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Local Thermodynamic Stability Scores Are Well Represented by a
Non-central Student:s t Distribution
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Local folding in mRNAs is closely associated w ith biological functions. In this study, we reveal
the whole distribution of local thermodynamic stability in the complete genome of the
poliovirus P3/Leon/37 and the single-stranded RNA sequences that corresponds to the
nucleotide sequence of the complete genome sequence (1 667 867 bp) of Helicobacter pylori
(H. pylori) strain 26695. Local thermodynamic stability in the RNA sequences is measured by
two standard z-scores, signi"cance score and stability score. To estimate the distribution of
thermodynamic stability, a model based on the non-central Student's t distribution has been
developed. Signi"cant patterns of extremes that are either much more stable or unstable than
expected by chance are detected. Our results indicate that the highly stable and statistically
more signi"cant folding regions are predominantly in non-coding sequences in the two
genome sequences. Moreover, the highly unstable folding regions, on the contrary, are
predominantly in the protein coding sequences of H. pylori. The observed di!erences across
the complete genomic sequences are statistically very signi"cant by a s2-test. These extreme
patterns may be useful in searching for target sequences for long-chain antisense RNA and for
locating potential RNA functional elements involved in the regulation of gene expression
including translation, mRNA localization and metabolism.
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Introduction

Functional prediction is an important goal of
genomic sequence analysis. Computational anal-
ysis of the whole genomic sequence is highly
desirable for understanding biological properties
that may be useful in drug discovery and vaccine
development. Until now, numerous computa-
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tional approaches have been proposed (Karlin
et al., 1998; Koonin et al., 1996; Bell & Forsdyke,
1999; Andrade & Sander, 1997; Herzel et al.,
1999; Borodovsky et al., 1995; Snyder & Stormo,
1995; Gish & States, 1993; Gelfand et al., 1996;
Uberbacher et al., 1996; Badger & Olsen, 1999;
Brutlag, 1998; Bucher, 1999; Frech et al., 1997).
There has been a steady progress in computa-
tional analysis for gene identi"cation; however,
the computational methods of predicting the gene
regulatory elements in genome sequences are still
underdeveloped. It is important to develop
( 2001 Academic Press
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e$cient computational methods for elements
that are related to the mediation of transcription
and translation as well as mRNA localization
and metabolism. It is also important to explore
the potential biological functions in non-coding
sequences since only about 3% of human DNA is
involved in protein coding.

Previous studies indicated that some RNA
functional elements involved in post-transcrip-
tional regulation are correlated with unusual
folding regions (UFRs) in either the coding or
non-coding sequences, where the folding free en-
ergies of the functional elements are signi"cantly
more stable than expected by chance (Malim
et al., 1989, 1990; Le et al., 1988, 1993, 1996;
Philips et al., 1992; Wang et al., 1995). It is desir-
able to have a suitable statistical model to repres-
ent the distribution of thermodynamic stability of
local segments in order to reliably detect statist-
ical extremes (distinct UFRs) that are either sig-
ni"cantly more stable or unstable than expected
by chance in a complete genome sequence or
a large set of RNA sequences.

The thermodynamic stability of local segments
has been studied in various mRNA sequences
(Le et al., 1988, 1989; Le & Maizel, 1989; Phillips
et al., 1992; Forsdyke, 1995; Patzel & Sczakiel,
1997; Walton et al., 1999; Se!ens & Digby, 1999).
In this study, we analyse the complete RNA
genome sequence of Poliovirus P3/Leon/37
(PV3L) by two standard z-scores, signi"cant
score (Sigscr) and stability score (Stbscr) (Le et al.,
1990). In the analysis of a large number of sample
observations for these two scores, we developed
a sound statistical model to describe their distri-
butions and to estimate statistical extremes by
means of a non-central Student's t distribution
theory. Our statistical tests indicate that the de-
rived, linearly transformed non-central Student's
t distribution (LTNSTD) is a good statistical
model to describe the distributions of the two
scores computed in the PV3L genome sequence.
Based on this model, distinct UFRs are inferred
in the complete genome sequence. The extremes
of statistically signi"cant, stable RNA folding
fragments are predominantly in the 5@ non-cod-
ing sequences of the PV3L genome. Translational
control elements involved in internal ribosome
binding in poliovirus and other picornaviruses
correlate well with predicted UFRs (Pelletier &
Sonenberg, 1988; Le & Zuker, 1990; Le et al.,
1996).

We also explored the use of this approach to
analyse the entire genomic sequence of Helico-
bacter pylori (H. pylori) strain 26695. H. pylori is
one of the most common chronic human patho-
gens. The genome of H. pylori strain 26695
(Tomb et al., 1997) consists of a circular chromo-
some having a size of 1 667 867 nucleotides (nt)
that includes about 1590 open reading frames,
representing 91% of the genome. It also includes
36 tRNA genes, two separate sets of 23S}5S and
16S rRNA genes, along with one orphan 5S gene
and one structural RNA gene, which represent
0.7% of the genome. In this study, single-
stranded RNA sequences that correspond to the
nucleotide sequence of the complete genome were
processed using the same procedure that was
used in the PV3L. Our aim in the extended study
is to verify if the derived, linearly transformed
non-central Student's statistical model from the
single-stranded RNA sequence is also suitable for
the 1.67 million bp genome sequence.

The thermodynamic stability of DNA folding
is di!erent from that of RNA folding. In general,
the thermodynamic stability for the stacking of
Waston}Crick base pairs in single-stranded
DNA is less than that of the corresponding base
pair stacking in the single-stranded RNA (Santa-
Lucia, 1998). However, the thermodynamic
stability and the statistical signi"cance of the
sequence folding as measured by Sigscr and
Stbscr are computed from the di!erences of
folding energies rather than absolute values.
Therefore, the in#uence of a few DNA pieces that
may be misrepresented as RNAs is very limited.
Moreover, we demonstrated that the Sigscr com-
puted in E. coli 16S rRNA is not sensitive to
di!erent sets of energy rules for computing the
lowest free energy of the local folding (Le &
Maizel, 1989).

In this study, we describe the use of LTNSTD
and show that it is a good model to depict the
distribution of the two scores computed in both
the single-stranded RNA genome of poliovirus
and the H. pylori genome. The derived extremes
of statistically signi"cant, stable sequences are
predominantly in the non-coding sequences,
while, statistically signi"cant unstable sequences
are predominantly in the protein coding regions.
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The di!erence of observed numbers of extreme
patterns in the three separate domains of coding,
non-coding and RNA genes is very signi"cant by
a s2-test.

These extreme patterns can be used in search-
ing gene regulatory elements and potential target
sequences for long-chain antisense RNAs. The
knowledge of unusual stabilities in RNA may be
relevant to interpreting microarray-based gene
expression studies. The formation of duplexes
occurs by a two-step mechanism (Sczakiel, 1997).
First, the structures of complementary regions
are opened in a solution in an energy-consuming
step. The second step is an energy-releasing pro-
cess by forming the duplex on the array. Free
energy di!erences between the two steps a!ect
the RNA hybridization/annealing, implying
that thermodynamic stability of local folding is
important in the binding e$ciency.

Methods

Thermodynamic stability of the segments is
evaluated by two standard z-scores, signi"cance
score (Sigscr) and stability score (Stbscr). Sigscr
and Stbscr of an RNA folding are given by

Sigscr"(E!E
r
)/std

r

and

Stbscr"(E!E
w
)/std

w
,

where E is the computed lowest free energy of the
RNA folding for a given segment, E

r
and std

r
are

the mean and standard deviation, respectively, of
the lowest free energies from folding 300 random
sequences of the same base composition as the
given segment, and E

w
and std

w
are the mean and

standard deviation of the lowest free energies
obtained by folding all segments of the same size
generated by taking successive, overlapping, "xed
length segments stepped successively in one
nucleotide (nt) from 5@ to 3@ along the single-
stranded RNA sequence (Le et al., 1990). The
lowest free energy of the RNA folding is com-
puted for each segment by Zuker's (1994) algo-
rithm using the Turner energy rules (Jaeger et al.,
1989; Freier et al., 1986).

In this study, Sigscr and Stbscr are computed
by the program SEGFOLD (Le et al., 1990) using
a "xed window. To speed up the computation of
Sigscr, the mean and standard deviation (std) of
the lowest free energies from 300 randomly shuf-
#ed sequences, are computed from tabulated co-
e$cients based on window sequence length and
base composition if the percent content of base
G#C in the window is less than 75% and each
base percentage is larger than 3%. Otherwise,
E
r

and std
r

are computed from 100 randomly
shu%ed versions of the sequences. These
tabulated coe$cients were derived from the ran-
dom simulations and least-squares "ts (Chen et al.,
1990) using the Turner energy rules. Statistical ana-
lyses for the Sigscr and Stbscr data are computed
using the Statistics Toolbox of MATLAB software
package (http://www.mathworks. com).

The sequence and gene structure data of PV3L
(accession number K01392) and H. pylori (acces-
sion number NC}000915) are obtained from the
Genome database of the National Center for
Biotechnology Information (NCBI). PV3L is
a member of the Picornaviridae family that con-
tains a positive sense single-stranded RNA
genome of 7431 nucleotides (nt). The complete
genome of PV3L contains a 742 nt 5@ non-coding
sequence, a 6621 nt protein-coding sequence and
a short 3@ non-coding sequence of 68 nt. On the
contrary, H. pylori genome contains 1553
mRNA-coding regions having a total size of
1 479 387 bp (Tomb et al., 1997). Among them, 25
protein-coding regions are shorter than 100 nt
and their total length is 2034 bp. The structural
RNA-coding regions contain 43 RNA genes and
have a total size of 12 065 bp. Among them, 36
tRNA genes are shorter than 100 nt and their
total length is 2729 bp. In the study, other regions
that are not listed in the protein- and RNA-
coding region are considered as non-coding re-
gions. In the analysis of thermodynamic stability
of a local segment, the local segment is de"ned in
the coding and non-coding regions as well as
in the RNA gene only if the corresponding win-
dow is involved entirely within these regions,
respectively.

Results and Discussion

NON-CENTRAL STUDENT'S t DISTRIBUTION

The scores Sigscr and Stbscr computed by the
"xed window of 100- nt along the genomic



TABLE 1
Statistics of RNA folding scores computed in the
complete RNA genome of the poliovirus
P3/¸eon/37 (P<3¸). Sigscr and Stbscr were com-
puted from the complete viral RNA of P<3¸ using
a ,xed window of 100 nt. ¹he two random samples
were constructed by randomly selecting 500 and
200 observations from the complete 7332 observa-
tions of P<3¸ so that the distance between the two
neighboring points is larger than or equal to 12,

and 30 nt, respectively

Score Sample size
(N)

Mean Std. Skewness

Sigscr 7332 !0.269 1.081 !0.476
Sigscr 500 !0.256 1.097 !0.399
Sigscr 200 !0.276 1.131 !0.362
Stbscr 7332 0.000 1.000 !1.118
Stbscr 500 !0.021 1.024 !1.073
Stbscr 200 #0.013 0.980 !0.934

FIG. 1. Signi"cance score (Sigscr) and stability score (Stbscr) computed in the complete poliovirus RNA sequence (PV3L).
The pro"le was produced by plotting the Sigscr (top) and Stbscr (bottom) of 100 nt segments against the position of the middle
base in the window as it slides along the sequence. The window size is 100 nt.
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sequence of PV3L is displayed in Fig. 1. Statistics
of local thermodynamic stability in the PV3L
RNA sequence are listed in Table 1. The asym-
metric distributions of Sigscr and Stbscr in the
PV3L sequence are shown in Fig. 2. It is clear
that the distributions of Sigscr and Stbscr do not
follow the normal distribution because of the
skewness of samples for Sigscr and Stbscr data in
PV3L viral RNA sequence. Since nearby scores
in these data are not fully independent, we take
two random samples with size of 200 and 500
observations so that the distance between two
neighboring observations in the corresponding
random sample is larger than or equal to 12 and
30 nt, respectively. The sample means, sample
standard deviations (std), and sample coe$cients
of skewness of these random observations are
also listed in Table 1.

These scores should be described by an asym-
metric continuous distribution with range
(!R,R). Simple normal distributions are
unsatisfactory. The non-central Student's t



FIG. 2. Empirical probability density functions (top) and empirical distribution functions (bottom) plotted together with
linearly transformed, theoretical probability density functions and cumulative distribution functions of non-
central t distribution. (a) Sigscr and Stbscr data from the random sample (N"500) of PV3L. (b) Sigscr and Stbscr data from
the random sample (N"200) of PV3L. For the selection of the two random samples see the text. In the plot, the horizontal
axis represents Sigscr on the left, and Stbscr on the right. The vertical axis is for probability density functions (top) or
distribution functions (bottom). The empirical step functions are plotted with step size 0.3. The theoretical curves with the
degree of freedom f"6 almost coincides with the curve derived by f"8, as shown in the plot.
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distribution satis"es this condition. Moreover, its
moments can be calculated in closed analytic forms.
Therefore, it is possible to "t the distribution
to the data with the moment computations. The
non-central t distribution has two parameters
(Evans et al., 1993): the degree of freedom, f (a
positive integer), and the non-centrality para-
meter, d (a real number). It is denoted by t : f, d. Its
probability density function (p.d.f.) (Lehmann,
1959) can be expressed as

p(x; f, d)"
1

2(f`1)@2C( f/2)Jnf P
=

0

y(f~1)@2

]exp C!
1
2

y!
1
2 Ax S

y
f
!dB

2

D dy. (1)

Its rth moment about the origin (Evans et al.,
1993) is

k@
r
"A

f
2B

r@2 C(( f!r)/2)
C( f/2)

r@2
+
j/0
A

r

2jB
]

(2j)!
2jj!

dr~2j ( f'r). (2)

To simplify the notation, we introduce

g ( f )"
C(( f!1)/2)

C( f/2)
. (3)

Using these formulae, we can write the mean
k( f, d), variance p2( f, d), and coe$cient of skew-
ness g

3
( f, d) as

k ( f, d)"S
f
2

g( f )d ( f'1), (4)

p2( f, d)"
f

f!2 C1#d2 A1!
f!2

2
g2( f )BD

( f'2), (5)

g
3
( f, d)"

k
3
( f, d)

k3@2
2

( f, d)
"S

f!2

2

]
g( f ) d[3#( f!2)d2(( f!3) g2( f )!(2f!7)/( f!2))]

( f!3) [1#d2(1!( f!2)/2 g2( f ))]3@2
,

( f'3). (6)
In the above expressions, k
r

is the rth (central)
moment about the mean, i.e.

k
r
( f, d)"P

=

~=

(x!k( f, d))r p(x; f, d) dx.

The third central moment may also be obtained
from the formula (Evans et al., 1993)

k
3
( f, d)"k@

3
( f, d)!3k@

2
( f, d)k( f, d)#2k3( f, d),

(7)
where

k@
2
( f, d)"

f
f!2

(1#d2), (8)

k@
3
( f, d)"S

f
2

fg ( f )
f!3

d(3#d2). (9)

ESTIMATION OF PARAMETERS

Although eqn (4) shows that the non-centrality
parameter d is proportional to the mean of the
non-central t distribution, we should not directly
use the sample mean to estimate d, because the
mean can be easily changed with a linear trans-
formation. To catch the essence of asymmetry of
the sample distribution, we use the sample coef-
"cient of skewness that is invariant under any
linear transformation.

Let the observed data be My
i
N (i"1,2, n).

Consider a linear transformation:

y
i
"ax

i
#b, a'0, (10)

Let x
i

be distributed as t : f, d. We estimate the
parameters a, b and d by assuming that the
sample mean, sample variance and sample
coe$cient of skewness are equal to the mean,
variance and coe$cient of skewness of the distri-
bution for a given degree of freedom f. We
can then vary f and choose the values satisfy-
ing the Kolmogorov}Smirnov test. Let the
sample mean of y

i
be yN , the sample standard

deviation be s
y
, and the sample coe$cient of

skewness, k, be

k"
+n

i/0
(y

i
!yN )3

ns3
y

. (11)



TABLE 2
Kolmogorov}Smirnov statistics computed in the
random sample (N"500) for window size of 100 nt

f KS f KS f KS

(a) Sigscr
6 0.0622 7 0.0559 8 0.0515
9 0.0483 10 0.0458 11 0.0439

12 0.0423 13 0.0417 14 0.0412

(b) Stbscr
6 0.0481 7 0.0429 8 0.0392
9 0.0365 10 0.0344 11 0.0349

12 0.0354 13 0.0359 14 0.0363
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The three equations are

yN !b
a

"S
f
2

g ( f ) d, (12)

s2
y

a2
"

f
f!2 C1#d2 A1!

f!2
2

g2( f )BD , (13)

k"S
f!2

2

]
g( f ) d[3#( f!2)d2(( f!3) g2( f )!(2f!7)/( f!2))]

( f!3) [1#d2(1!( f!2)/2 g2( f ))]3@2
.

(14)

For a given degree of freedom f, we solve eqn (14)
to get d, then substitute the value of d into eqn
(13) to obtain a and then substitute the values of
a and d into eqn (12) to obtain b.

We remark that according to our computa-
tion, the right-hand side of eqn (14) is an increas-
ing function of d. When d approaches in"nity, it
tends to the limit

¸( f )"S
f!2

2

]
g( f ) ( f!2) (( f!3) g2( f )!(2f!7)/( f!2))

( f!3) (1!( f!2)/2 g2( f ))3@2
.

(15)

When d approaches negative in"nity, the right-
hand side of eqn (14) tends to the limit !¸( f ).
Therefore, when the sample coe$cient of
skewness is strictly between !¸( f ) and ¸ ( f ),
there is a unique solution of eqn (14) for d. The
sample coe$cient of skewness and d have the
same sign.

Moreover, for "xed d, the absolute value of the
right-hand side of eqn (14) is a decreasing func-
tion of f. Thus, for a given sample coe$cient of
skewness, when f increases, the absolute value of
d satisfying eqn (14) will increase. We will see that
this property leads to the useful conclusion that
the quantile displacement from the mean of
a sample is not sensitive to the choice of degree of
freedom f.
KOLMOGOROV}SMIRNOV TEST

The Kolmogorov}Smirnov test can show the
goodness of "t between a theoretical cumulative
distribution function F(x) and an empirical distri-
bution function F

n
(x), where n is the sample size.

In our case, F(x) is the non-central t distribution
function. Let the data be y

1
, y

2
,2, y

n
. Sort them

in the ascending order to obtain z
1
)z

2
)2

)z
n
. The empirical distribution function (Hogg

& Tanis, 1997) is de"ned as

F
n
(x)"G

0, x(z
1
,

i/n, z
i
)x(z

i`1
,

1, z
n
)x .

(16)

The Kolmogorov}Smirnov statistics (KS) is
de"ned to be

D
n
"sup

x
(DF

n
(x)!F(x)D). (17)

If D
n

is su$ciently small, we may consider the
sample is well described by the proposed distri-
bution function F(x).

In Table 2, we list the KS statistics for the
Sigscr and Stbscr of PV3L for the random sample
that includes 500 observations (N"500). From
Table 2, we can see that the error is minimal
when the degree of freedom ( f ) is 14 and 10,
respectively. However, the errors are not very
sensitive to f values. In fact, all of these KS
statistics are less than 0.0729, the acceptance
limit with the signi"cance level 0.01, or 0.0608,
the acceptance limit with the signi"cance level
0.05. For data from another random sample
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(N" 200), we obtain similar results. The Kol-
mogorov} Smirnov test indicates that the theor-
etical noncentral t distribution has a good "t to
PV3L data. The linearly transformed, theoretical
probability density functions and cumulative dis-
tribution functions of non-central t distribution
of Sigscr and Stbscr data are displayed in Fig. 2.

QUANTILE DEVIATION AND APPROXIMATION
WITH MULTIPLE REGRESSION

Let the quantile, qa , with probability a in
a non-central t distribution be

qa"k#cap, where P (x)qa )"a, (18)

where k and p are, respectively, the mean and std
of the distribution. The coe$cient ca in eqn (18) is
the quantile deviation from the mean in units of
the std. It depends on the probability a, the de-
gree of freedom f, and the sample coe$cient of
skewness k (which determines the non-centrality
parameter d). When the sample coe$cient of
skewness k is 0, the quantile qa and the quantile
deviation ca should be equal to those of symme-
tric t distribution. Therefore, we have

ca ( f, k)"c0a ( f )#da ( f, k) k. (19)

Using multiple regression for f between 6 and
25, and coe$cients of skewness with step size 0.1,
we "nd an approximate formula (not shown).
Table 3 shows the theoretical values of ca where
the degree of freedom f is 12 and the coe$cient of
skewness k is equal to !0.5, as well as the
corresponding values calculated with the regres-
sion formula.
TABL

Quantile deviations from the mean in un
tion with degree of freedom f"12 a

a 0.0010 0.0025
ca !4.24 !3.63 !

Predicted ca !4.27 !3.66 !

Relative error 0.008 0.008

a 0.9990 0.9975
ca 2.90 2.60
Predicted ca 2.97 2.62
Relative error 0.024 0.008
STATISTICS OF THERMODYNAMIC STABILITY OF

LOCAL SEGMENTS IN THE RNA GENOME
OF POLIOVIRUS, PV3L

Extreme UFRs, with very low Sigscr values,
are much more stable than expected by chance.
Similarly, extremely low Stbscr values indicate
local sequences where the folded structures are
more stable than the average computed from all
segments with the same size over the entire
genome sequence. We have indicated that the
distribution of Sigscr and Stbscr in the PV3L
genome can be "tted well by the derived
LTNSTD as shown in Fig. 2. Based on the theor-
etical LTNSTD, we detected the extreme UFRs,
type 1 UFR that had very low Sigscr ()!3.701),
and type 3 UFR that had low Stbscr ()!3.748).
The likelihood of the type 1 and type 3 UFRs
occurring in the complete PV3L are less than or
equal to 0.005 by chance, respectively. There were
six type 1 UFRs and 64 type 3 UFRs in the 5@
non-coding region of the PV3L genome. Eleven
type 1 UFRs were detected and no type 3 UFRs
were found in the protein-coding region. We can
expect that the highly stable and more statist-
ically signi"cant folding patterns are predomi-
nantly in the 5@ non-coding region in the PV3L
genome. To validate our results from another
aspect, we did an exact test for 2]2 table (Bailey,
1995). The relevant probability is very signi"cant,
p"0.000. Therefore, we can detect a strong
expectation for highly stable UFRs in the 5@
non-coding region of the PV3L genome. It was
indicated previously that a UFR in the 5@
non-coding region of poliovirus RNA was corre-
lated to the regulation of translational initiation
(Pelletier & Sonenberg, 1988; Le & Zuker, 1990;
Le et al., 1996).
E 3
its of std for the non-central t distribu-
nd coe.cient of skewness k"!0.5

0.005 0.010 0.025 0.050
3.19 !2.75 !2.17 !1.73
3.20 !2.73 !2.12 !1.64
0.003 0.006 0.026 0.050

0.995 0.990 0.975 0.950
2.36 2.12 1.79 1.51
2.35 2.08 1.73 1.44
0.004 0.018 0.034 0.042
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STATISTICS OF THERMODYNAMIC STABILITY OF

LOCAL SEGMENTS IN H. P>¸ORI

Statistics of local thermodynamic stability in
H. pylori genomic sequences are listed in Table 4.
The distribution of Sigscr and Stbscr computed
along the genomic sequence shows an asymmet-
ric distribution (Fig. 3) in which the distribution
of Sigscr is biased towards the negative direction
more seriously than that of Stbscr. Since nearby
scores in these data are not fully independent, we
take three random samples with size of 10 000,
5000 and 3000 for data computed by "xed win-
dows of 100, 300 and 500 nt, respectively, so that
the distance between two neighboring points in
the statistical sample is larger than or equal to the
window size. This step is useful for our later
application of the Kolmogorov}Smirnov test for
independent observations (Hogg & Tanis, 1997).
Table 5 lists the sample means, sample standard
deviations, and sample coe$cients of skewness of
these random observations. In the random
sample, Stbscr data show asymmetry for window
size 100, but no asymmetry, with mean"0 and
std"1.0, for window sizes 300 and 500.

Using the same procedure as we employed in
the PV3L genome, we also derived the theoretical
LTNSTD. In Table 6, we list the KS statistics for
the Sigscr of H. pylori with window size 300.
From Table 6, we can see that the error is minim-
al when the degree of freedom ( f ) is 13. However,
the errors are not very sensitive to f values.
In fact, most of these KS statistics are less than
TABL

Statistics of RNA folding scores comp
(Sigscr) and stability score (Stbscr) that
ity were computed from single stranded
(nt) sequence of the complete H. pylori
300 and 500 nt. In the computation, th
a nt each time along H. pylori sequen

were collected

Score Window size (bp) Sampl

Sigscr 100 1 667
Stbscr 100 1 667
Sigscr 300 1 667
Stbscr 300 1 667
Sigscr 500 1 667
Stbscr 500 1 667
0.0231, the acceptance limit with the signi"cance
level 0.01, or 0.0192, the acceptance limit with the
signi"cance level 0.05. For other data of H. pylori
with di!erent window sizes, we obtain similar
results. The Kolmogorov}Smirnov test indicates
that the theoretical LTNSTD has a good "t to
our data. The linearly transformed, theoretical
probability density functions and cumulative dis-
tribution functions of non-central t distribution
of Sigscr data are displayed in Fig. 3.

Since we have a large set of observations
(N"&1.67 million) in the complete H. pylori
genome, we "rst focus our attention on the stat-
istical extreme of UFRs. Based on the values of
Sigscr and Stbscr for the local segment we de"ne
eight types of UFR, termed as type 1}8. For
example, a type 1 UFR is de"ned only if its Sigscr
is less than or equal to !4.94. Thus, type 1 UFR
consists of more stable folding fragments with
respect to their randomly shu%ed sequences.
Similarly, type 2 UFR refers to the fragment with
Sigscr*2.52. Type 2 UFR signi"es less stable
folding fragments with respect to their randomly
shu%ed sequences. Based on the derived
LTNSTD, the probabilities of type 1 and type 2
UFRs occurring in the complete H. pylori
genome are less than or equal to 0.001 by chance,
respectively. If both Sigscr)!4.94 and Stbscr
)!3.70 the UFR is de"ned as type 5 UFR.
Type 5 UFRs represent fragments that are signi"-
cantly more stable than both their randomly
shu%ed sequences and other fragments with the
E 4
uted in H. pylori. Signi,cance score
represent local thermodynamic stabil-
RNAs corresponding to the nucleotide
genome by three ,xed windows of 100,
e three ,xed windows were moved by
ce so that three samples of two scores
, respectively

e size Mean Std. Skewness

768 !0.469 1.110 !0.655
768 0.000 1.000 !0.277
568 !1.125 1.267 !0.895
568 0.000 1.000 !0.022
368 !1.702 1.463 !1.057
368 0.000 1.000 #0.030



FIG. 3. Empirical probability density functions (top) and empirical distribution functions (bottom) plotted together with
linearly transformed, theoretical probability density functions and cumulative distribution functions of noncentral t distribu-
tion. The left, middle and right graphs are, respectively, for Sigscr data from H. pylori with window sizes 100, 300 and 500 nt.
The theoretical curves are not very sensitive to the degree of freedom, f. The two curves derived by f"8 and 10, almost
coincide as shown in the plot. The empirical step functions are plotted with step sizes 0.1, 0.1 and 0.2 for the left, middle and
right graphs. In every "gure, the horizontal axis represents Sigscr, and the vertical axis is for probability density functions
(top) or distribution functions (bottom).

TABLE 5
Statistics of RNA folding scores computed in random samples from
H. pylori. ¹he three random samples corresponding to the three ,xed
windows of 100, 300 and 500 nt were generated from the three samples
mentioned in ¹able 4 by randomly selecting 10 000, 5000 and 3000
points, respectively. As a result, the distance between two neighboring
points in each random sample is larger than or equal to the window

size

Score Window size (bp) Sample size Mean Std. Skewness

Sigscr 100 10 000 !0.466 1.102 !0.489
Sigscr 300 5000 !1.110 1.241 !0.592
Sigscr 500 3000 !1.709 1.492 !1.077
Stbscr 100 10 000 #0.003 1.002 !0.276
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same size. The locations of these distinct UFRs
from type 1 to type 8 are sorted by means of gene
information listed in the Feature Table of H.
pylori compiled in the database. Table 7 lists
counts of the extreme UFR patterns detected in
the protein coding, RNA gene, and non-coding
regions, respectively, in the complete genomic
sequence. As shown in Table 7, 526 type 1 UFRs
of length 100 nt are involved entirely within pro-
tein coding regions, three type 1 UFRs of length



TABLE 6
Kolmogorov}Smirnov statistics of Sigscr computed

in H. pylori for window size of 300 nt

f KS f KS f KS

6 0.0252 7 0.0196 8 0.0156
9 0.0126 10 0.0103 11 0.0094

12 0.0088 13 0.0084 14 0.0096
15 0.0106 16 0.0114
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100 nt are within RNA genes, and 1006 type 1
UFRs are within non-coding regions. Also, there
are 436, three, and 141 type 2 UFRs of length
TABL

Extreme ;FRs detected in the protein codi
H. pylori. Eight types of ;FR ( from type 1
Sigscr and/or Stbscr as listed in the seco
parentheses indicate the probabilities of th
complete H. pylori genome sequence com
theoretical non-central t distributions of the
listed in the right three columns are the coun
entirely within the protein coding, RNA ge

UFR type Sigscr (P-tail) Stbscr (P

(a) ;FR counts detected in windows of 100 nt
1 )!4.94 (0.001)
2 *2.52 (0.001)
3 )!3.70
4 *2.65
5 )!4.94 (0.001) )!2.57
6 *1.19 (0.05) *2.65
7 *1.19 (0.05) )!1.71
8 )!2.39 (0.05) *1.56

(b) ;FR counts detected in windows of 300 nt
1 )!6.73 (0.001)
2 *2.61 (0.001)
3 )!3.10
4 *3.10
5 )!6.73 (0.001) )!2.33
6 *0.74 (0.05) *3.10
7 *0.74 (0.05) )!1.64
8 )!3.25 (0.05) *1.64

(c) ;FR counts detected in windows of 500 nt
1 )!9.35 (0.001)
2 *1.77 (0.001)
3 )!3.10
4 *3.10
5 )!9.35 (0.001) )!2.33
6 *0.32 (0.05) *3.10
7 *0.32 (0.05) )!1.64
8 )!4.40 (0.05) *1.64
100 nt in the protein coding, RNA gene, and
non-coding regions, respectively.

Furthermore, we can construct a series of con-
tingency tables with only two rows from Table 7.
For example, we can make the contingency table
using the data listed in the three right most col-
umns in Table 7. Counts of extreme UFRs, type 1
and 2 detected in the protein coding, RNA gene,
and non-coding regions are listed in each row of
the contingency tables, respectively. We "nd
s2"288.3 and 310.1, with two degrees of free-
dom for window size of 100 and 300 nt, and s2"
12.61 with one degree of freedom for window size
500 nt, respectively. The data therefore provides
E 7
ng, RNA gene and non-coding regions of
to 8) are de,ned based on the computed

nd and third column. Numbers listed in
e eight types of ;FR occurring in the
puted by derived linearly transformed,
two scores, Sigscr and Stbscr. Numbers

ts of these distinct;FRs that are involved
ne and non-coding regions in the genome

-tail) Protein RNA Non-coding

526 3 1006
436 3 141

(0.001) 745 91 45
(0.0025) 1401 * 452
(0.01) 316 3 429
(0.0025) 826 * 312
(0.05) 1 1 *

(0.05) 29 * 43

522 2 773
445 * 73

(0.001) 148 626 370
(0.001) 1479 * 309
(0.01) 125 2 314
(0.001) 1027 * 152
(0.05) 56 6 *

(0.05) 232 * 47

514 * 114
1535 * 216

(0.001) 629 675 69
(0.001) 1905 * 233
(0.01) 17 * 13
(0.001) 1218 * 118
(0.05) 18 19 *

(0.05) 11 * 23
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very strong evidence associating UFR pattern
and gene structure, with p(0.001. Thus, we
observe that the signi"cantly more stable folding
regions (type 1 UFRs) are predominantly in non-
coding sequences, and that the signi"cantly less
stable folding regions (type 2 UFRs) are predomi-
nantly in protein coding regions. The di!erence
of observed counts for extreme UFRs among the
RNA gene, coding and non-coding sequences is
statistically very signi"cant by a s2-test. Sim-
ilarly, we can make another contingency table of
two rows using the data of the types 5 and 6
UFRs in Table 7. Our s2-test indicates their
s2"176.1, 540.5 and 36.4 for window of 100, 300
and 500, respectively. The s2-test shows strong
support to suggest that distinct UFRs with both
very low Sigscr and Stbscr are predominantly
in non-coding sequences, and the UFRs with
both very high Sigscr and Stbscr are predomi-
nantly in protein coding sequences.

Where such highly stable and signi"cant UFR
patterns are found in the coding or non-coding
regions of viral genomes (Wang et al., 1995;
Malim et al., 1990; Phillips et al., 1992) and in
bacteriophage mRNA (Le et al., 1993), they
re#ect the existence of RNA structures with im-
portant regulatory functions. We may likewise
expect microbial genomes to have similar, and
perhaps di!erent, important functional RNA
structures. Knowledge of these structures, or
their absence, should be useful for understanding
the genome and developing antimicrobial drug
strategies. The approach used here is generally
applicable. For instance, we also "nd that the
samples of Sigscr and Stbscr data computed from
other microbial genomes (such as H. pylori strain
J99, Mycoplasma genitalium strain G37 and
Mycoplasma pneumoniae strain M129) are also
well described by the proposed statistical model
(data not shown).

In this study, we have employed an LTNSTD
to describe the distribution of Sigscr and Stbscr
computed in whole-genomic sequences. For
a given sample, we can calculate the sample
mean, standard deviation, and coe$cient of
skewness. Using the formula proposed in this
study, we can calculate the non-centrality para-
meter and quantile. As a result, we can estimate
extreme UFRs in the sample using the derived
LTNSTD. Approaches such as antisense RNA
therapeutics, or the targeting of RNA-binging
drugs should particularly bene"t from identi"ca-
tion of the unique regions of genomic sequences
based on sound statistical features.

The assistance in the preparation of the manuscript
by John Owens is gratefully acknowledged. The con-
tent of this publication does not necessarily re#ect the
views or policies of the Department of Health and
Human Services, nor does the mention of trade names,
commercial products, or organizations imply endorse-
ment by the U.S. Government. The program SEG-
FOLD and its modi"ed version SIGSTB used in this
study are available via anonymous ftp as /home/ftp/
pub/users/shuyun/fcopy/sigfold at ftp.ncifcrf.gov.
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