

In the three-period example, the planner’s policy rule is unique. Given the solution

algorithm I used, other possible policy rules must use cutoff beliefs below the ones I

reported. This is not possible in the first period, where all firms adopt (a corner solution).

Further, in the second period, inducing any positive measure of firms with the lower belief

to adopt does not satisfy the planner’s constraint that the planner’s rule Pareto dominate

the equivalent ASG outcome. Hence, the reported solutions to the planner’s problem in

the example are unique.

8It is easy to show that the cutoff rule in ASG is strictly less than one-half in all periods except the
last. So by proposition 1 we know that all solutions to the planner’s problem are less than one-half.

9This result follows from the fact that as γ approaches zero, the expectation of current period output
under the risky technology falls. In addition, the return from learning-by-doing falls as more firms enter,
decreasing the future output gains from experimenting.
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A.2 Proof of Theorem 1

Proof. This is a proof by induction that closely follows the proof laid out for the first

theorem in Jensen (1983). In this proof, I suppress functions’ dependence on (τ , {δs}).
Referring to the notation laid out in equation 9, I know that the assumptions on the

production technologies imply that ∀ t = 1, 2, . . . T ,

V 0
t (0) > V 1

t (0),

V 1
t (1) > V 0

t (1).

Let Dt(γ) = V 1
t (γ)− V 0

t (γ). To prove the theorem, it suffices to show that Dt is strictly

increasing in γ for all t. I know that DT (γ) = YHγ + YL(1 − γ) − Y , which is strictly

increasing in γ. By induction, I assume that Dt+1 is strictly increasing in γ. Further,

for t = 1, 2, . . . T − 1, define V
{1,0}
t as the expected value of experimenting in the current

period, not experimenting in the next period, and then continuing optimally thereafter.

Let V
{0,1}
t be similarly defined. Finally, let D1

t = V
{1,0}
t −V 1

t and D0
t = V

{0,1}
t −V 0

t . It is

straightforward to show that V
{1,0}
t (γ) − V

{0,1}
t (γ) = (1 − β)DT (γ) using the properties

of Bayes rule. Then I can show that

Dt(γ) = D0
t (γ) −D1

t (γ) + (1 − β)DT (γ), (15)

where I know that DT is strictly increasing in γ. Turning to the first two terms, I know

that

D1
t (γ) = V

{1,0}
t (γ) − V 1

t , (16)

= β
(
V 0

t+1 − Vt+1

)
(17)

as the current-period output in both terms is the same. Depending on the private

signal received, the right-hand-side equals either 0 or β
(
V 0

t+1 − V 1
t+1

)
. By induction,

V 0
t+1(γ)−V 1

t+1(γ) is decreasing in γ. Similarly, it is easy to show that D0
t (γ) is increasing

in γ. Hence, Dt is strictly increasing in γ.
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