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This work discusses the relationships among equilibrium pressure, temperature, and pore size for 
ice-gas hydrate equilibria in porous media. The goal is thermodynamic equations that are 
conceptually correct for expressing such equilibria. An equation has been proposed to describe the 
relationships. This new equation can be converted to a form nearly identical to the one for bulk 
ice-hydrate equilibria. Perhaps the most important evidence for this near-identity is the recent 
knowledge from experiments that the ice-hydrate equilibrium pressures of gas hydrates in pores are, 
within experimental resolution, independent of the pore size. Although the two equations for 
ice-hydrate equilibria, one for bulk hydrate and one for pore hydrate, are approximately equal to 
each other quantitatively, it is necessary to distinguish their physical and thermodynamic differences. 

 
 

1 Introduction 
 
Gas hydrates are crystalline clathrate compounds (Sloan, 
1997). Water molecules form the clathrate cages via 
hydrogen bonds, and individual gas molecules are 
enclosed in these cages. It is estimated that nearly 2/3 of 
the earth's carbon is stored in the form of gas hydrates, 
with most of these hydrates being methane hydrates 
(Kvenvolden, 1993).  Natural gas hydrates are stable in 
low-temperature and high-pressure conditions. They have 
been found in permafrost and on the ocean bottoms of 
most outer continental shelves. They may become the 
most important source of hydrocarbon energy in the 
future. On the other hand, the potential impact of gas 
hydrates on our environment has been a major concern. 
Hydrate dissociation from these locations may be a huge 
threat to the earth’s atmosphere. In the past, applied 
research on hydrates has focused on their formation in 
gas/oil transmission lines, since such formation can block 
pipelines and cause huge industrial loses or accidents 
(Sloan, 1997; Kvenvolden, 1993; Hammerschmidt, 
1934). 
 
In order to explore the natural gas hydrate resource, to 
predict hydrate stability, and to prevent hydrate formation 
in gas/oil transmission, it is important to understand 
hydrate phase equilibria. Natural gas hydrates often are 
dispersed in porous media such as rock, sand, or mud. 
Due to surface tension effects, the equilibrium pressures 
of natural gas hydrate-liquid water systems in small pores 
is higher than that of such systems in bulk (Henry, 1999; 
Uchida, 1999; Seshadri, 2001; Clarke, 1999; Wilder, 2001). 
Thermodynamically, this is different from the addition of 
inhibitors to decrease the activity of water and increase 
the equilibrium pressures (Anderson, 1986; Munck, 
1998). 
 

Thermodynamic equations that relate equilibrium 
pressure to equilibrium temperature have been developed 
for gas hydrates in limited spaces. One such equation is 
as follows [see Appendix]: 
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(Tf ≥  Tq)    (1) 
 
The solution of the above equation gives a different 
pore-size-dependent pressure vs temperature profile (P-T 
profile) for the hydrate-liquid water equilibrium in each 
different size pore. Since virtually all porous media have 
pores of many different sizes, each size pore has a 
different P-T profile at temperatures above its quadruple 
point.  As discussed below, for bulk hydrate-ice equilibria 
at lower temperatures, the terms that contain surface 
tension and the term that contain water activity vanish, 
the parameters relating to liquid water should be replaced 
with those related to ice, and the equation becomes, 
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Equation 2, however, can only be applied to ice-bulk 



 

hydrate equilibria, as indicated by the subscript of the 
term on the left of the equation.  The standard state 

chemical potential 0
wµ∆  is for the standard state 

temperature T0 = 273.15 K, which is the quadruple point 
temperature of a bulk hydrate. (Above this temperature 
the hydrate is in equilibrium with liquid water, and below 
this temperature the hydrate is in equilibrium with ice.) 
When the hydrate is finely dispersed, hydrate, gas, liquid 
water and ice reach their four-phase equilibrium at a 
temperature lower than 273.15 K; the amount of 
quadruple point lowering depends on the pore size. 
Between the pore quadruple point temperature, Tq, and 
the normal ice melting point temperature of 273.15 K, 
hydrate in pores will coexist with pore water, and surface 
tension effects will be operative. Equation (2), therefore, 
does not apply between Tq and T0; instead equation (1) is 
still applicable. For hydrates in pores below the 
quadruple point temperature of the pore hydrate, Tq, 
neither of the above equations is applicable. Equation (1) 
only applies to liquid water-hydrate equilibria. Equation 
(2) is no longer correct, because the path of the integral 
for the temperature and pressure corrections has to cover 
both the liquid water-hydrate and ice-hydrate equilibria. 
This paper proposes a solution to this problem. 
 

2 Analysis and Solution 
 
Since the thermodynamic properties of water change 
dramatically at the ice-water transition point, it is 
necessary to split all the relevant terms into two sections, 
i.e. for liquid and solid water regions respectively and 
deal with them separately.  
 
The chemical-potential difference between an empty 
hydrate cavity and ice at any given temperature can be 
obtained by adding a term of correction to that measured 
at a standard condition, (T0, P0). The correction is 
expressed as an integral over a certain path along which 
temperature and pressure change. Here we choose the 
path from A to B to C where A is at the standard 
reference point (T0, P0), B is the quadruple point of 
hydrate in pore of radius r, (Tq, Pq), and C is the final 
state of interest. State C is at the formation or equilibrium 
condition (Tf, Pf = Pg), where Pg denotes the gas pressure 
at the equilibrium. 
 
Since the first integral is within the region of liquid 
water-hydrate equilibrium, it can be expressed as 
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(T0 >T>≥Tq)   (3) 
 
Note that Pl here is the pressure on the liquid, aqueous 
phase.  
 
In the attempt to find an expression for the second half of 
the integration, it is appropriate to hypotesize that the 
term for interfacial tension between two solids, the ice 
and the hydrate, should approximately disappear—this 
follows from the hypotheses that (1) the operative 
interface is between hydrate and water and (2) the 
tension between liquid water and hydrate is 
approximately equal to the tension between liquid water, 
so that (3) the tension between ice and hydrate is very 
small.  For hydrocarbon guests the term representing the 
effect of solubility on the potential energy usually is, and 
can be, similarly ignored. One therefore can write 
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(T<Tq)    (4)  
 
Here Pi is the pressure on the ice phase, and the second 
and the fourth terms in the first line on the right of the 
previous equation have been combined and become the 
third term in the last line. 
 
In the last line of equation (4), the first term accounts for 
the dimensionless energy change from state (Tq, Pq) to 
(Tq,P0), with T being constant and equal to Tq; the second 
term is from (Tq, P0) to (Tf, P0), the pressure being the 
reference pressure, P0; and the third term is from (Tf, P0) 
to (Tf, Pg), at the temperature at which the system reaches 
the hydrate-ice equilibrium. 
 
The total of the integral then becomes  
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(T<Tq)    (5) 
 
At equilibrium, 
 

wH µµ ∆=∆    (6) 

 
Introducing equation a-(4) (Appendix) and equation (5) 
into (6), one has 
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(T<Tq)    (7) 
 
or, by further combing equation (3), one arrives at 
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T 
Both equation (7) and (8) can be used to determine the 
equilibrium pressure of hydrate in any size pore below 
the quadruple point temperature of that size of pore. 
 
In comparison with equation (2) there are a number of 

extra terms in equation (7). In particular, 
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 compensates for the energy 

difference caused by the change of temperature from Tq 
to Tf. More importantly, the solution for the equilibrium 
pressure in equation (7) will be independent to the pore 
size, although the equation appears to contain the terms 
affected by surface tension and therefore by pore size. 
The proof of this point is as follows. 
 

3 Pore Size Independence of the 
Equilibrium Pressure of Hydrate-ice 
System 

 
Experiments have shown that below Tq the 

equilibrium pressure of a hydrate in pores of any size is 
the same (within experimental resolution) regardless of 
the size of the pores (Zhang,2002). Secondly, below the 
ice melting point, the effective concentration and activity 
of water is always one. Hence, the chemical potential of 
the water on the equilibrium P-T line is only a function 
of temperature.  

 
At T< Tq, the right hand side of equation (2) can 

be expanded and rearranged into the following equation: 
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Apparently, the sum of the first three terms in the last line 

of equation (9) is equal to )(
q

q
w

RT
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, since this sum is 

equivalent to a integral from (T0, P0) to (Tq, Pq) along the 
ice-hydrate equilibrium line for the bulk condition; i.e.,  
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Now we need to prove that  
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Experiments (Zhang,2002) have indicated that the 
quadruple points of ice-water-hydrate-gas equilibria in 
pores of different pore size should all fall on the 
equilibrium P-T line of the bulk hydrate. In other words, 
the state of (Tq, Pq) is reachable along the ice-hydrate 
equilibrium line of the bulk condition. Equation (11) is 
therefore true for any pore size, because both sides are 
the chemical potential difference between the same start 
and end states; i.e., both are from (T0, P0) to (Tq, Pq).  
 
On the other hand, though different integration paths 
were taken, the results from both paths turn out to be the 
unit energy difference between the standard reference 
point and the quadruple point of hydrate in pores of 
radius r; therefore, 
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Introducing (10-12) into equation (9), one has 
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(T<Tq)    (13) 
 

Comparing equation (13) with equation (8) for 
pore hydrate, one is clear that the formulas on 
the right–hand sides of the two equations are 
identical. Equations (13) and (8) are a pair of 
mathematical expressions indicating that the 
ice-hydrate equilibrium pressure for pore 
hydrate is the same as that of bulk hydrates, if 
they are at the same temperature. 

 

4 Discussion 
 
Evidence for the approximate equality of the equations of 
ice-hydrate equilibria for the bulk and porous condition 
rests on the experimental evidence; i.e., experiments 
indicate that the pressures for ice-hydrate equilibria in 
pores are essentially independent of pore size from the 
smallest pores studied (about 2 nm radius) up to pores of 
“infinite radius” (bulk hydrate). Below the quadruple 
point temperature, therefore, the chemical potential 

difference between an empty hydrate cavity and pore ice 
is the same as the chemical potential difference between 
the empty cavity and bulk ice, i.e. 

qfqf TTbulkiceTTporeice <<
∆=∆ ,, µµ . For numerical 

purposes, equation (2) for the hydrate-ice equilibrium of 
a bulk hydrate can thus be employed to determine the 
equilibrium pressures of this (chemically) same hydrate 
in pores below their (pore-size dependent) quadruple 
points. 
 
The quadruple point temperature is the highest 
temperature for which the equilibrium pressure of a pore 
hydrate is essentially independent of its pore size. A 

dimensionless chemical potential difference, )(
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between an empty cavity and ice at an equilibrium 
condition (Tf, Pf) can be referenced to the corresponding 
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due to the effects of temperature and pressure that are 
described by the sum of the last three terms of equations 
(8) or (13), i.e.,  
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These integrals, which account for the effects of 
solubility and interfacial tension, should become 
negligible for hydrates with small guest solubilities in 
water in all but the very smallest pores. 
 
Although the thermodynamic equation for ice-hydrate 
equilibria of pore hydrates can be approximated by a 
form that is mathematically identical to the equation for 
the bulk ice-hydrate equilibrium, this is a physical as well 
as mathematical approximation. If this is unclear, 
mistakes may lead to conflicting results. For example, 
one might carelessly use equation (2) for pore hydrate 
with the upper temperature of integration falling between 
the normal ice melting point of 273.15 K and the 
quadruple point of a pore hydrate, a condition that fails 
equation (2). Being aware that an integral path is going to 
pass the ice-water transition point at Tq and therefore 
different thermodynamic properties should apply to each 
side of the ice-water transition point, one may become 
confused if equation (2) for the bulk hydrate is still 
employed for the calculation of equilibrium pressure for 
a pore hydrate. 
 

5 Conclusion  
 
A thermodynamic equation has been developed for 



 

ice-hydrate equilibria in porous media. This equation 
takes into account the difference in the properties of 
water below and above the melting point of pore ice (i.e., 
the quadruple point of a pore hydrate). Experiments 
indicate that at temperatures below the quadruple point of 
a pore hydrate the equilibrium pressure of the hydrate is 
independent of the pore size.  Hence, it is concluded that 
the equation for the ice-hydrate equilibrium in pores can 
be converted into a form which is approximately 
identical to the equation for the bulk ice-hydrate 
equilibrium.  Therefore, numerically, the equilibrium 
pressure of a pore hydrate at below quadruple point can 
be calculated via the use of the thermodynamic equation 
for bulk hydrate. However, conceptually one needs to 
realize that although the equations are approximately the 
same, the bulk- and pore-hydrate equilibria are physically 
and thermodynamically distinct. 
 
 
------------------------ 
Appendix  
 
The method for predicting the hydrate-water- gas 
equilibrium is based on the criterion that at equilibrium, 

the chemical potential of hydrate, Hµ , is the same as that 

of water, Wµ , in either the water rich phase or ice phase 

(Saito,1964;Holder,1988).  
 

Hw µµ =    (a-1) 

 
With an imaginary state of empty hydrate cage of a 

chemical potential, βµ , either side of above equation 

can be replaced by their difference from the chemical 
potential of an unoccupied hydrate lattice and that of the 
water phase and hydrate phase.  
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Following the van der Waals and Platteeuw equation (19 
59) one has 
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where kiy  is the fractional occupation of cavity type i, 
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In above equatioon, kf , is the fugacity of gas k. A 

modified Redlich-Kwong equation of state can be 

employed to calculate the fugacity (Peng, 1976). kiC  is 

the Langmuir constant for gas k in cavity i. Two methods 
have been used to calculate the Langmuir constants. One 
is a parameter fitting method as suggested by Munck 
(1998). The other involves the calculation of potential 
wells (Sloan,97; McKoy, 1963).  
 
For an ideal solution of water, the following relationship 
obtains (Holder,1988): 
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Here Xw is the mole fraction and Wγ  is the activity 

coefficient of water in the water-rich phase; '
Wµ∆  is a 

function of pressure and temperature only and can be 
written as 
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where '
Wh∆  is the molar enthalpy and '

WV∆  the 

mole-volume difference between the empty hydrate and 
pure ice(T<T0) or liquid water (T>T0) phases.  
 
Integration of equation (a-7) and combining it with 
equation (a-2) and (a-6) gives, 
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For the study of hydrate formation in pores, Clarke (19 
99), Henry (1999), and Clennell (1999), and Wilder(20 
01) have considered that an additional term should be 
added to above equation to reflect the effect of surface 
energy on the chemical potential change. Equation (a-8) 
is therefore corrected to the form, 
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Here Vl is the mole volume of water (Vl =18.016 
m3/mole), σ  the surface tension, and θ , the contact 

angle. It is assumed that θ =0. The upper limit of 
intergration for the third term on the right is related to the 
total gas pressure by the Young-Laplace equation of the 
form, 
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Henry(1999) and Clennell (1999) suggested that for the 
liquid water-hydrate equilibrium in porous media, the 
operating surface tension, σ , should be the interfacial 
tension between liquid water and hydrate. Combining 
equation (a-1), (a-2), (a-3), (a-4) and equation (a-9), 
therefore, one arrives at 
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 (Tf ≥  Tq),    (a-11) 
 
where the subscript of the term on the left hand side of 
the equation indicates the term is for pore hydrate. The 

variable, wH −σ , in the last term on the right denotes the 

interfacial tension between hydrate and liquid water.  
 
Nomenclature 
 

wµ∆  Difference in chemical potential between empty 

hydrate cage and ice or aqueous phase in 

equilibrium with hydrate, and 0
wµ∆ , the one at 

standard state. 

wν∆  Difference in mole volume between empty 

hydrate and the α  phase, the phase in 
equilibrium with hydrate, which can be ice, 
water or aqueous solutions. 

wh∆  Difference in enthalpies between empty hydrate 

and the α  phase. 

iν  Number of type i cavities per water molecule. 

Vl  Mole volume of water, Vw=18.016 m3/mole.  

wγ  Activity coefficient of liquid water  

wX  Molar fraction of water 

wH −σ  Surface tension (surface energy per unit area) of 

hydrate-water interface  
θ  Porous host-water contact angle.  
r Pore radii. 
R Gas Constant. 
yki The fractional occupation of cavity type i, 

and  

kiC  Langmuir constants of the cavity i for gas k. 

T Temperature(Tf, T at formation, T0, T at 
Standard Condition, and Tq, T at quadruple 

point. 
P Pressure(Pl, P on liquid phase; Pg, P on gas 

phase; Pi, P on ice phase, and P0, P at 
standard condition, Pq, P at quadruple point, 
etc.. 
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