Phase Behavior of Aqueous Na – K – Mg – Ca – Cl – NO₃ Mixtures: Isopiestic Measurements and Thermodynamic Modeling

Mirosław S. Gruszkiewicz · Donald A. Palmer

Chem. Sciences Division, Oak Ridge National Laboratory, PO Box 2008, MS 6110, Oak Ridge, TN 37831-6110, USA

Ronald D. Springer · Peiming Wang · Andrzej Anderko^{*}

OLI Systems Inc., 108 American Road, Morris Plains, NJ 07950, USA

Abstract

A comprehensive model has been established for calculating thermodynamic properties of multicomponent aqueous systems containing the Na⁺, K⁺, Mg²⁺, Ca²⁺, Cl⁻, and NO₃⁻ ions. The thermodynamic framework is based on a previously developed model for mixed-solvent electrolyte solutions. The framework has been designed to reproduce the properties of salt solutions at temperatures ranging from the freezing point to 300 °C and concentrations ranging from infinite dilution to the fused salt limit. The model has been parameterized using a combination of an extensive literature database and new isopiestic measurements for thirteen salt mixtures at 140 °C. The measurements have been performed using Oak Ridge National Laboratory's (ORNL) previously designed gravimetric isopiestic apparatus, which makes it possible to detect solid phase precipitation. Water activities are reported for mixtures with a fixed ratio of salts as a function of the total apparent salt mole fraction. The isopiestic measurements reported here simultaneously reflect two fundamental properties of the system, *i.e.*, the activity of water as a function of solution concentration and the occurrence of solidliquid transitions. The thermodynamic model accurately reproduces the new isopiestic data as well as literature data for binary, ternary and higher-order subsystems. Because of its high accuracy in calculating vapor-liquid and solid-liquid equilibria, the model is suitable for studying deliquescence behavior of multicomponent salt systems.

Keywords: osmotic coefficient \cdot activity coefficient \cdot isopiestic measurements \cdot thermodynamic model \cdot deliquescence \cdot fused salt \cdot mixed brines

^{*} Corresponding author. E-mail address: <u>aanderko@olisystems.com</u>, tel.: 1-973-539-4996 ext. 25, fax: 1-973-539-5922

1. Introduction

Accurate knowledge of the deliquescence behavior of multicomponent brines is expected to enhance the understanding of the evolution of the chemical environment in contact with metal surfaces at the proposed radioactive waste repository at Yucca Mountain, Nevada, USA. It is anticipated that a layer of dust containing volcanic tuff and a mixture of salts originating from evaporation of seepage waters will tend to accumulate over time on all surfaces. The air inside the placement drifts will be relatively dry after final closure due to the temperature remaining well above the boiling point of water. As the temperature slowly decreases for several centuries due to radioactive decay, the relative humidity may reach sufficiently high levels for the mixture of initially dry salts to form concentrated brines through deliquescence. The concentrations of ions present in solutions contacting metal surfaces affect corrosion processes as, for example, the Cl^{-}/NO_{3}^{-} ratio is an important consideration in corrosion calculations. Hence, thermodynamic properties of mixed aqueous solutions are needed for reliable predictions of the composition of the brines formed under the expected scenarios of in-drift temperature and humidity evolution.

Complete phase diagrams, showing relative humidity (or water activity) as a function of composition, are scarce even for solutions containing two salts. There are very few accurate experimental data sets available on deliquescence behavior of multicomponent aqueous salt solutions at elevated temperature. This underscores the importance of having an accurate thermodynamic model that would be capable of predicting the behavior of multicomponent systems in a wide temperature range using parameters determined from limited experimental data. While the well-known Pitzer ion-interaction model provides a useful framework for the prediction of solubilities in multicomponent solutions using activity data on binary systems with a common ion, the temperature dependence of solute-specific parameters is often not available with sufficient accuracy. Also, the molality-based Pitzer model is applicable for concentrations typically up to ca. 6 molal, which is often insufficient for highly concentrated systems that contain nitrates. Thus, it is necessary to develop a model that would be applicable to multicomponent, concentrated solutions up to solid saturation or, under some conditions, even the fused salt limit. Further, it is desirable to verify model results against measurements made in the temperature range that is of direct interest for studying deliquescence phenomena.

The main purpose of the measurements described here is to demonstrate that the unique ORNL high-temperature isopiestic apparatus can be used to investigate the relationship between deliquescence, relative humidity (*RH*) and temperature for multicomponent aqueous solutions. The points where a new phase appears or disappears can be detected when a series of measurements of solvent mass and the corresponding vapor pressure are made as water is added or withdrawn. When the relative humidity over a mixture of solid salts increases, the solution first appears at the eutonic point of the mixture where the solution is simultaneously saturated with respect to all components. The relative humidity coexisting with a liquid solution. The tendency to deliquesce (the hygroscopic character) of solutes depends mainly on their solubility, but also on the particular character of solute-solvent interactions, described also as nonideality, or vapor-pressure lowering ability. Since an addition of a new electrolyte to a saturated solution initially lowers its vapor pressure without causing precipitation, the deliquescence *RH* of multicomponent solutions decreases as the number of solutes increases.

The second objective of this paper is to develop a comprehensive thermodynamic model for predicting the thermodynamic behavior of aqueous mixtures containing the Na⁺, K⁺, Ca²⁺, Mg²⁺, Cl⁻, and NO₃⁻ ions. These are the key ionic components in natural environments that may give rise to the formation of concentrated solutions through deliquescence phenomena. Comprehensive modeling of such mixtures requires calibrating the model to match the properties of the constituent binary (*i.e.*, salt – water), ternary (*i.e.*, salt 1 – salt 2 – water) and higher-order subsystems. For all such systems, the primary requirement for the model is to reproduce the solid-liquid equilibria and vapor pressures as a function of temperature and composition. In the development of the model, both literature data and the new isopiestic measurements are used. While literature data are primarily used to ensure the correct representation of the properties of simpler (*i.e.*, binary and ternary) subsystems, the new isopiestic data are essential for verifying the performance of the model for concentrated multicomponent mixtures at high temperatures.

2. Experimental

The isopiestic method is based on equilibration of a number of solutions together with reference standards in a common chamber, until all transfer of the solvent ceases and all solutions reach the same water activity. The ORNL high-temperature isopiestic apparatus, described previously [1-5], has been used during the last several decades to measure vapor pressures and obtain osmotic and activity coefficients for many aqueous solutions of pure electrolytes and their mixtures at temperatures typically between 150 and 250 °C. The main feature of this apparatus is its internal electromagnetic balance with optical detection. Since only the solvent is exchanged between samples while the masses of nonvolatile solutes placed initially in the platinum cups remain constant, the amounts of water present at any time and hence the molalities of the solutions can be determined gravimetrically without interrupting the equilibrium. The isopiestic apparatus provides, in general, a greater reliability and accuracy of the results than other recently reported experimental methods of investigating deliquescence [6,7] thanks to the precise control of relative humidity over arbitrarily long times, the absence of atmospheric air, the high accuracy of the gravimetric method for molality and of the relative isopiestic method for vapor pressure, and the fast equilibration times due to the efficient heat exchange between the solution cups.

The internal balance was calibrated during each series of weighings using platinum and titanium mass standards placed in the sample holder between the sample cups. All twenty cups containing the samples, the reference solutions and the mass standards were weighed at each equilibrium point two to three times. The corrections for buoyancy in water or air were applied to all weighings. Each solution contained 10 to 15 mmole of salts (about 1 g) and no more than 3 g of water. The accuracy of the balance was better than ± 1 mg. The estimated absolute error of the resulting average molalities $m \pmod{kg^{-1}}$ was less than 0.0001 mol⁻¹ ·kg · m^2 .

The apparatus was also equipped with quartz pressure transducers (Digiquartz, Paroscientific Inc.) allowing for accurate monitoring of the approach to equilibrium. The set of four Digiquartz transducers (with the ranges of 2.1, 6.9, 21 and 69 bar), kept in an air oven at a constant temperature of about 39.0 ± 0.1 °C, provided an accurate and relatively simple means of

measuring water vapor pressure. While only a dead-weight instrument with a precise pressure difference indicator could deliver a substantially greater accuracy, at 140 °C, and at the pressures between 0.35 bar and 2.7 bar, the relative isopiestic method based on reference solutions was still significantly superior to direct pressure measurement. The accuracy of the direct pressure measurement was limited by the effects of temperature, viscosity, surface tension and hydrostatic pressure of the liquid water present inside the transducers and in the tubing connecting them to the vapor space maintained at elevated temperature. The results reported here are not based on the measured pressures, but instead on the calcium chloride reference solution [5].

Stock solutions were prepared by weight using distilled and deionized water (from a Barnstead NANOpure four-stage water purification system) and the chemicals supplied by Alfa Aesar Chemical Co. without any purification other than drying. Two grades of pure salts were used. The chlorides were the "ultra dry" grade chemicals, with metal-basis purities specified by the vendor as 0.99998 for NaCl and KCl, 0.99995 for LiCl, and 0.9999 for CaCl₂ and MgCl₂. These salts, received in the form of powders or small beads stored in glass ampoules under argon, were also certified to contain at most 100 ppm oxide and hydroxide, and were used without drying. The nitrates of sodium, potassium, calcium, and magnesium were the "Puratronic" grade chemicals with metal-basis purities better than 0.99995. These salts, in particular the hydrates of Ca(NO₃)₂ and Mg(NO₃)₂, were dried carefully in a vacuum oven for several days, while avoiding deliquescence and possible decomposition by slowly increasing temperature to about 140 °C.

All stock solutions of the "ultra dry" salts contained some amount of insoluble impurities. In the case of CaCl₂ and MgCl₂ this was determined by XRD to be mostly sulfate. The exact quantities of impurities were not determined; however, they were apparently higher than expected for this type of chemicals. It is likely that the purity of these materials was lower than stated by the vendor. There were no noticeable insoluble impurities in the solutions of the "Puratronic" salts.

This work describes the first use of the ORNL isopiestic apparatus specifically for determination of solubilities in multi-component solutions. The water initially injected in the apparatus was previously degassed by boiling and sparging with helium. The solutions were all liquid at the starting relative humidity of 75 %. The relative humidity was then decreased in about 20 steps to the final value of 10% by releasing water from the autoclave under atmospheric pressure or vacuum when necessary. At least 16 hours were allowed for equilibration at each step. Since the measurements started with liquid samples of approximately the same molality as the stock solutions, it was convenient to conduct the measurements by progressively decreasing the relative humidity. The process observed was in fact precipitation (efflorescence) of salts from the solution instead of deliquescence. However, measurements can be also be made in the reverse direction by starting from solid salt mixtures. It is assumed that the results are completely reversible with respect to the direction of the changes in relative humidity.

The phase changes occurring in the mixed solutions were clearly visible as breaks in the curve representing initially the osmotic coefficient of the solution as a function of relative humidity. The osmotic coefficient, ϕ , was calculated as

 $\phi = 1000 w_{\rm s} / M_{\rm s} \Sigma n_i \ln a_{\rm s}$

(1)

where M_s (g·mol⁻¹) is the molecular weight of water, a_s is the activity of water, n_i are the numbers of moles for each ion and w_s (kg) is the mass of water. Naturally, after the appearance of a solid phase, because the distribution of the salts between solid and liquid phases is not known, the quantity calculated from the above equation does not represent the actual osmotic coefficient. As the first component begins to precipitate from the solution, the ratio n_i/w_s exceeds the actual molality of the liquid phase and the osmotic coefficient appears to sharply decrease. This process continues gradually as the relative humidity continues to decrease and more water evaporates from the solution. After reaching the eutonic composition, all the remaining water evaporates at a constant relative humidity. By using samples of varying solute ratios, a complete solubility diagram can be obtained.

The compositions of the samples are summarized in Table 1. For all the 13 samples defined in Table 1, Table 2 gives the masses of water (and, hence, the overall system compositions) that correspond to 21 values of water activity.

3. Thermodynamic model

For modeling the properties of aqueous Na–K–Ca–Mg–Cl–NO₃ mixtures, we use a thermodynamic framework that has been previously developed at OLI Systems for mixed-solvent electrolyte systems (Wang *et al.* [8-10]). This framework is capable of reproducing the properties of multicomponent salt solutions ranging from infinite dilution to the fused salt limit and, therefore, it is particularly suitable for studying deliquescence phenomena. The model was described in detail in previous papers [8-10] and, therefore, only a brief summary is given here.

The thermodynamic framework combines an excess Gibbs energy model for mixedsolvent electrolyte systems with a comprehensive treatment of chemical equilibria. In this framework, the excess Gibbs energy is expressed as

$$\frac{G^{ex}}{RT} = \frac{G^{ex}_{LR}}{RT} + \frac{G^{ex}_{II}}{RT} + \frac{G^{ex}_{SR}}{RT}$$
(2)

where G_{LR}^{ex} represents the contribution of long-range electrostatic interactions, G_{II}^{ex} accounts for specific ionic (ion-ion and ion-molecule) interactions and G_{SR}^{ex} is the short-range contribution resulting from intermolecular interactions.

The long-range interaction contribution is calculated from the Pitzer-Debye-Hückel formula [11] expressed in terms of mole fractions and symmetrically normalized, *i.e.*,

$$\frac{G_{DH}^{ex}}{RT} = -\left(\sum_{i} n_{i}\right) \frac{4A_{x}I_{x}}{\rho} \ln\left(\frac{1+\rho I_{x}^{1/2}}{\sum_{i} x_{i}[1+\rho (I_{x,i}^{0})^{1/2}]}\right)$$
(3)

where the sum is over all species, I_x is the mole fraction-based ionic strength, $I_{x,i}^0$ represents the ionic strength when the system composition reduces to a pure component *i*, *i.e.*, $I_{x,i}^0 = 0.5z_i^2$; ρ is related to the hard-core collision diameter ($\rho = 14.0$) and the A_x parameter is given by

$$A_x = \frac{1}{3} \left(2\pi N_A d_s \right)^{1/2} \left(\frac{e^2}{4\pi \varepsilon_0 \varepsilon_s k_B T} \right)^{3/2} \tag{4}$$

where d_s and ε_s are the molar density and dielectric constant of the solvent, respectively. The specific ion-interaction contribution is calculated from an ionic strength-dependent, symmetrical second virial coefficient-type expression [8]:

$$\frac{G_{II}^{ex}}{RT} = -\left(\sum_{i} n_{i}\right) \sum_{i} \sum_{j} x_{i} x_{j} B_{ij}(I_{x})$$
(5)

where $B_{ii}(I_x) = B_{ii}(I_x)$, $B_{ii} = B_{ji} = 0$ and the ionic strength dependence of B_{ij} is given by

$$B_{ij}(I_x) = b_{ij} + c_{ij} \exp(-\sqrt{I_x + a_1})$$
(6)

and where b_{ij} and c_{ij} are binary interaction parameters and a_1 is set equal to 0.01. In general, the parameters b_{ij} and c_{ij} are calculated as functions of temperature as

$$b_{ij} = b_{0,ij} + b_{1,ij}T + b_{2,ij}/T + b_{3,ij}T^2 + b_{4,ij}\ln T$$
(7)

$$c_{ij} = c_{0,ij} + c_{1,ij}T + c_{2,ij}/T + c_{3,ij}T^2 + c_{4,ij}\ln T$$
(8)

The last two parameters of Eqs. (7) and (8) are typically necessary only when there is a need to reproduce experimental data over a very wide range of temperatures, *e.g.*, from -50 to 300 °C. Finally, the short-range interaction contribution is calculated from the UNIQUAC equation [12]. In systems containing only strong electrolytes, such as the Na-K-Ca-Mg-Cl-NO₃ mixtures considered here, the short-range term is unnecessary and all interactions are accounted for by Eq. (5).

The excess Gibbs energy model is used to calculate nonideality effects on solid-liquid equilibria and chemical equilibria, such as ion pairing. For example, solubility of a salt MX is represented as a chemical equilibrium between the solid salt $MX_{(s)}$ and the ions that result from its dissociation, M^{m^+} and X^{x^-} . The chemical equilibrium is governed by the chemical potentials of

all species that participate in a given reaction. The chemical potential of each ionic or neutral species *i* is determined by its standard-state contribution, $\mu_i^{\circ}(T, P)$ and its activity coefficient, $\gamma_i(T, P, \mathbf{x})$, *i.e.*,

$$\mu_i(T, P, x) = \mu_i^0(T, P) + RT \ln x_i \gamma_i(T, P, x)$$
(9)

The standard-state chemical potentials for aqueous species, $\mu_i^{o}(T, P)$, are calculated as functions of temperature and pressure using the Helgeson-Kirkham-Flowers-Tanger (HKF) equation of state [13-14]. The parameters of the HKF model are available for a large number of aqueous species including ions and ion pairs [15-18]. It should be noted that standard-state properties calculated from the model of Helgeson *et al.* are based on the infinite-dilution reference state and on the molality concentration scale. To make the equilibrium calculations consistent when the standard-state properties are combined with the mole fraction-based and symmetrically normalized activity coefficients, two conversions are performed: (1) the activity coefficients calculated from Eq. (2) are converted to those based on the unsymmetrical reference state, *i.e.*, at infinite dilution in water and (2) the molality-based standard-state chemical potentials are converted to corresponding mole fraction-based quantities [8].

4. Determination of parameters

The parameters of the model are determined using thermodynamic data of various types, including

- (1) Vapor-liquid equilibria
- (2) Activity and osmotic coefficients
- (3) Solid-liquid equilibria
- (4) Enthalpies of dilution or mixing
- (5) Heat capacities
- (6) Densities

The parameters for the Na–K–Mg–Ca–Cl–NO₃ systems were evaluated and/or verified using a combination of literature data and the new isopiestic data reported in this study. There is a very large body of literature data that covers all the eight binary subsystems (*i.e.*, NaCl, KCl, MgCl₂, CaCl₂, NaNO₃, KNO₃, Mg(NO₃)₂ and Ca(NO₃)₂ with H₂O), most of the twenty-eight possible ternary subsystems and an appreciable number of quaternary and quinary subsystems of this senary mixture [7,19-305]. References to binary and ternary data are collected in Table 3 in the form of a matrix defined by the eight fundamental constituent salts. The diagonal elements of the matrix (*i.e.*, salt A – salt A) show references to the sources of experimental data for the binary subsystems (*i.e.*, salt A – salt B – H₂O). As shown in Table 3, there is a wealth of information for all binary systems. In the case of the ternary subsystems, there is extensive experimental coverage for mixtures containing two chlorides. Also, there are a reasonable number of experimental data sources for the ternaries that contain two nitrates and those that combine the nitrates and chlorides of sodium and potassium. However, the experimental coverage is much

sparser for mixed chloride – nitrate ternaries that contain magnesium and calcium in addition to sodium and potassium.

Table 4 summarizes the sources of experimental data for quaternary and higher-order systems. Since a complete matrix representation is not practical in this case, Table 4 groups the subsystems according to the availability of experimental data. It is noteworthy that a fairly large number of data sources deal with chloride-only multicomponent mixtures. Much less information is available for mixtures of chlorides and nitrates. Here, the new isopiestic measurements fill important gaps.

The model parameterization procedure adopted in this work consisted of several steps. First, binary parameters were determined using data for the eight binary subsystems. These regressions were based on data of various types as described above. This produced the interaction parameters (Eqs. 7-8) between the cations and anions that constitute each subsystem. Also, thermochemical parameters (*i.e.*, the Gibbs energy and entropy) for some hydrated salts were simultaneously adjusted to match solid-liquid equilibrium data. Such adjustments were not necessary for the solids for which thermochemical properties are known with high accuracy.

In the second step, data for ternary subsystems were used to determine the cation-cation and anion-anion interaction parameters. At the same stage, thermochemical parameters were adjusted for the double salts that do not occur in binary subsystems but precipitate in ternary and higher-order mixtures. The thermochemical properties of such double salts are typically known with lower accuracy than those of pure solids and, therefore, needed to be adjusted to match their solubilities. Finally, data for quaternary and higher-order systems were used to verify the predictions of the model. In some cases, quaternary data were used to fine-tune model parameters when they extended to temperatures that were not covered by the relevant ternary subsystems.

In all cases, parameters were determined to cover the temperature range from the freezing point of salt solutions (typically between -50 and 0 °C) and 300 °C. The upper limit of 300 °C is an inherent limitation of excess Gibbs energy models when applied to aqueous systems. Above 300 °C, the system becomes too close to the critical locus to be handled by classical excess Gibbs energy models. However, the temperature range from the freezing point to 300 °C comfortably encompasses the conditions that are of interest for studying deliquescence.

Table 5 shows the parameters that represent the properties of the ternary system NaCl–NaNO₃–H₂O. The underlying experimental data for this system and its constituent binaries extend over a wide range of temperatures (up to 300 °C) and, therefore, four or five coefficients are necessary to reproduce the temperature dependence of the binary cation-anion parameters. Also, the need to use a fairly complex temperature dependence of the parameters is due to the high accuracy of the available experimental data for the NaCl-H₂O and NaNO₃-H₂O binaries. On the other hand, the Cl⁻-NO₃⁻ interaction parameters can be represented using a much simpler temperature dependence. The Cl⁻-NO₃⁻ interaction parameters have been determined on the basis of all available chloride-nitrate ternaries and, therefore, they are not limited to the NaCl–NaNO₃–H₂O ternary. For completeness, Table 5 also includes the thermochemical properties of the solids

that may precipitate in this system. These thermochemical properties are used to calculate the chemical potential of the solids according to standard thermodynamics.

5. Results and discussion

In this section, we compare the modeling results with experimental data for all constituent binary subsystems and selected ternary and higher-order systems. First, we focus on solubility relationships for the binary and ternary systems. Then, we analyze vapor-liquid equilibrium data for solid-saturated ternary systems using literature data [7]. Finally, we apply the model to the new isopiestic data and analyze them in the light of solid-liquid equilibrium predictions obtained from the model.

5.1. Solid-liquid equilibria in binary systems

Figures 1-8 show the calculated and experimental solid-liquid equilibria for the eight binary subsystems for temperatures up to approximately 300 °C. In all cases, the SLE diagrams include the solubility of ice (denoted by $H_2O(s)$) in a salt solution. The lowest temperature in each diagram corresponds to the eutectic point, at which ice coexists with the anhydrous or hydrated salt that is stable at the lowest temperature. Then, solubility curves are included for all solid forms that are stable up to 300 °C.

It is evident that the complexity of the solubility behavior depends primarily on whether the cation belongs to the first group of the periodic table (Na, K) or the second (Mg, Ca). The sodium salts show relatively simple solid-liquid equilibrium patterns. As shown in Figs. 1 and 2, NaNO₃ and KNO₃ form only one, anhydrous, solid precipitate at temperature from sub-zero to ca. 300 °C. In both cases, the solubility continuously increases with temperature up to the melting point of the pure solid. It is noteworthy that the model accurately reproduces the solubility up to the melting point. Unlike NaNO₃ and KNO₃, the nitrates of calcium and magnesium form more than one stable solid phase. This is illustrated in Figs. 3 and 4, which show the stability ranges for the various hydrated and anhydrous forms of Ca(NO₃)₂ and $Mg(NO_3)_2$, respectively. The solubility behavior is particularly noteworthy for $Mg(NO_3)_2$ (Fig. 4). In the case of this binary, the $Mg(NO_3)_2 \cdot 6H_2O$ phase melts congruently, which results in a solubility maximum. Thus, in the temperature range from ca. 45 to 90 °C, the salt has three values of solubility, *i.e.*, two for Mg(NO₃)₂·6H₂O on both sides of the solubility maximum and one for Mg(NO₃)₂·2H₂O at higher salt concentrations. The solubility behavior of chlorides (Figs. 5-8) essentially parallels that of the nitrates with respect to the complexity of their phase behavior. However, the solubility of the chlorides is substantially lower than that of the nitrates. Similarly to the corresponding nitrates, sodium and potassium chlorides form only one stable anhydrous solid phase at the temperatures of interest. The only exception is the hydrate NaCl·2H₂O, which is stable only below 0 °C (cf. Fig. 5). The chlorides of calcium and magnesium form a series of stable hydrates as shown in Figs. 7 and 8, respectively. For all binary subsystems, the model reproduces the measurements essentially within the scatter of experimental data.

5.2. Solid-liquid equilibria in ternary systems

Figures 9–15 show solid-liquid equilibrium diagrams for seven representative ternary systems. In these figures, solubility isotherms are plotted using the weight percent of both salts as independent variables. Thus, the points on the individual salt concentration axes correspond to solubilities in the binary subsystems. In general, the chemical identity of the stable solid phase may vary with the overall composition of the system and may not be the same as in the binary subsystems. Therefore, the solid phases that are in equilibrium with saturated solutions are marked next to the solubility curves in Figs. 9–15.

Figure 9 shows the solubility behavior in the ternary system NaNO₃–Ca(NO₃)₂–H₂O. In this case, the diagram is fairly simple because the stability of the solid phases that precipitate for the constituent binary subsystems persists in the ternary system. Thus, the diagram shows two branches that extend from the solubility points for the binary subsystems. These two branches correspond to the precipitation of NaNO₃ and Ca(NO₃)₂·4H₂O or Ca(NO₃)₂, depending on the temperature. The solubility behavior of the Mg(NO₃)₂–Ca(NO₃)₂–H₂O system (Fig. 10) is qualitatively similar in that the identity of the stable phases does not change by moving from the binary subsystems to the ternary. However, the relative stability of the magnesium and calcium salts strongly changes with temperature. For example, Ca(NO₃)₂·4H₂O precipitates over a wide range of conditions at lower temperatures whereas the stability range of Ca(NO₃)₂·3H₂O is very narrow at 50 °C and is limited to a region close to the binary axis.

Figure 11 illustrates solid-liquid equilibria for the NaNO₃–KNO₃–H₂O system. In this case, simple solubility behavior is observed at low and moderate temperatures (up to *ca.* 150 °C). However, a solid solution phase appears at higher temperatures and manifests itself as two breaks in the solubility isotherms at 175 and 200 °C. This solid phase is tentatively identified as NaNO₃·KNO₃.

Figures 12-15 show the behavior of mixed nitrate-chloride ternaries. The solubility isotherms for the NaCl–NaNO₃–H₂O (Fig. 12) and KCl–KNO₃–H₂O (Fig. 13) ternaries show simple solubility behavior without a phase change on moving from the binaries to the ternary. However, the MgCl₂–Mg(NO₃)₂–H₂O system shows a very complicated solubility pattern as shown in Fig. 14. This pattern results partly from the presence of a congruently melting solid phase, Mg(NO₃)₂·6H₂O, in the binary subsystem Mg(NO₃)₂–H₂O. Because of this, the solubility of Mg(NO₃)₂·6H₂O forms a loop in the ternary phase diagram at intermediate temperatures. In addition to the loop, an additional solubility curve is observed that connects the solubilities of MgCl₂·6H₂O and Mg(NO₃)₂·6H₂O in the binary subsystems. At higher temperatures, the solubility loop disappears. However, the solubility behavior is further complicated by the transition of the stable solid form from MgCl₂·6H₂O to Mg(NO₃)₂·2H₂O through MgCl₂·4H₂O and then MgCl₂·2H₂O. These transitions are visible in the solubility curves as characteristic break points. It is noteworthy that this complex phase behavior is accurately reproduced by the model.

The ternary system NaCl–KNO₃–H₂O is shown in Fig. 15. In this case, simple solubility behavior is observed at temperatures up to ca. 50 °C. However, a different phase, KCl, appears at higher temperatures.

5.3. Vapor pressures of saturated solutions

The vapor pressures of saturated solutions are of particular interest for studying deliquescence. At solid saturation, a minimum of the vapor pressure is reached for a given salt composition. Figs. 16–21 show the experimental and calculated vapor pressures and the corresponding concentrations of ions in saturated solutions of two mixed salts in water. In these figures, the composition of a mixture of salt A and salt B is expressed using mole fractions on a water-free basis, i.e., $x'_A = n_A / (n_A + n_B)$ where n_A and n_B are the numbers of moles of salts A and B. Each of the ternary mixtures contains water in the amount that is necessary to achieve solid-liquid saturation. The overall compositions (including water) of the mixtures in Figs. 16-21 are consistent with those shown in the corresponding ternary solid-liquid equilibrium diagrams. By plotting the vapor pressures on a water-free basis, it is easy to see how the equilibrium pressure changes as one salt is gradually replaced with another in a saturated solution.

Figure 16 represents the vapor pressure of the NaNO₃–NaCl–H₂O system as the overall composition varies from pure NaNO₃ to pure NaCl. The solid phases that are in equilibrium with the saturated solutions are indicated next to the vapor pressure curves. These solid phases are consistent with the SLE diagram for the same system, which is shown in Fig. 12. The minimum in the vapor pressure is reached at the eutonic point, at which both NaCl(s) and NaNO₃(s) coexist. The model predicts the eutonic point with very good accuracy. As shown in Fig. 17, the model also accurately predicts the equilibrium concentrations of the Na⁺, Cl⁻ and NO₃⁻ ions along the solid saturation line. This provides an additional confirmation of the SLE diagram (*cf.* Fig. 12). The vapor pressures of the system NaNO₃–KNO₃–H₂O show a very similar pattern as illustrated in Fig. 18. The corresponding concentrations of ions at saturation are shown in Fig. 19.

The system NaCl–KNO₃–H₂O (Figs. 20-21) exhibits a somewhat more complex behavior although the experimentally observed patterns are partially obscured by higher experimental uncertainties for this mixture. In this case, the vapor pressure curve shows two break points, which correspond to the transition from KNO₃(s) to KCl(s) and then from KCl(s) to NaCl(s) as sodium nitrate is progressively replaced by sodium chloride in the saturated solution. This transition is consistent with the SLE diagram in Fig. 15. The predicted vapor pressures (Fig. 20) and equilibrium ionic compositions (Fig. 21) agree with the data within the experimental uncertainty.

5.4. Comparison with the new isopiestic data

The isopiestic measurements reported here simultaneously reflect two fundamental properties of the system: the activity of water as a function of solution concentration and the occurrence of solid-liquid transitions. Thus, the isopiestic data provide a stringent test of the model's capability to represent simultaneously the vapor-liquid and solid-liquid equilibria. Figures 22-26 compare the calculated and experimental water activities (upper diagrams) and osmotic coefficients (lower diagrams) for the systems defined in Table 1. While the water activity is of direct interest for studying deliquescence, osmotic coefficients are more convenient for analyzing the data, in

particular at lower concentrations. This is due to a stronger variability of osmotic coefficients at lower concentrations, at which water activities do not differ much from unity.

The systems in Figures 22-26 have been grouped according to their increasing complexity. In all cases, calculations were performed by increasing the total apparent mole fraction of the salt from zero (or reducing the apparent mole fraction of water from one) while keeping the ratios of the various salts as defined in Table 1. Here, the apparent mole fraction is defined by including the salts and water in both the solution and in the various solid phases that may precipitate. The apparent mole fraction is identical to the mole fraction in the solution only if there is no solid phase in the system. Once a solid phase precipitates, the plot of water activity or osmotic coefficient against the apparent mole fraction exhibits a change in slope due to the appearance of a solid phase. The points at which new solid phases start to precipitate are shown by arrows in Figs. 22-26 and the compositions of the solids are identified next to the arrows. The breaks are typically more pronounced on the osmotic coefficient plots, especially at lower concentrations. Starting at the precipitation point, the apparent mole fraction ceases to be equivalent to the solution composition and the calculated water activity starts to reflect the property of a solid-liquid assembly.

First, Fig. 22 summarizes the results of calculations for simple binary solutions containing NaCl, Mg(NO₃)₂, LiCl, CaCl₂ and Ca(NO₃)₂ (samples 1, 3, 6, 11 and 12 in Table 1). Once a solid phase precipitates (as indicated by the vertical arrows), the water activity becomes constant. This is a consequence of the phase rule. The constant water activities are shown as horizontal portions of the curves in Fig. 22. Since the model was calibrated using extensive experimental data for binary systems (*cf.* Table 3), the obtained agreement between the calculations and experimental data is not surprising and simply verifies the consistency of the new isopiestic data with earlier thermodynamic data for the binary systems.

A more stringent test of the model is provided by the multicomponent systems. Figure 23 shows the results for two systems containing only nitrates, *i.e.*, the ternary system NaNO₃–KNO₃-H₂O (sample 10) and the quinary mixture NaNO₃–KNO₃–Ca(NO₃)₂–Mg(NO₃)₂–H₂O (sample 4). In ternary and higher-order systems, precipitation of a solid phase does not lead to a constant value of water activity. Instead, a change in slope is observed. In the case of these two nitrate systems, two discontinuous slope changes occur. The first one is associated with the transition from a one-phase to a two-phase (*i.e.*, liquid + NaNO₃(s)) system and the second one reflects a change from a two-phase to a three-phase system as indicated by the arrows in Figure 23. The model accurately predicts the water activities including the change in slope and the exact composition of the system at which the transition occurs. Thus, the model makes it possible to identify the phases that precipitate as the total salt fraction is increased.

Figure 24 groups the results for three systems containing chlorides and nitrates of sodium and potassium (samples 2, 7 and 8). As with the nitrate-only systems, the water activities and the accompanying phase transitions are accurately predicted by the model. The transitions for the quaternary system NaCl–NaNO₃–KNO₃–H₂O appear to be particularly complex. In this case, the system transitions from a liquid to a liquid + NaCl(s) mixture, then to liquid + NaCl(s) + KCl(s), then to liquid + NaCl(s) + KCl(s) + KNO₃(s) and, finally, to liquid + KCl(s) + KNO₃(s). Figure 25 shows the results for mixed chloride-nitrate systems containing calcium and magnesium rather than sodium and potassium. Water activity drops to substantially lower values in calcium and magnesium salts before saturation is achieved. In this case, saturation results in the formation of hydrated double salts such as $MgCl_2 \cdot 2CaCl_2 \cdot 6H_2O$. As with the Na-K-Cl-NO₃ system, transitions of the type liquid -> liquid + solid A are followed by transitions of the type liquid + solid A -> liquid + solid A + solid B. The predicted water activities are in very good agreement with the data.

Finally, Fig. 26 shows the results for a six-component system that contains all ions that are the subject of this study (i.e., Na⁺, K⁺, Ca²⁺, Mg²⁺, Cl⁻, and NO₃⁻). As indicated in Table 1, the mixture was actually made from eight salts in addition to water (i.e., NaCl, KCl, NaNO₃, KNO₃, CaCl₂, MgCl₂, Ca(NO₃)₂, and Mg(NO₃)₂). However, the system contains six independent components in the sense of the phase rule. Because of its complexity, this system exhibits four transitions as indicated by the vertical arrows in Figure 26. At very high total apparent salt fractions (above *ca*. 0.6), the predicted water activities are somewhat less accurate, which might indicate that a different solid phase precipitates at some conditions (possibly a double or triple salt that does not occur in simpler systems).

6. Conclusions

A comprehensive model has been established for calculating the thermodynamic properties of Na– K–Mg–Ca–Cl–NO₃ systems. The parameters of the model have been determined using a combination of an extensive literature database and new isopiestic measurements that provide important information for multicomponent systems at elevated temperatures (140 $^{\circ}$ C).

The experimental method based on the use of the ORNL gravimetric isopiestic apparatus allows for the detection of solid phase precipitation and therefore a definitive determination of complete relative humidity *vs*. composition phase diagrams. For salt mixtures several samples are needed to cover the entire range of compositions, however, one sample is sufficient for determination of the mixture deliquescence *RH*.

The model has been shown to provide accurate predictions of thermodynamic properties in wide ranges of temperature (from the freezing point to 300 °C) and concentration (from infinite dilution to the melting point). In particular, the model comprehensively reproduces solidliquid equilibria and water activities in binary, ternary and higher-order systems. Also, the model accurately reproduces the new isopiestic data, including the changes in the slope of water activity *versus* the total salt mole fraction. These changes in the slope reflect the precipitation of various solid phases, thus providing a stringent test for the model.

The Na– K–Mg–Ca–Cl–NO₃ mixtures provide a good approximation of the behavior of deliquescing systems. Among the common anions that occur in nature, chlorides are the most important aggressive species and nitrates are the most important inhibitors in the corrosion of engineering alloys. Thus, the concentration of chlorides and nitrates is particularly important for predicting materials performance. Compared with the Cl⁻ and NO₃⁻ ions, other anions (e.g., hydroxides and carbonates) are expected to occur in lower concentrations in deliquescing systems. Most of the other oxygen-containing anions have week inhibitive properties. However,

their inhibitive behavior is much less pronounced than that of nitrates and, therefore, their role in corrosion phenomena is less significant. While the inclusion of anions such as OH^- , CO_3^{2-} and SO_4^{2-} is beyond the scope of this study, the mixed-solvent electrolyte model can be relatively easily extended to achieve a more general coverage of solution chemistry.

Acknowledgement

The financial support of this work from the Science & Technology Program of the Office of Science and Technology and International (OST&I), Office of Civilian Radioactive Waste Management (OCRWM), U. S. Department of Energy (DOE) is gratefully acknowledged. This work is carried out by United States Department of Energy, under contract DE-AC05-000R22725, Oak Ridge National Laboratory, managed and operated by UT-Battelle, LLC. The interactions among investigators in the OST&I Materials Performance Thrust are appreciated and gratefully acknowledged.

References

- 1. Holmes, H.F., Baes Jr., C.F., Mesmer, R.E.: Isopiestic studies of aqueous solutions at elevated temperatures I. KCl, CaCl₂, and MgCl₂. J. Chem Thermodyn. **10**, 983-996 (1978)
- 2. Holmes, H.F., Baes Jr., C.F., Mesmer, R.E.: Isopiestic studies of aqueous solutions at elevated temperatures II. NaCl + KCl Mixtures. J. Chem Thermodyn. **11**, 1035-1050 (1979)
- 3. Holmes, H.F., Mesmer, R.E.: Thermodynamic properties of aqueous solutions of the alkali metal chlorides to 250 °C. J. Phys. Chem. 87, 1242-1255 (1983)
- 4. Rard, J.A., Platford, R.F.: in Kenneth S. Pitzer (Ed.) Activity Coefficients in Electrolyte Solutions, 2nd ed., CRC Press, Boca Raton, Florida, pp. 209-277 (1991)
- 5. Gruszkiewicz, M.S., Simonson, J.M.: Vapor pressures and isopiestic molalities of concentrated CaCl₂(aq), CaBr₂(aq), and NaCl(aq) to T = 523 K. J. Chem. Thermodyn. **37**, 906-930 (2005)
- 6. Ge, Z., Wexler, A.S., Johnston, M.V.: Deliquescence behavior of multicomponent aerosols. J. Phys. Chem. A **102**, 173-180 (1998)
- 7. Carroll, S., Craig, L., Wolery, T.J.: Deliquescence of NaCl NaNO₃, KNO₃ NaNO₃, and NaCl KNO₃ salt mixtures from 90 to 120 C. Geochim. Trans. **6**, 19-30 (2005)
- 8. Wang, P., Anderko, A., Young, R.D.: A speciation-based model for mixed-solvent electrolyte systems. Fluid Phase Equil. **203**, 141-176 (2002)
- 9. Wang, P., Springer, R.D., Anderko, A., Young, R.D.: Modeling phase equilibria and speciation in mixed-solvent electrolyte systems. Fluid Phase Equil. **222-223** 11-17 (2004)
- 10. Wang, P., Anderko, A., Springer, R.D., Young, R.D.: Modeling phase equilibria and speciation in mixed-solvent electrolyte systems. II. Liquid-liquid equilibria and properties of associating electrolyte solutions. J. Molec. Liquids **125**, 37-44 (2006)
- 11. Pitzer, K.S.: Electrolytes. From dilute solutions to fused salts. J. Am. Chem. Soc. **102**, 2902-2906 (1980)
- Abrams, D.S., Prausnitz, J.M.: Statistical thermodynamics of liquid mixtures. New expression for the excess Gibbs energy of partly or completely miscible systems. AIChE J. 21, 116-128 (1975)

- 13. Helgeson, H.C., Kirkham, D.H., Flowers, G.C.: Theoretical prediction of the thermodynamic behavior of aqueous electrolytes at high pressures and temperatures. I Summary of the thermodynamic/electrostatic properties of the solvent. Amer. J. Sci. 274, 1089-1198 (1974); Theoretical prediction of the thermodynamic behavior of aqueous electrolytes at high pressures and temperatures. II Debye-Hűckel parameters for activity coefficients and relative partial molal properties. ibid 274, 1199-1261 (1974); Theoretical prediction of the thermodynamic behavior of aqueous electrolytes at high pressures and temperatures. III Equation of state for aqueous species at infinite dilution. ibid 276, 97-240 (1976); Theoretical prediction of the thermodynamic behavior of aqueous electrolytes at high pressures and temperatures. IV. Calculation of activity coefficients, osmotic coefficients, and apparent molal and standard and relative partial molal properties to 5 kb and 600°C. ibid. 281, 1241-1516 (1981)
- 14. Tanger, J.C., Helgeson, H.C.: Calculation of the thermodynamic and transport properties of aqueous species at high pressures and temperatures: Revised equations of state for the standard partial molal properties of ions and electrolytes. Amer. J. Sci. 288, 19-98 (1988)
- Shock, E.L., Helgeson, H.C., Sverjensky, D.A.: Calculation of the thermodynamic and transport properties of aqueous species at high pressures and temperatures: Standard partial molal properties of inorganic neutral species. Geochim. Cosmochim. Acta 53, 2157-2183 (1989)
- 16. Shock, E.L., Helgeson, H.C.: Calculation of the thermodynamic and transport properties of aqueous species at high pressures and temperatures: Correlation algorithms for ionic species and equation of state predictions to 5 kb and 1000°C. Geochim. Cosmochim. Acta 52, 2009-2036 (1988), Calculation of the thermodynamic and transport properties of aqueous species at high pressures and temperatures: Standard partial molal properties of organic species. ibid. 54, 915-943 (1990)
- 17. Shock, E.L., Sassani, D.C., Willis, M., Sverjensky, D.A.: Inorganic species in geologic fluids: Correlations among standard molal thermodynamic properties of aqueous ions and hydroxide ions. Geochim. Cosmochim. Acta **61**, 907-950 (1997)
- Sverjensky, D.A., Shock, E.L., Helgeson, H.C.: Prediction of the thermodynamic properties of aqueous metal complexes to 1000°C and 5 kb. Geochim. Cosmochim. Acta 61, 1359-1412 (1997)
- Linke, W.F., Seidell, A.S.: Solubilities of Inorganic and Metal Organic Compounds K-Z. Vol. 2, Amer. Chem. Soc., Washington, DC, 4th Edition (1965)
- 20. Vyazova, V.V., Pelsha, A.D.: Handbook of Experimental Solubility Data for Binary Aqueous and Non-aqueous Systems Containing Group I Elements. Vol. 3, Izdatelstvo Khimia, Leningrad (1961)
- 21. Cohen-Adad, R., Lorimer, J.W.: Alkali Metal and Ammonium Chlorides in Water and Heavy Water (Binary Systems). Solubility Data Series, Vol. 47, Pergamon Press, Oxford (1991)
- 22. Rard, J.A.: Results from Boiling Temperature Measurements for Saturated Solutions in the Systems NaCl + Ca(NO₃)₂ + H₂O, NaNO₃ + KNO₃ + H₂O, and NaCl + KNO₃ + H₂O, and dry out temperatures for NaCl + NaNO₃ + KNO₃ + Ca(NO₃)₂ + H₂O, Report UCRL-TR-217415, Lawrence Livermore National Laboratory (2005)
- 23. Rard, J.A.: Results from Boiling Temperature Measurements for Saturated Solutions in the Systems NaCl + KNO₃ + H₂O, NaNO₃ + KNO₃ + H₂O, and NaCl + NaNO₃ + KNO₃ + H₂O, Report UCRL-TR-207054, Lawrence Livermore National Laboratory (2004)

- 24. Archer, D.G.: Thermodynamic properties of the NaCl + H₂O System II. Thermodynamic properties of NaCl(aq), NaCl.2H₂O(cr), and phase equilibria. J. Phys. Chem. Ref. Data **21**, 793-829 (1992)
- 25. Archer, D.G.: Thermodynamic properties of the NaCl + H₂O System I. Thermodynamic properties of NaCl(cr). J. Phys. Chem. Ref. Data **21**, 1-21 (1992)
- 26. Sohnel, O., Novotny, P.: Densities of Aqueous Solutions of Inorganic Substances. Elsevier, Amsterdam (1985)
- 27. Zaytsev, I.D., Aseyev, G.G.: Properties of Aqueous Solutions of Electrolytes. CRC Press, Boca Raton (1992)
- 28. Holmes, F.G., Baes, Jr., C.F., Mesmer, R.E.: Isopiestic studies of aqueous solutions at elevated temperatures I. KCl, CaCl₂, and MgCl₂. J. Chem. Thermodyn. **10**, 983-996 (1978)
- 29. Ellis, A.J.: Partial molal volumes of alkali chlorides in aqueous solution to 200 C. J. Chem. Soc. A. Inorg. Phys. Theoret. 1579-1584 (1966)
- 30. Khaibullin, I.Kh., Borisov, N.M.: Experimental investigation of the thermal properties of aqueous and vapor solutions of sodium and potassium chlorides at phase equilibrium high temperature, High Temperature **4**, 489-494 (1966)
- 31. Mayrath, J.E., Wood, R.H.: Enthalpy of dilution of aqueous solutions of LiCl, NaBr, NaI, KCl, KBr, and CsCl at about 373, 423, and 473 K. J. Chem. Thermodyn. **14**, 563-576 (1982)
- 32. Holmes, H.F., Mesmer, R.E.: Thermodynamic properties of aqueous solutions of the alkali metal chlorides to 250 C. J. Phys. Chem. 87, 1242-1255 (1983)
- Pabalan, R.T., Pitzer, K.S.: Apparent molar heat capacity and other thermodynamic properties of aqueous KCl solutions to high temperatures and pressures. J. Chem. Eng. Data 33, 354-362 (1988)
- 34. Gillespie, S.E., Chen, X., Oscarson, J.L., Izatt, R.M.: Enthalpies of dilution of aqueous solutions of LiCl, KCl, and CsCl at 300, 325 and 350 C. J. Solution Chem. 26, 47-61 (1997)
- 35. Archer, D.G.: Thermodynamic properties of the KCl + H₂O systems. J. Phys. Chem. Ref. Data **28**, 1-17 (1999)
- 36. Pelsha, A.D.: Handbook of Experimental Data of Salt Solubilities, Binary Systems, Elements IIA. Vol. 4, Izdatelstvo Khimia, Leningrad (1963)
- Sako, T., Hakuta, T., Yoshitome, H.J.: Vapor pressures of binary (H₂O HCl, MgCl₂, and CaCl₂) and Ternary (H₂O MgCl₂ CaCl₂) aqueous solutions. J. Chem. Eng. Data **30**, 224-228 (1985)
- 38. Urusova, M.A., Valyashko, V.M.: The vapour pressure and the activity of water in concentrated aqueous solutions containing the chlorides of alkali metals (Li, K, Cs) and alkaline earth metals (Mg, Ca) at increased temperature. Russian J. Inorg. Chem. **32**, 23-26 (1987)
- 39. Oscarson, J.L., Gillespie, S.E., Chen, X., Schuck, P.C., Izatt, R.M.: Enthalpies of dilution of aqueous solutions of HCl, MgCl₂, CaCl₂, and BaCl₂ at 300, 325, and 350 C. J. Solution Chem. **30**, 31-53 (2001)
- 40. Wagman, D.D., Evans, W.H., Parker, V.B., Schumm, R. H., Halow, I., Bailey, S.M., Churney, K.L., Nuttall, R.L.: The NBS tables of chemical thermodynamic properties, selected values for inorganic and C1 and C2 organic substances in SI units. J. Phys. Chem. Ref. Data **11**, 1-392 (1982)
- 41. Robinson, R.A., Stokes, R.H.: Electrolyte Solutions. 2nd edition, Butterworths, London (1970)
- 42. Rodebush, W.H.: The freezing points of concentrated solutions and the free energy of solution of salts. J. Am. Chem. Soc. 40, 1204-1213 (1918)

- 43. Ha, Z., Chan, C.K.: The water activities of MgCl₂, Mg(NO₃)₂, MgSO₄, and their mixtures. Aerosol Science and Technology **31**, 154-169 (1999)
- 44. Platford, R.E.: Isopiestic measurements on the system water sodium chloride magnesium chloride at 25 C. J. Phys. Chem. **72**, 4053-4057 (1968)
- Wu, Y.C., Rush, R.M., Scatchard, G.: Osmotic and activity coefficients for binary mixtures of sodium chloride, sodium sulfate, magnesium sulfate, and magnesium chloride in water at 25 C. I. Isopiestic measurements on the four systems with common ions. J. Phys. Chem. 72, 4048-4053 (1968)
- 46. Gibbard, Jr., H.F., Gossmann, A.F.: Freezing points of electrolyte mixtures. I. Mixtures of sodium chloride and magnesium chloride in water. J. Solution Chem. **3**, 385-393 (1974)
- 47. Rard, J.A., Miller, D.G.: Isopiestic determination of the osmotic and activity coefficients of aqueous mixtures of NaCl and MgCl₂ at 25 C. J. Chem. Eng. Data **32**, 85-92 (1987)
- 48. Padova, J., Saad, D.: Thermodynamics of mixed electrolyte solutions. VIII. An isopiestic study of the ternary system: KCl MgCl₂ H₂O at 25 C. J. Solution Chem. **6**, 57-51 (1977)
- 49. Kuschell, F., Seidel, J.: Osmotic and activity coefficients of aqueous K₂SO₄ MgSO₄ and KCl MgCl₂ at 25 C. J. Chem. Eng. Data **30**, 440-445 (1985)
- 50. Prutton, C.F., Tower, O.F.: The system calcium chloride magnesium chloride water at 0, 15 and -30 C. J. Am. Chem. Soc. **54**, 3040-3047 (1932)
- Robinson, R.A., Bower, V.E.: Properties of aqueous mixtures of pure salts. Thermodynamics of the ternary system: Water - sodium chloride - calcium chloride at 25 C. J. Res. Nat. Bur. Stand. A 70, 304-311 (1966)
- Saad, D., Padova, J., Marcus, Y.: Thermodynamics of mixed electrolyte solutions. VI. An isopiestic study of a pseudo-ternary system: NaCl KCl MgCl₂ H₂O at 25 C. J. Solution Chem. 4, 983-933 (1975)
- 53. Washburn, E.W.: International Critical Tables of Numerical Data, Physics, Chemistry and Technology, Vol. 3, McGraw-Hill, New York (1928)
- 54. Washburn, E.W.: International Critical Tables of Numerical Data, Physics, Chemistry and Technology, Vol. 4, McGraw-Hill, New York (1928)
- 55. Fricke, R.: Zum thermodynamischen Verhalten konzentrierter Lősungen. Z. Elektrochem. **35**, 631-640 (1929)
- 56. Lange, E., Streeck, H.: Verdűnnungswärmen einiger zwei ein wertiger Salze in grosser Verdűnnung bei 25 °C. I. MgCl₂, CaCl₂, SrCl₂, BaCl₂ and MgBr₂, CaBr₂, SrBr₂, BaBr₂. Z. physik. Chem. **152**, 1-23 (1931)
- Robinson, R.A., Stokes, R.H.: A thermodynamic study of bivalent metal halides in aqueous solution. Part I. The activity coefficients of magnesium halides at 25 C. Trans. Faraday Soc. 6, 733-734 (1940)
- Stokes, R.H.: A thermodynamic study of bivalent metal halides in aqueous solution. Part XIV. Concentrated solutions of magnesium chloride at 25 C. Trans. Faraday Soc. 41, 642-645 (1945)
- 59. Eigen, V.M., Wicke, E.: Ionenhydratation und spezifische Wärme wäßriger Elektrolytlősungen. Z. Elektrochem. 55, 354-363 (1951)
- 60. Dunn, L.A.: Apparent molar volumes of electrolytes. Part 1. Some 1-1, 1-2, 2-1, 3-1 electrolytes in aqueous solution at 25 C. Trans. Faraday Soc. **62**, 2348-2353 (1966)
- 61. Ellis, A.J.: Partial molal volumes of MgCl₂, CaCl₂, SrCl₂, and BaCl₂ in aqueous solution to 200 C. J. Chem. Soc. A Inorg. Phys. Theoret. 660-664 (1967)

- 62. Lindsay, Jr., W.T., Liu, C.T.: Vapor Pressure Lowering of Aqueous Solutions at Elevated Temperatures. OSW R&D Report 347, 133-138 (1968)
- 63. Fedyainov, N.W., Vasilev, V.A., Karapetyants, M. Kh.: Specific heat of two- and threecomponent aqueous solutions of beryllium subgroup metal chlorides at 25 C. Russian J. Phys. Chem. 44, 1026-1027 (1970)
- Frolov, Y.G., Nikolaev, V.P., Karapetyants, M.Kh., Vlasenko, K.K.: Excess thermodynamic functions of mixing of aqueous isopiestic electrolyte solutions without common ions. Russian J. Phys. Chem. 45, 1054-1055 (1971)
- 65. Liu, C.T., Lindsay, Jr., W.T.: Thermodynamic Properties of Aqueous Solutions at High Temperatures. OSW R&D Report 722, 59-64 (1971)
- 66. Likke, S, Bromley, L.A.: Heat capacities of aqueous NaCl, KCl, MgCl₂, MgSO₄, and Na₂SO₄ solutions between 80 and 200C. J. Chem. Eng. Data **18**, 189-195 (1973)
- Vasilev, Y.A., Fedyainov, N.W., Kurenkov, V.V.: Specific heats and specific volumes of isopiestic aqueous solutions of beryllium subgroup metal chlorides. Russian J. Phys. Chem. 47, 1570-1573 (1973)
- 68. Perron, G., Desnoyers, J.E., Millero, F.J.: Apparent molal volumes and heat capacities of alkaline earth chlorides in water at 25 C. Can. J. Chem. **52**, 3738-3741 (1974)
- 69. Leung, W.H., Millero, F.J.: The enthalpy of formation of magnesium sulfate ion pairs. J. Solution Chem. 4, 145-159 (1975)
- 70. Snipes, H.P., Manly, C., Enson, D.D.: Heats of dilution of aqueous electrolytes: Temperature dependence. J. Chem. Eng. Data **20**, 287-291 (1975)
- Chen, C.-T., Emmet, R.T., Millero, F.J.: The apparent molal volumes of aqueous solutions of NaCl, KCl, MgCl₂, Na₂SO₄, and MgSO₄ from 0 to 1000 bars at 0, 25, and 50 C. J. Chem. Eng. Data 22, 201-207 (1977)
- 72. Goldberg, R.N., Nuttall, R.L.: Evaluated activity and osmotic coefficients for aqueous solutions: The alkaline earth metal halides. J. Phys. Chem. Ref. Data 7, 263-310 (1978)
- 73. Clynne, M.A., Potter, II, R.W.: Solubility of some alkali and alkaline earth chlorides in water at moderate temperatures. J. Chem. Eng. Data 24, 338-340 (1979)
- 74. Phang, S., Stokes, R.H.: Density, viscosity, conductance, and transference number of concentrated aqueous magnesium chloride at 25 C. J. Solution Chem. 9, 497-505 (1980)
- 75. Perron, G., Roux, A., Desnoyers, J.E.: Heat capacities and volumes of NaCl, MgCl₂, CaCl₂, and NiCl₂ up to 6 molal in water. Can. J. Chem. **59**, 3049-3054 (1981)
- Rard, J.A., Miller, D.G.: Isopiestic determination of the osmotic and activity coefficients of aqueous MgCl₂ solutions at 25 C. J. Chem. Eng. Data 26, 38-43 (1981)
- 77. Matuzenko, M. Yu., Puchkov, D.V., Zarembo, V.I.: Collected Abstracts: 9th All-Union Conf. on Calometry and Chem. Thermodynamics, Tbilisi, 157-159 (1982)
- Surdo, A.L., Alzola, E.M., Millero, F.J.: The PVT properties of concentrated aqueous electrolytes. I. Densities and apparent molar volumes of NaCl, Na₂SO₄, MgCl₂, and MgSO₄ solutions from 0.1 mol/kg to saturation and from 273.15 to 323.15 K. J. Chem. Thermodyn. 14, 649-662 (1982)
- 79. Mayrath, J.E., Wood, R.H.: Enthalpy of dilution of aqueous solutions of Na₂SO₄, K₂SO₄, and MgSO₄ at 373.15 and 423.65 K and of MgCl₂ at 373.15, 423.65, and 472.95 K. J. Chem. Eng. Data 28, 56-59 (1983)
- Romankiw, L.A., Chou, I-M.: Densities of aqueous NaCl, KCl, MgCl₂, and CaCl₂ binary solutions in the concentration range 0.5-6.1 m at 25, 30, 35, 40, and 45 C. J. Chem. Eng. Data 28, 300-305 (1983)

- Urusova, M.A., Valyashko, V.M.: Solubility, vapour pressure, and thermodynamic properties of solutions in the MgCl₂ - H₂O system at 300-350 C. Russian J. Inorg. Chem. 28, 1045-1048 (1983)
- 82. Gates, J.A., Wood, R.H.: Densities of aqueous solutions of NaCl, MgCl₂, KCl, NaBr, LiCl, and CaCl₂ from 0.05 to 5.0 mol/kg and 0.1013 to 40 MPa at 298.15 K. J. Chem. Eng. Data **30**, 44-49 (1985)
- 83. Juillard, J., Tissier, C., Barczynska, J., Mokrzan, J., Taniewska-Osinska, S.: Solute solvent interactions in water t-butyl alcohol mixtures. Part 14. Δ G, Δ H and Δ S of transfer for alkaline earth metal cations. J. Chem. Soc. Faraday Trans. I. **81**, 3081-3090 (1985)
- 84. Connaughton, L.M., Hershey, J.P., Millero, F.J.: PVT properties of concentrated aqueous electrolytes: V. Densities and apparent molal volumes of the four major sea salts from dilute solution to saturation and from 0 to 100 C. J. Solution Chem. **15**, 989-1002 (1986)
- 85. Emons, H. H., Voigt, W., Wollny, W.F.: Dampfdruckmessungen am System Magnesiumchlorid Wasser. Z. physik. Chem. Leipzig **267**, 1-8 (1986)
- Fanghanel, T., Kravchuk, K., Voigt, W., Emons, H.H.: Solid liquid phase equilibria in the system KCl MgCl₂ H₂O at elevated temperatures. I. The binary system MgCl₂ H₂O at 130 250 C. Z. anorg. allgem. Chem. 547, 21-26 (1987)
- 87. Saluja, P.P.S., LeBlanc, J.C.: Apparent molar heat capacities and volumes of aqueous solutions of MgCl₂, CaCl₂, and SrCl₂ at elevated temperatures. J. Chem. Eng. Data **32**, 72-76 (1987)
- 88. White, D.E., Gates, J.A., Tillet, D.M., Wood, R.H.: Heat capacity of aqueous CaCl₂ from 306 to 603 K at 17.5 MPa. J. Chem. Eng. Data **33**, 485-490 (1988)
- 89. Fanghanel, T., Grjotheim, K.: Thermodynamics of aqueous reciprocal salt systems. III. Isopiestic determination of osmotic and activity coefficients of aqueous MgCl₂, MgBr₂, KCl and KBr at 100.3 °C. Acta Chem. Scand. **44**, 892-895 (1990)
- 90. Pepinov, R.I., Labkova, N.V., Zokhraggekova, G.Y.: Density of water solutions of magnesium chloride and magnesium sulfate at high temperatures and pressures. High Temperature, **30**, 66-70 (1992)
- 91. Jahn, H., Wolf, G.: The enthalpy of solution of MgCl₂ and MgCl₂.6H₂O in water at 25 °C. I. The integral molar enthalpy of solution. J. Solution Chem. **22**, 893-994 (1993)
- 92. Saluja, P.P.S., Jobe, D.J., LeBlanc, J.C., Lemire, R.J.: Apparent molar heat capacities and volumes of mixed electrolytes: [NaCl(aq) + CaCl₂(aq)], [NaCl(aq) + MgCl₂(aq)], and [CaCl₂(aq) + MgCl₂(aq)]. J. Chem. Eng. Data **40**, 398-406 (1995)
- Holmes, H.F., Mesmer, R.E.: Aqueous solutions of the alkaline earth metal chlorides at elevated temperatures. Isopiestic molalities and thermodynamic properties. J. Chem. Thermodyn. 28, 1325-1358 (1996)
- 94. Obsil, M., Majer, V., Hefter, G.T., Hynek, V.: Volumes of MgCl₂(aq) at temperatures from 298 K to 623 K and pressures up to 30 MPa. J. Chem. Thermodyn. **29**, 575-593 (1997)
- 95. Wang, P., Oakes, C.S., Pitzer, K.S.: Thermodynamics of aqueous mixtures of magnesium chloride with sodium chloride from 298.15 to 573.15 K. New measurements of the enthalpies of mixing and of dilution. J. Chem. Eng. Data **42**, 1101-1110 (1997)
- 96. Call, T.G., Ballerat-Busserolles, K., Origlia, M.L., Ford, T.D., Woolley, E.M.: Apparent molar volumes and heat capacities of aqueous magnesium chloride and cadmium chloride at temperatures from 278.15 K to 393.15 K at the pressure 0.35 MPa: A comparison of ion-ion interactions. J. Chem. Thermodyn. **32**, 1525-1538 (2000)

- 97. Linke, W.F., Seidell, A.S.: Solubilities of Inorganic and Metal-Organic Compounds A-Ir. Vol. 1, 4th ed., Amer. Chem. Soc., Washington, DC (1958)
- 98. Oakes, C.S., Bodnar, R.J., Simonson, J.M.: The system NaCl CaCl₂ H₂O: I. The ice liquidus at 1 atm total pressure. Geochim. Cosmochim. Acta **54**, 603-610 (1990)
- 99. Zarembo, V.I., Livov, S.N., Matuzenko, M.Yu.: Saturated vapor pressure of water and activity coefficients of calcium chloride in the CaCl₂ H₂O system at 423-623 K. Geochem. International **17**, 159-162 (1980)
- 100. Ketsko, V.A., Urusova, M.A., Valyashko, W.M.: Solubility and vapour pressure of solutions in the CaCl₂ H₂O system at 250 400 C. Russian J. Inorg. Chem. **29**, 1398-1399 (1984)
- Wood, S.A., Crerar, D.A., Brantley, S.L., Borcsik, M.: Mean molal stoichiometric activity coefficients of alkali halides and related electrolytes in hydrothermal solutions. Amer. J. Sci. 284, 668-705 (1984)
- 102. Ananthaswamy, J., Atkinson, G.J.: Thermodynamics of concentrated electrolyte mixtures. 5. A review of the thermodynamic properties of aqueous calcium chloride in the temperature range 273.25 - 373.15 K. J. Chem. Eng. Data 30, 120-128 (1985)
- 103. Simonson, J.M., Busey, R.H., Mesmer, R.E.: Enthalpies of dilution of aqueous calcium chloride to low molalities at high temperatures. J. Phys. Chem. **89**, 557-560 (1985)
- 104. Garvin, D., Parker, V.B., White, H.J.: CODATA Thermodynamic Tables, Selections for Some Compounds of Calcium and Related Mixtures: A Prototype Set of Tables, Hemisphere Publishing, Washington, DC (1987)
- 105. White, D.E., Doberstein, A.L., Gates, J.A., Tillet, D.M., Wood, R.H.: Heat capacity of aqueous CaCl₂ from 306 to 603 K at 17.5 MPa. J. Chem. Thermodyn. **19**, 251-259 (1987)
- 106. Holmes, H.F., Busey, R.H., Simonson, J.M., Mesmer, R.E.: CaCl₂(aq) at elevated temperatures. Enthalpies of dilution, isopiestic molalities, and thermodynamic properties. J. Chem. Thermodyn. **26**, 271-298 (1994)
- 107. Pitzer, K.S., Oakes, C.S.: Thermodynamics of calcium chloride in concentrated aqueous solutions and in crystals. J. Chem. Eng. Data **39**, 553-559 (1994)
- 108. Oakes, C.S., Simonson, J.M., Bodnar, R.J.: Apparent molar volumes of aqueous calcium chloride to 250 C, 400 bars, and from molalities of 0.242 to 6.150. J. Solution Chem. 24, 897-916 (1995)
- Hoffmann, F.P., Voigt, W.: Vapor pressure of highly concentrated aqueous calcium chloride solutions (3.8 - 25 mol/kg) at temperatures from 373 to 523 K. Int. Electron J. Phys Chem. Data 2, 31-36 (1996)
- 110. Rard, J.A., Clegg, S.L.: Critical evaluation of the thermodynamic properties of aqueous calcium chloride. 1. Osmotic and activity coefficients of 0-10.77 mol/kg aqueous calcium chloride solutions at 298.15 K and correlation with extended Pitzer ion-interaction models. J. Chem. Eng. Data 42, 819-849 (1997)
- 111. Oakes, C.S., Pitzer, K.S., Sterner, S.M.: The system NaCl CaCl₂ H₂O: Part 3. Heats of dilution and mixing at 373 to 573 K and 21.5 MPa using a new high temperature, flow-through calorimeter. Geochim. Cosmochim. Acta **62**, 1133-1146 (1998)
- 112. Guendouzi, M.E., Marouani, M.: Water activities and osmotic and activity coefficients of aqueous solutions of nitrates at 25 C by the hygrometric method. J. Solution Chem. **32**, 535-546 (2003)
- 113. Bezboruah, C.P., Covington, A.K., Robinson, R.A.: Excess Gibbs energies of aqueous mixtures of alkali metal chlorides and nitrates. J. Chem. Thermodyn. **2**, 431-437 (1970)

- 114. Kirgintsev, A.N., Lukyanov, A.V.: Issledovanie troinykh rastvorov izopesticheskim metodom. III. Troinye rastvory NaCl - NaNO₃ - H₂O, NaCl - NaBr - H₂O, NH₄Cl - NH₄Br -H₂O Russian J. Phys. Chem. **39**, 653-655 (1965)
- 115. Lincoln, A.T., Klein, D.: The vapor pressure of aqueous nitrate solutions. J. Phys. Chem. **11**, 318-348 (1907)
- 116. Robinson, R.A.: The activity coefficients of alkali nitrates, acetates and p-toluenesulfonates in aqueous solution from vapor pressure measurements. J. Am. Chem. Soc. 57, 1165-1168 (1935)
- 117. Kangro, W., Groeneveld, A.: Concentrated aqueous solutions. I. Z. physik. Chem. N.F. 32, 110-126 (1962)
- 118. Shpigel, L.P., Mishchenko, K.P.: Activities and rational activity coefficients of water in potassium nitrate and sodium nitrate solutions at 1, 25, 50, and 75 °C over a wide concentration range. Russian J. Appl. Chem. **40**, 659-661 (1967)
- 119. Puchkove, L.V., Matveeva, R.P., Baranova, T.L.: Specific heats of aqueous solutions of sodium and potassium nitrates at temperatures in the range 25-340 °C. Russian J. Appl. Chem.. **46**, 460-462 (1973)
- 120. Egorov, V.Ya., Zarembo, V.I., Soboleva, N.G., Puchkov, L.V.: Activity of water and activity coefficients of dissolved electrolytes in aqueous solutions of alkali metal nitrates at temperatures of 423-623 K. Russian J. Appl. Chem. **54**, 1031-1034 (1981)
- 121. Azizov, N.D., Akhundov, T.S.: Experimental study of solvent vapor pressure and calculation of thermodynamic properties for NaNO₃ H₂O and KNO₃ H₂O mixtures. Russian J. Inorg. Chem. **43**, 1600-1603 (1998)
- 122. Kirgintsev, A.N., Lukyanov, A.V.: Isopiestic investigation of ternary solutions. V. Ternary NaNO₃ Ca(NO₃)₂ H₂O, NaNO₃ La(NO₃)₃ H₂O, NaNO₃ Th(NO₃)₄ H₂O, NaCl CaCl₂ H₂O, NaCl LaCl₃ H₂O and NaCl ThCl₄ H₂O solutions at 25 °C. Russian J. Phys. Chem. **39**, 389-391 (1965)
- 123. Kirgintsev, A.N., Lukyanov, A.V.: Issledovanie troinykh rastvorov izopesticheskim metodom. III. Troinye rastvory NaCl NaNO₃ H₂O, NaCl NaBr H₂O, NH₄Cl NH₄Br H₂O. Russian J. Phys. Chem. **38**, 867-869 (1964)
- 124. Berkeley, Earl of: On some physical constants of saturated solutions. Philos. Trans. Royal Soc. London, **203**, 189-215 (1904)
- 125. Chretian, A.: Etude du systeme quaternaire eau, nitrate de sodium, chlorure de sodium, sulfate de sodium. Annales de Chimie Paris **12**, 9-155 (1929)
- 126. Kracek, F.C.: Gradual transition in sodium nitrate. I. Physicochemical criteria of the transition. J. Am. Chem. Soc. 53, 2609-2624 (1931)
- 127. Pearce, J.N., Hopson, H.: The vapor pressures of aqueous solutions of sodium nitrate and potassium. Thiocyanate J. Phys. Chem. **41**, 535-538 (1937)
- 128. Puchkov, L.V., Matashkin, V.G.: Densities of LiNO₃ H₂O and NaNO₃ H₂O solutions at temperatures in the range 25-300 C. Russian J. Appl. Chem. **43**, 1864-1867 (1970)
- 129. Greyson, J., Snell, H.: Heat of transfer between heavy and normal water for some inorganic acid salts. J. Chem. Eng. Data 16, 73-74 (1971)
- 130. Shenkin, Ya.S., Ruchnova, S.A., Rodionova, N.A.: Solubility isobars for the sodium nitrite sodium nitrate water system. Russian J. Inorg. Chem. 18, 123-124 (1973)
- 131. Natarajan, T.S., Srinivasan, D.: Effect of sodium nitrate on the vapor liquid equilibria of the methanol water system. J. Chem. Eng. Data **25**, 281-221 (1980)

- 132. Wu, Y.C., Hamer, W.J.: Comments revised values of the osmotic coefficients and mean activity coefficients of sodium nitrate in water at 25 °C. J. Phys. Chem. Ref. Data 9, 513-518 (1980)
- 133. Voigt, W., Dittrich, A., Haugsdal, B., Grjotheim, K.: Thermodynamics of aqueous reciprocal salt systems. II. Isopiestic determination of the osmotic and activity coefficients in LiNO₃ NaBr H₂O and LiBr NaNO₃ H₂O at 100.3 °C. Acta Chem. Scand. 44, 12-17 (1990)
- 134. Apelblat, A.: The vapour pressures of saturated aqueous lithium chloride, sodium bromide, sodium nitrate, ammonium nitrate, and ammonium chloride at temperatures from 283 K to 313 K. J. Chem. Thermodyn. **25**, 63-71 (1993)
- 135. Bozmann, E., Richter, J., Stark, A.: Experimental results and aspects of analytical treatment of vapour pressure measurements in hydrated melts at elevated temperatures. Ber. Bunsenges. Phys. Chem. **97**, 240-245 (1993)
- 136. Tang, I.N., Munkelwitz, H.R.: Water activities, densities, and refractive indices of aqueous sulfates and sodium nitrate droplets of atmospheric importance. J. Geophys. Research **99**, 18801-18808 (1994)
- 137. Pena, M.P., Vercher, E., Martinez-Andreu, A.J.: Vapor liquid equilibrium for ethanol + water + sodium nitrate. J. Chem. Eng. Data **41**, 1097-1100 (1996)
- 138. Archer, D.G.: Thermodynamic properties of the NaNO₃ + H₂O system. J. Phys. Chem. Ref. Data **29**, 1141-1156 (2000)
- 139. Carter, R.W., Archer, D.G.: Heat capacity of NaNO₃(aq) in stable and supercooled states. Ion association in the supercooled solution. Phys. Chem. Chem. Phys. **2**, 5138-5145 (2000)
- 140. Guendouzi, M.E., Dinane, A.J.: Determination of water activities, osmotic and activity coefficients in aqueous solutions using the hygrometric method. J. Chem. Thermodyn. **32**, 297-310 (2000)
- 141. Apelblat, A., Korin, E.: Vapor pressures of saturated aqueous solutions of ammonium iodide, potassium iodide, potassium nitrate, strontium chloride, lithium sulphate, sodium thiosulphate, magnesium nitrate, and uranyl nitrate from T = (278 to 323) K. J. Chem. Thermodyn. **30**, 459-471 (1998)
- 142. Rodnyanskii, I.M., Korobkov, V.I., Galinker, I.S.: Specific volumes of aqueous electrolyte solutions at high temperatures. Russian J. Phys. Chem. **36**, 1192-1194 (1962)
- 143. Amdur, S.M., Padova, J.I., Schwarz, A.M.: Isopiestic study of the system potassium chloride - potassium nitrate - water at 25 C. J. Chem. Eng. Data **15**, 417-418 (1970)
- 144. Fanghanel, T., Grjotheim, K., Voigt, W., Brendler, V.: Thermodynamics of aqueous reciprocal salt systems. VI. Isopiestic determination of osmotic coefficients in mixtures of chlorides, bromides and nitrates of lithium, sodium, potassium and cesium at 100.3 C. Acta Chem. Scand. 46, 423-431 (1992)
- 145. Parker, V.B.: Thermal properties of aqueous uni-univalent electrolytes. National Standard Ref. Data Series National Bureau of Standards 2 (1965)
- 146. Hamer, W.J., Wu, Y-C.: Osmotic coefficients and mean activity coefficients of uni-univalent electrolytes in water at 25 C. J. Phys. Chem. Ref. Data 1, 1047-1099 (1972)
- 147. Petrov, G.I., Puchkov, L.V.: Adiabatic calorimeter for measuring specific heats of liquids in the temperature range From 0 to 100 C. Russian J. Appl. Chem. 46, 2373-2375 (1973)
- 148. Simonson, J.M., Pitzer, K.S.: Thermodynamics of multicomponent, miscible, ionic systems: The system LiNO₃ KNO₃ H₂O. J. Phys. Chem. **90**, 3009-3013 (1986)

- 149. Barry, J.C., Richter, J., Stich, E.: Vapor pressures and ionic activity coefficients in the system KNO₃ + H₂O from dilute solutions to fused salts at 425 K, 452 K, and 492 K. Ber. Bunsenges. Phys. Chem. 92, 1118-1122 (1988)
- 150. Vercher, E., Pena, M.P., Martinez-Andreu, A.: Isobaric vapor liquid equilibrium for ethanol + water + potassium nitrate. J. Chem. Eng. Data **41**, 66-69 (1996)
- 151. Ewing, W.W., Klinger, E., Brandner, J.D.: Studies on the vapor pressure temperature relations and on the heats of hydration, solution and dilution of the binary system magnesium nitrate water. J. Am. Chem. Soc. **56**, 1053-1057 (1934)
- 152. Robinson, R.A., Wilson, J.M., Ayling, H.S.: The activity coefficients of some bivalent metal nitrates in aqueous solution at 25 °C from isopiestic vapor pressure measurements. J. Am. Chem. Soc. **64**, 1469-1471 (1942)
- 153. Forsythe, W.E." Smithsonian Phys. Tables, 9th Edition, Smithsonian Institution Press, 373-374 (1954)
- Jain, S.K.: Volumetric properties of some single molten hydrated salts. J. Chem. Eng. Data 22, 383-385 (1977)
- 155. Sadowska, T., Libuś, W.: Thermodynamic properties and solution equilibria of aqueous bivalent transition metal nitrates and magnesium nitrate. J. Solution Chem. **11**, 457-468 (1982)
- 156. Jubin, R.T., Marley, J.L., Counce, R.M.: Density study of Mg(NO₃)₂ H₂O HNO₃ solutions at different temperatures. J. Chem. Eng. Data **31**, 86-88 (1986)
- 157. Akhundov, T.S., Akhmedova, I.N., Iskenderov, A.I.: Thermal properties of aqueous solutions of magnesium nitrate in a wide range of pressures and temperatures. Izvestiya Vysshikh Uchebnykh Zavedenii Neft Gaz **12**, 66-69 (1989)
- 158. Apelblat, A.: The vapor pressures of water over saturated aqueous solutions of barium chloride, magnesium nitrate, calcium nitrate, potassium carbonate, and zinc sulfate, at temperatures from 283 K to 313 K. J. Chem. Thermodyn. **24**, 619-626 (1992)
- 159. Todorovic, M., Ninkovic, R.: Osmotic and activity coefficients of {xMg(NO₃)₂ + (1-x)MgSO₄}(aq) at the temperature 298.15 K. J. Chem. Thermodyn. 27, 369-375 (1995)
- 160. Todorovic, M., Ninkovic, R., Miladinovic, J.: Osmotic and activity coefficients of {yK₂SO₄ + (1-y)Mg(NO₃)₂}(aq) at the Temperature 298.15 K. J. Chem. Thermodyn. **30**, 847-853 (1998)
- 161. Ewing, W.W.: Calcium nitrate. II. The vapor pressure temperature relations of the binary system calcium nitrate water. J. Am. Chem. Soc. **49**, 1963-1973 (1927)
- 162. Robinson, R.A.: The activity coefficient of calcium nitrate in aqueous solution at 25 °C from isopiestic vapor pressure measurements. J. Am. Chem. Soc. **62**, 3130-3131 (1940)
- 163. Stokes, R.H., Robinson, R.A.: Ionic hydration and activity in electrolyte solutions J. Am. Chem. Soc. **70**, 1870-1878 (1948)
- 164. Oakes, C.S., Felmy, A.R., Sterner, S.M.: Thermodynamic properties of aqueous calcium nitrate {Ca(NO₃)₂} to the temperature 373 K including new enthalpy of dilution. Data J. Chem. Thermodyn. **32**, 29-54 (2000)
- 165. Pelsha, A.D.: Handbook of Experimental Data for Salt Solubilities, Ternary Systems. Vol. 1, Izdatelstvo Khimia, Leningrad (1973)
- 166. Clynne, M. A., Potter, II, R.W., Haas, Jr., J.L.: Solubility of NaCl in aqueous electrolyte solutions from 10 to 100 C. J. Chem. Eng. Data 26, 396-398 (1981)
- 167. Robinson, R.A., Bower, V.E.: An additivity rule for the vapor pressure lowering of aqueous solutions. J. Res. Nat. Bur. Stand. A **69**, 365-367 (1965)

- 168. Assarsson, G.O.: Equilibria in aqueous systems containing K⁺, Na⁺, Ca⁺⁺, Mg⁺⁺ and Cl⁻. II. The quaternary system CaCl₂ KCl NaCl H₂O. J. Am. Chem. Soc. **72**, 1437-1441 (1950)
- 169. Shiah, I.M., Tseng, H.C.: Experimental and theoretical determination of vapor pressures of NaCl - KCl, NaBr - KBr and NaCl - CaCl₂ aqueous solutions at 298 to 343 K. Fluid Phase Equil. **124**, 235-249 (1996)
- Holluta, J., Mautner, S.: Investigations of the solubility influence of strong electrolytes. I. The mutual solubility effect of alkali salts having a common ion. I. Z. physik. Chem. 127, 455-475 (1927)
- 171. Blasdale, W.C.: Equilibria in solutions containing mixtures of salts III. The system, water and the chlorides and carbonates of sodium and potassium at 25 °C. IV. The system, water and the sulfates and carbonates of sodium and potassium at 25 °C. J. Am. Chem. Soc. **45**, 2935-2946 (1923)
- 172. Teeple, J.E.: The Industrial Development of Searles Lake Brines. Chem. Catalogue Company, New York (1929)
- 173. Cornec, E., Krombach, H.: Equilibria between water, potassium chloride and sodium chloride between -23° and +190°. Annali di Chimica Applicata **18**, 5-31 (1932).
- 174. Cornec, E., Krombach, H.: Equilibria between water, potassium chloride and sodium chloride between -23° and +190°. Compt. rend. **194**, 714-716 (1932)
- 175. Erdos, E.: Solubility of electrolytes. I. Presentation and correlation of solubility data in multicomponent systems. Chemicke Listy pro Vedu a Prumysl **51**, 1632-40 (1957)
- 176. Brunisholz, G., Bodmer, M.: The system H⁺ Na⁺ K⁺ Cl⁻ PO₄³⁻ H₂O. I. General observations and the ternary systems NaCl KCl H₂O, KCl KH₂PO₄ H₂O, NaCl NaH₂PO₄ H₂O, and NaH₂PO₄ KH₂PO₄ H₂O. Helvetica Chim. Acta 46, 2566-2574 (1963)
- 177. Holmes, H.F., Baes, Jr., C.F., Mesmer, R.E.: Isopiestic studies of aqueous solutions at elevated temperatures II. NaCl + KCl mixtures. J. Chem. Thermodyn. **11**, 1035-1050 (1979)
- Sterner, S.M., Hall, D.L., Bodnar, R.J.: Synthetic fluid inclusions: V. Solubility relations in the system NaCl - KCl - H₂O under vapor - saturated conditions. Geochim. Cosmochim. Acta 52, 989-1005 (1988)
- 179. Flesia, M.A., DeChialvo, M.R.G., Chialvo, A.C.: Isopiestic determination of osmotic coefficients and evaluation of activity coefficients of aqueous mixtures of sodium and potassium chloride at 45 C. Fluid Phase Equil. **131**, 189-196 (1997)
- 180. Keitel, H.: Rate of dissolution and displacement of sylvine and rock salt from natural sylvinite and "hard salt". Mitteilungen der Kali-Forschungs-Anstalt, 95-127 (1922)
- 181. Akhumov, E.I., Vasiliev, B.B.: Izvestiia Sektora Fiz. Khim. Analiza Inst. Obshchei Neorgan. Khim. Akad. Nauk SSSR 9, 308 (1936); in: reference 294, page 108
- 182. d'Ans, J., Sypiena, G.: Solubilities in the system KCl-MgCl₂-H₂O and NaCl-MgCl₂-H₂O at temperatures up to about 200°. Kali **36**, 89-95 (1942)
- 183. Majima, K., Tejima, M., Oka, S.: Natural gas brine. IV. Phase equilibriums in ternary systems MgCl₂-CaCl₂-H₂O and NaCl-MgCl₂-H₂O and a quaternary system NaCl-MgCl₂-CaCl₂-H₂O at 50.deg. Nippon Kaisui Gakkaishi 23, 113-117 (1969)
- 184. Sieverts, A., Muller, E.L.: Das reziproke Salzpaar MgCl₂, Na₂(NO₃)₂, H₂O. II. Z. anorg. allgem. Chem. **200**, 305-320 (1931)
- 185. Meyer, T.A., Prutton, C.F., Lightfoot, W.J.: Equilibria in saturated solutions. V. The quinary system CaCl₂ MgCl₂ KCl NaCl H₂O at 35 C. J. Am. Chem. Soc. **71**, 1236-1237 (1949)
- 186. Leimbach, G.: Beitrag zur Kenntnis der ozeanischen Salzablagerungen. Kali 1, 8-13 (1926)

- van't Hoff J.H.: Zur Bildung der ozeanischen Salzablagerungen. Z. anorg. Chem. 47, 244-280 (1905)
- 188. van't Hoff, J.H., Dawson, H.M.: Schmelzpunktserniedrigung des Magnesiumchlorids durch Zusatz von Fremdkörpern. Z. Physik. Chem. 22, 598-608 (1897)
- 189. van't Hoff, J.H., Sachs, H., Biach, O.: Untersuchungen über die Bildungsverhältnisse der ozeanischen Salzablagerungen. XXXV. Die Zusammensetzung der konstanten Lösungen bei 83°. Sitzung der Koniglich Preussischen Ak. 576-586 (1904)
- 190. d'Ans, J.: Researches on the salt systems of oceanic salt deposits. Kali 9, 148-154 (1915)
- 191. Maeda, T.: Salt manufacturing processes. J. Chem. Ind. Japan 23, 1129-1146 (1920).
- 192. Takegami, S. Reciprocal salt pairs: Na₂Cl₂ + MgSO₄ → Na₂SO₄ + MgCl₂ at 25°. Memoirs of the College of Science, Kyoto Imperial University **4**, 317-342 (1921)
- 193. Keitel, H., Gerlach: The systems KCl-MgCl₂-H₂O and NaCl-MgCl₂-H₂O. Kali 17, 248-51, 261-5 (1923)
- 194. Kurnakow, N.S., Zemcuzny, S.F.: Die Gleichgewichte des reziproken Systems Natriumchlorid Magnesiumsulfat mit Berücksichtigung der naturlichen Salzsolen. Z. anorg. allgem. Chem. 140, 149-182 (1924)
- 195. Leimbach, G., Pfeiffenberger, A.: Quaternary system: sodium nitrate-sodium sulfatemagnesium chloride-water from 0° to 100°. Caliche 11, 61-85 (1929)
- 196. Bergman, A.G., Koloskaova, Z.A., Dombrovskaya, N.S.: Za nedra Volgo Prikaspiya 2, 312-313 (1937); in: reference 165, page 290
- 197. Klementiev, V.: Tr. Vses. Alyumin. Magniev. Inst. 14, 5-12 (1937); in: reference 165 page 290
- 198. Nikolaev, V.I., Burovaya, E.E.: Surface tension and viscosity in the reciprocal system sodium chloride-magnesium sulfate. Ann. Secteur Anal. Phys.-Chim., Inst. Chim. Gen. (U.S.S.R.) 10, 245-258 (1938)
- 199. Rode, T.V.: Vapor pressure and solubility of the aqueous reversible system 2NaCl + MgSO₄
 → Na₂SO₄ + MgCl₂. Izvest. Sektora Fiz.-Khim. Anal., Inst. Obshchei i Neorg. Khim., Akad. Nauk S.S.S.R. 15, 234-265 (1947)
- 200. Reza-Zade, P.F., Rustamov, P.G.; Solubility isotherm of the system NaCl-MgCl₂-CoSO₄-H₂O at 25°. Azerbaidzhanskii Khimicheskii Zhurnal (No. 6), 119-125 (1960)
- 201. Ryspaev, O., Batyrchaev, I.G., Druzhinin, I.G.: Study of the quinary reciprocal system Na⁺, Mg⁺⁺, Ca⁺⁺ || Cl⁻, SO₄⁼ H₂O at 75 °C. Russian J. Appl. Chem. **48**, 2029-2031 (1975)
- 202. Susarla, V.R.K.S., Sanghavi, J.R.: Study of the aqueous system Ca⁺⁺, Na⁺, Mg⁺⁺ / Cl⁻, SO₄⁼ at 35 °C. Seventh Symposium on Salt **1**, 539-543 (1993)
- 203. Dinane, A., Mounir, A.: Water activities, osmotic and activity coefficients in aqueous mixtures of sodium and magnesium chlorides at 298.15 K by the hygrometric method. Fluid Phase Equil. **206**, 13-25 (2003)
- 204. Igelsrud, I., Thompson, T.G.: Equilibria in the saturated solutions of salts occurring in sea water. II. The quaternary system MgCl₂ - CaCl₂ - KCl - H₂O at 0 °C. J. Am. Chem. Soc. 58, 318-322 (1936)
- 205. Assarsson, G.: The winning of salt from the brines in southern Sweden. Sveriges Geol. Undersőkn. Ser. C No. 501, Årsbok 42, 1-15 (1948)
- 206. Pelling, A.J., Robertson, J.B.: The reciprocal salt-pair: 2NaCl + Ca(NO₃)₂ → 2NaNO₃ + CaCl₂. South African J. Sci. **20**, 236-240 (1923)
- 207. Lukyanova, E.I., Shoikhet, D.N.: Trudy Gos. Inst. Prikl. Khim. 34, 10-16 (1940); in: reference 294, page 121

- 208. Mills, R. van, Wells, R.C.: Evaporation and concentration of water associated with petroleum and natural gas. Bulletin US Geological Survey **693**, 100pp. (1919)
- 209. Pelling, J., Robertson, J.: J. Chem. Met. Mining Soc. South Africa, 196 (1926); in: reference 165, page 301
- 210. Koroleve, V.F.: Trudy Solyanoi Laboratory Akademii Nauk SSSR 15, 38 (1937); in: reference 165, page 303
- 211. Gromova, E.T.: The solubility isotherm of the Na, Ca || Cl, SO₄ − H₂O system at 110 °C. Russian J. Inorg. Chem. 5, 1244-1247 (1960)
- Robinson, R.A., Bower, V.E.: Properties of aqueous mixtures of pure salts. Thermodynamics of the ternary system: water - calcium chloride - magnesium chloride at 25 °C. J. Res. Nat. Bur. Stand. A 70, 313-318 (1966)
- 213. Melnikova, Z.M., Moshkina, I.A.: The solubility of anhydrite and gypsum in the system Na, Mg, Ca || Cl, SO₄ – H₂O at 25 C. Izvestiia Akademii Nauk SSSR 4, 1725 (1973)
- 214. Holmes, H.F., Baes, Jr., C.F., Mesmer, R.E.: Studies of aqueous solutions at elevated temperatures. III. {(1-y)NaCl + (y)CaCl₂}. J. Chem. Thermodyn. **13**, 101-113 (1981)
- 215. Brantley, S.L.: Chapter Two-Activity Coefficients of NaCl CaCl₂ Aqueous Solutions with Application to High Temperature Natural Brines", PhD Thesis, Princeton, 39-62 (1987)
- 216. Vanko, D.A., Bodnar, R.J., Sterner, S.M.: Synthetic fluid inclusions: VIII. Vapor saturated halite solubility in part of the system NaCl CaCl₂ H₂O, with application to fluid inclusions from oceanic hydrothermal systems. Geochim. Cosmochim. Acta 52, 2451-2456 (1988)
- 217. Lightfoot, W.J., Prutton, C.F.: Equilibria in saturated solutions. I. The ternary systems CaCl₂ MgCl₂ H₂O, CaCl₂ KCl H₂O, and MgCl₂ KCl H₂O at 35 C. J. Am. Chem. Soc. 68, 1001-1002 (1946)
- 218. Lightfoot, W.J., Prutton, C.F.: Equilibria in saturated salt solutions. II. The ternary systems CaCl₂ - MgCl₂ - H₂O, CaCl₂ - KCl - H₂O, and MgCl₂ - KCl - H₂O at 75 C. J. Am. Chem. Soc. 69, 2098-2100 (1947)
- 219. Lightfoot, W.J., Prutton, C.F.: Equilibria in saturated solutions. III. The quaternary system CaC₁₂ MgCl₂ KCl H₂O at 35 C. J. Am. Chem. Soc. **70**, 4112-4115 (1948)
- 220. Lightfoot, W.J., Prutton, C.F.: Equilibria in saturated salt solutions. IV. The quaternary system CaCl₂ MgCl₂ KCl H₂O at 75 C. J. Am. Chem. Soc. **71**, 1233-1235 (1949)
- 221. Precht, H., Wittjen, B.: Löslichkeit von Salzgemischen der Salze der Alkalien und alkalischen Erden bei verschiedener Temperatur. Berichte der Deutschen Chemischen Gesellschaft 14, 1667-1675 (1881)
- 222. Khaidukov, N.I., Linetzkaya, Z.G.: The water-vapor pressure above the solutions NaCl-KCl-MgCl₂-H₂O. Kali: **8**, 28-33 (1935)
- 223. Kistiakovsky, W.: Die wässerigen Lősungen von Doppelsalzen. Z. Physik. Chem. 6, 97-121 (1890)
- 224. Feit, W., Kubierschky, K.: Die Gewinnung von Rubidium- und Caesiumverbindungen aus Carnallit. Chemiker Zeitung 16, 335-340 (1892)
- 225. Van't Hoff, J.H., Meyerhoffer, W.: Ueber Anwendungen der Gleichgewichtslehre auf die oceanischen Salzablagerungen mit besonderer Berücksichtigung des Stassfurter Salzlagers. Z. Physik. Chem. **30**, 64-88 (1899)
- 226. Uhlig, J.: The solubility diagram of potassium chloride, magnesium chloride and water at 50°. Centr., Min. Geol. 417-422(1913)
- 227. Keitel, H.: The systems KCl-MgCl₂-H₂O and NaCl-MgCl₂-H₂O. Kali **17**, 248-251, 261-265 (1923)

- 228. Campbell, A.N., Downs, K.W., Samis, C. S.: The system MgCl₂ KCl MgSO₄ K₂SO₄ H₂O at 100 C. J. Am. Chem. Soc. **56**, 2507-2512 (1934)
- 229. Lepeshkov, I.N., Bodaleva, N.V.: Solubility isotherm of the aqueous reciprocal system K₂Cl₂ + MgSO₄ → K₂SO₄ + MgCl₂ at 25°. Izvest. Sektora Fiz.-Khim. Anal., Inst. Obshchei i Neorg. Khim., Akad. Nauk S.S.S.R. 17, 338-344 (1949)
- 230. Patel, K. P., Seshadri, K.: Phase rule study of quaternary system potassium chloridealuminum chloride-magnesium chloride-water at 25 deg. Ind. J. Chem. 6, 379-381 (1968)
- 231. Lee, W.B., Egerton, A.C.: Heterogeneous equilibria between the chlorides of calcium, magnesium, potassium, and their aqueous solutions. Part I. J. Chem. Soc. **123**, 706-716 (1923)
- Barbaudy, J.: The equilibrium: water-potassium chloride-potassium nitrate-calcium nitratecalcium chloride. Recueil des Travaux Chimiques des Pays-Bas et de la Belgique 42, 638-642 (1923)
- 233. Selivanova, A.S.: Tr. Mosk. Inst. Tonkoi Khim. Tekhnol. 3, 23 (1952); in: reference 305, page 1125
- 234. Zaslavskii, A.I.: Physicochemical conditions of the crystallization of potassium chlorate at 0° and -10°. Trans. State Inst. Applied Chem. (U.S.S.R.) No. 23, 67-84 (1935)
- 235. Assarsson, G.O.: Equilibria in aqueous systems containing K⁺, Na⁺, Ca⁺⁺, Mg⁺⁺ and Cl⁻. I. The ternary system CaCl₂ KCl H₂O. J. Am. Chem. Soc. **72**, 1433-1436 (1950)
- Vlasov, N.A., Ogienko, S.V.: Solubility polytherms of the system CaCl₂-KCl-H₂O from the temperature of complete freezing to +40°. Izv. Fiz.-Khim. Nauchn.-Issled. Inst. pri Irkutskom Univ. 4, 62-80 (1959)
- 237. Kolesnikov, M. M., Beskov, S.D., Druzhinin, I.G.: Uchenyie Zapiski 193, 47 (1968); in: reference 165, page 675
- 238. Soloveva, E.F.: The 50° isotherm of the aqueous salt system Na⁺, K⁺, Mg²⁺, Ca²⁺//Cl⁻-H₂O Tr. Vses. Nauch.-Issled. Inst. Galurgii No. 52, 58-74 (1967)
- 239. Kurnakov, N.S., Nikolaev, A.V.: Izvestiia Akademii Nauk SSSR Seriia Khimicheskaia 2, 403-313 (1938)
- 240. Smith, A., Prutton, C.: Amer. Patent 1768797 (1923)
- 241. Smith, A., Prutton, C.: Amer. Patent 1780098 (1923)
- 242. Bury, C.R., Davies, E.R.H.: The system magnesium chloride lime water. J. Chem. Soc., 701-705 (1933)
- 243. Yanatieva, O.K.: Polytherms of solubility of salts in the tropic systems CaCl₂ MgCl₂ H₂O and CaCl₂ NaCl H₂O. Russian J. Appl. Chem. **19**, 7 (1946)
- 244. Assarsson, G.O.: Equilibria in aqueous systems containing K⁺, Na⁺, Ca²⁺, Mg²⁺, and Cl⁻. III. The ternary system CaCl₂-MgCl₂-H₂O. J. Am. Chem. Soc. **72**, 1442-1444 (1950)
- 245. Perova, A.P.: Mutual solubility of the ternary system CaCl₂-MgCl₂-H₂O at 55°. Soobshcheniya Nauch. Rabot. Vsesoyuz. Khim. Obshchestva im. D. I. Mendeleeva (No. 2), 46-48 (1955)
- 246. Uyeda, K.: On the equilibrium of the reciprocal salt pair: ClK + NO₃K + ClNa. Memoirs of the College of Science and Eng., Kyoto Imperial University **2**, 245-261 (1910)
- 247. Leather, J.W., Mukerji, J.N.: The system potassium nitrate, sodium chloride, water. Mem. Dept. Agr. India, Chem. Ser. **3**, 177-204 (1913)
- 248. Nichol, W.W.J.: On the mutual solubility of salts in water. Part I. Philosophical Magazine and J. Sci. **31**, 369-385 (1891)

- 249. Benrath, A.Z.: Űber die Löslichkeit von Salzen und Salzgemischen bei Temperaturen oberhalb von 100 °C. Z. anorg. Chem. 252, 86-94 (1943)
- 250. Cornec, E., Krombach, H.: The study of equilibria between water, the nitrates, chlorides and sulfates of sodium and potassium. Annali di Chimica Applicata **12**, 203-295 (1929)
- Carnelley, T., Thomson, A.: The solubility of isomeric organic compounds and of mixtures of sodium and potassium nitrates, and the relation of solubility to fusibility. J. Chem. Soc. 53, 782-802 (1888)
- 252. Kremann, R., Zitek, A.: Die Bildung von Konversionssalpeter aus Natronsalpeter und Pottasche vom Standpunkt der Phasenlehre. Monatshefte füer Chem. **30**, 311-340 (1909)
- 253. Madgin, W.M., Briscoe, H.V.A.: The melting point (solidus) curve for mixtures of potassium nitrate and sodium nitrate. J. Chem. Soc. **123**, 2914-2916 (1923)
- 254. Hamid, M.A.: Heterogeneous equilibria between the sulphates and nitrates of sodium and potassium and their aqueous solution. Part I. The ternary systems. J. Chem. Soc., 199-205 (1926)
- 255. Nikolaev, V.I.: Partition of nitric acid between sodium and potassium hydroxide. J. Russ. Phys. Chem. Soc. **60**, 893-904 (1928)
- 256. Ravich, M.I., Ginzburg, F.B.: State diagram of the ternary system KNO₃-NaNO₃-H₂O. Bull. Acad. Sci. U.R.S.S. Classe Sci. Chim. (No. 2), 141-151 (1947)
- 257. Karnaukhov, A.S.: Uch. Zap. Yaroslav. Gos. Pedagog. Inst. **31**, 255 (1956); in: reference 305, page 768
- Jackman, D.N., Browne, A.: The 25 C isotherms of the systems magnesium nitrate sodium nitrate - water and magnesium sulphate - magnesium nitrate - water. J. Chem. Soc. 121, 694-697 (1922)
- 259. Benrath, A.: Study of MgSO₄-NaNO₃-H₂O. I. Caliche **11**, 99-126 (1929)
- 260. Schroder, W.: Über das reziproke Salzpaar MgSO₄ Na₂(NO₃)₂ H₂O. V. Z. anorg. allgem. Chem. **185**, 153-166 (1929)
- 261. Schroder, W.: Űber das reziproke Salzpaar MgSO₄ Na₂(NO₃)₂ H₂O. VI. Z. anorg. allgem. Chem. **185**, 267-279 (1929)
- Sieverts, A.; Muller, H.: The reciprocal salt pair MgCl₂, Na₂(NO₃)₂, H₂O. I. Z. anorg. allgem. Chem. 189, 241-57 (1930)
- 263. Hamid, M.A., Das, R.: The system: water-potassium nitrate-calcium nitrate. J. Indian Chem. Soc. 7, 881-882 (1930)
- 264. Frowein, F.: Das System K₂ / Ca / Na₂ / (NO₃)₂ / H₂O. Z. anorg. Allgem. Chem. **169**, 336-344 (1928)
- 265. Kremann, R., Rodemund, H.: Über das Auftreten eines Tripelsalzes aus wässerigen Lösungen ohne gleichzeitiger Bildung eines binären Doppelsalzes. Z. anorg. Chem. **86**, 373-379 (1914)
- 266. Benrath, A., Sichelschmidt, A.: Das reziproke Salzpaar MgSO₄ + K₂(NO₃)₂ -> Mg(NO₃)₂ + K₂SO₄. III. Z. anorg. allgem. Chem. **197**, 113-128 (1931)
- 267. Bergman, A.G., Opredelenkova, L.V.: Solubility polytherms of the calcium nitrate potassium nitrate water and calcium nitrate potassium chloride water ternary systems. Russian J. Inorg. Chem. **14**, 1144-1146 (1969)
- 268. Hamid, M.A., Das, R.: The system: water potassium nitrate calcium nitrate. J. Indian Chem. Soc. 7, 881-882 (1930)
- 269. Yakimov, M.A., Guzhavina, E.I., Lazeeva, M.S.: Solution vapour equilibrium in calcium (cadmium) nitrate alkali metal nitrate water systems. Russian J. Inorg. Chem. 14, 1011-1014 (1969)

- Goloshchapov, M.V.: Reciprocal solubility in the system Ca(NO₃)₂-Mg(NO₃)₂-H₂O. Izvest. Voronezh. Gosudarst Pedagog. Inst. 16, 19-31 (1955)
- 271. Frolov, A.A., Orlova, V.T., Lepeshkov, I.N.: Solubility polytherm of the system Ca(NO₃)₂ Mg(NO₃)₂ H₂O. Inorganic Materials **28**, 1040-1042 (1992)
- Nikolaev, V.I.: The distribution of strong bases and strong acids in saturated water solutions.
 Z. anorg. allgem. Chem. 181, 249-79 (1929)
- 273. Reinders, W.: Die reziproken Salzpaare KCl + NaNO₃ = KNO₃ + NaCl und die Bereitung von Konversionssalpeter. Z. anorg. allgem. Chem. **93**, 202-212 (1915)
- 274. Rüdorff, F.: Über die Löslichkeit von Salzgemischen. Ber. Deutschen Chem. Gesellschaft 6, 482-486 (1873)
- 275. Wurmser, M.: Preparation of ammonium nitrate. Compt. Rend. 174, 1466-1468 (1922)
- 276. Cornec, E., Chretion, A.: The system sodium nitrate, sodium chloride and water. Caliche 6, 358-369 (1924)
- 277. Findlay, A., Cruickshank, J.: The reciprocal salt pair (Na, Ba) (Cl, NO₃) in aqueous solution at 20 °C. J. Chem. Soc., 316-318 (1926)
- Sheludko, M.K., Kulish, N.F.: Tr. Dnepropetrovsk. Khimii Tekhnol. Inst. vyp. 5, 201 (1956); in: reference 305, page 175
- 279. Bursa, S., Kitowska, M.: Liquid solid equilibrium in the NaNO₃ NaCl HNO₃ HCl H₂O system. Przemysl Chemiczny **47**, 103-106 (1968)
- 280. Straszko, J., Kowalczyk, R.: Liquid solid equilibrium in the NaNO₃ NaCl HNO₃ HCl H₂O system. Przemysl Chemiczny **53**, 97-99 (1976)
- 281. Soch, C.A.: Fractional crystallization. J. Phys. Chem. 2, 43-50 (1898)
- 282. Kritschewski, I., Izkowitsch, R.K.: Das reziproke Salzpaar Ca(NO₃)₂ + 2KCl → 2KNO₃ + CaCl₂ bei -10 °C. Z. anorg. Allgem. Chemie **215**, 103-104 (1933)
- Bodlaender, G.: Über die Löslichkeit einiger Stoffe in Gemischen von Wasser und Alkohol. Z. Physik. Chem. 7, 308-322 (1891); Über die Löslichkeit von Salzgemischen in Wasser. Z. Physik. Chem. 7, 358-366 (1891)
- 284. Touren, C.: Solubility of a mixture of salts having a common ion. Comptes Rendus Hebdomadaires des Seances de l'Academie des Sciences **131**, 259 (1900)
- 285. Armstrong, H.E., Eyre, J.V.: Studies in the processes operative in solutions. XI. The displacement of salts from solution by various precipitants. Proc. Roy. Soc. London (A) 84, 123-135 (1911)
- 286. Tanaka, H.: Preparation of potassium nitrate and alumina by double decomposition of potassium chloride and aluminum nitrate. I. The system 3KCl + Al(NO₃)₃ →. 3KNO₃ + AlCl₃. Kogyo Kagaku Zasshi **33**, 488-492 (1930)
- 287. Benrath, A., Braun, A.: Über die Löslichkeit von Salzen und Salzgemischen in Wasser bei Temperaturen oberhalb von 100 °C. II. Z. anorg. allgem. Chem. 244, 348-358 (1940)
- 288. Zhang, L., Gui, Q., Lu, X., Wang, Y., Shi, J., Lu, B.C.-Y.: Measurement of solid liquid equilibria by a flow cloud point method. J. Chem. Eng. Data 43, 32-37 (1998)
- 289. Ehret, W.F.: Ternary systems CaCl₂ Ca(NO₃)₂ H₂O (25C), CaCl₂ Ca(ClO₃)₂ H₂O (25C), SrCl₂ - Sr(NO₃)₂ - H₂O (25C), KNO₃ - Pb(NO₃)₂ - H₂O (0C). J. Am. Chem. Soc. **54**, 3126-3134 (1932)
- 290. Matsuo, T., Takeda: Studies on brine obtained by the ion exchange membrane method. II. Crystallizing areas of potassium chloride, carnalite, and other salts in equilibrium system of brine produced by ion exchange membrane method. Nippon Kaisui Gakkaishi 25, 129-141 (1971)

- 291. d'Ans, J., Bertsch, A., Gessner, A.: Untersuchungen über Salzsysteme ozeanischer Salzablagerungen. Kali 9, 148-154 (1915)
- 292. Kayser, E.: Substitution factors for dissimilarly saturated solutions of potassium chloride and sodium chloride. Kali 17, 1-9, 37-42 (1923)
- 293. Serowy: Die Polythermen der Viersalzpunkte des Chlorkaliumfeldes im quinären System ozeanischer Salzblagerungen; ihre teilweise Nachprüfung und Vervollständigung bis zu Temperaturen über 100°. Kali 17, 345-350 (1923)
- 294. Pelsha, A.D.: Handbook of Experimental Data of Salt Solubilities, Quaternary and More Complex Systems, Vol. 2, Isdatelstvo Khimia, Leningrad (1975)
- 295. Ilinskii, V.P., Varypaev, N.A., Gitterman, K.E., Shmidt, N.E.: Trudy Solyanoi Laboratory Akademii Nauk SSSR 7, 10 (1936)
- 296. Van't Hoff, J.H.: Zur Bildung der ozeanischen Salzablagerungen. Lichtenstein, Sitzungsber. Preuss. Acad. 232 (1905)
- 297. Igelsrud, I., Thompson, T.G.: Equilibria in the saturated solutions of salts occurring in sea water. II. The quaternary system MgCl₂ CaCl₂ KCl H₂O at 0 C. J. Am. Chem. Soc. **58**, 2003-2009 (1936)
- 298. Assarsson, G.O., Balder, A.: The poly component aqueous systems containing the chlorides of Ca⁺⁺, Mg⁺⁺, Sr⁺⁺, K⁺ and Na⁺ Between 18 and 93 C. J. Phys. Chem. **59**, 631-633 (1955)
- 299. Khitrova, N.N.: Physicochemical investigation of a four-component reciprocal aqueous solution of sodium and potassium chlorides and nitrates. Izvest. Sektora Fiz. Khim. Anal., Inst. Obshchei i Neorg. Khim., Akad. Nauk S.S.S.R. **27**, 344-357 (1956)
- 300. Etard. M.: Recherches expérimentales sur les solutions saturées. Annales de Chimie et de Physique **3**, 275-288 (1894)
- 301. Karsten: Ann. der Chem. U. Pharm. Suppl. 3, 170 (1865)
- 302. Ritzel, A.: Die Krystalltracht des Chlornatriums in ihrer Abhängigkeit vom Lösungmittel. Z. Kristallographie Mineral **49**, 152-192 (1911)
- 303. Babenko, A.M.: Study of solubility in the system Na^+ , $K^+ \parallel Cl^-$, $NO_3^- H_2O$. Russian J. Applied Chem. **48**, 1820-1824 (1975)
- 304. Bergman, A.G., Nagornyi, G.I.: Polytherm of the reciprocal system of magnesium and potassium chlorides and nitrates (the conversion of magnesium nitrate). Bull. Acad. Sci. U. R. S. S., Classe Sci. Math. Nat., Ser. Chim. No. 1, 217-28 (1938)
- 305. Silcock H. L.: Solubilities of Inorganic and Organic Compounds, Ternary and Multicomponent Systems of Inorganic Substances, Vol. 3, Part 2, Pergamon Press (1979)

 Table 1. Compositions of the samples. Solute contents in each cup are given as the total number of millimoles corresponding to the salt formula.

- 1. NaCl : 14.672
- 2. $NaCl + NaNO_3$: 7.4646 + 6.8248
- 3. Mg(NO₃)₂ : 8.8921
- 4. $NaNO_3 + KNO_3 + Ca(NO_3)_2 + Mg(NO_3)_2 : 5.2873 + 1.2967 + 2.3614 + 1.2197$
- 5. $CaCl_2 + MgCl_2 + Ca(NO_3)_2 + Mg(NO_3)_2$: 5.0878 + 0.77353 + 2.6309 + 1.4123
- 6. LiCl : 13.197
- 7. NaCl + KCl + NaNO₃ + KNO₃ : 5.4795 + 2.3108 + 2.7690 + 1.0563
- 8. $KCl + KNO_3$: 8.1026 + 2.8021
- 9. NaCl + KCl + NaNO₃ + KNO₃ + CaCl₂ + MgCl₂ + Ca(NO₃)₂ + Mg(NO₃)₂ : 4.1946 + 2.0027 + 2.8693 + 0.70451 + 0.53286 + 0.20404 + 0.40974 + 0.13368
- 10. $NaNO_3 + KNO_3 : 9.0689 + 2.2832$
- 11. $CaCl_2$: 9.3057
- 12. $Ca(NO_3)_2$: 7.9988
- 13. $CaCl_2 + Ca(NO_3)_2$: 4.5080 + 4.0814

а	1	2	3	4	5	6	7	8	9	10	11	12	13
0.7507	2172.1	1863.4	2651.5	1478.9	2557.9	2367.1	1491.8	1204.5	1560.0	1141.8	2582.4	1640.3	2077.1
0.7270	12.5	1683.9	2476.5	1343.0	2376.2	2200.8	1348.8	1079.7	1414.0	1016.1	2409.4	1513.0	1925.0
0.6852	3.3	1425.4	2218.2	1149.2	2111.5	1962.1	1143.1	907.3	1207.5	834.0	2149.1	1321.7	1699.2
0.6529	3.3	1030.9	2051.2	1028.7	1936.0	1804.0	902.9	429.2	1070.2	724.5	1975.8	1199.3	1549.6
0.6333	5.5	825.7	1961.8	963.4	1844.2	1723.1	690.1	298.3	944.5	666.9	1879.7	1136.7	1474.8
0.6198	4.2	716.5	1899.6	921.1	1781.7	1667.0	578.0	241.1	799.1	631.9	1816.9	1095.3	1422.4
0.6099	6.0	649.9	1863.1	894.6	1739.6	1626.5	511.2	208.1	715.5	609.0	1772.4	1067.8	1385.8
0.5984	5.1	593.4	1814.7	864.5	1693.2	1582.3	452.8	183.1	650.2	579.7	1722.5	1035.6	1347.0
0.5769	6.7	510.5	1738.5	813.0	1612.6	1510.1	369.3	139.1	543.3	532.6	1633.7	982.9	1277.5
0.5765	4.2	505.3	1730.6	806.2	1608.2	1507.1	365.9	137.6	540.3	533.3	1632.0	975.8	1274.4
0.5507	6.5	431.2	1645.0	749.1	1518.2	1421.9	287.9	102.4	447.4	482.9	1532.7	917.1	1197.7
0.5168	4.6	356.6	1541.2	680.0	1408.6	1325.6	222.2	73.5	362.9	424.6	1412.0	845.1	1106.3
0.4979	3.8	324.1	1490.3	646.7	1356.1	1273.5	192.4	59.5	326.8	395.8	1349.3	809.7	1060.2
0.4423	1.9	250.1	1350.4	556.9	1206.7	1133.7	131.5	31.7	246.6	324.1	1180.0	711.1	934.6
0.3858	5.5	9.3	1224.3	479.8	1074.7	1005.2	92.4	-31.1	192.7	261.4	1026.2	623.9	823.8
0.3451	4.6	8.3	1140.1	429.6	986.9	917.9	73.2	-32.9	163.7	128.1	923.8	565.0	748.8
0.3000	7.0	9.7	1045.4	374.7	889.7	821.6	54.4	-30.1	137.4	87.1	817.8	498.3	664.3
0.2424	7.5	10.0	931.4	306.1	772.7	700.8	9.9	-32.2	108.1	46.8	693.4	423.6	569.0
0.2080	5.5	9.4	865.6	263.7	707.1	628.0	4.2	-32.2	92.4	2.2	625.3	376.9	513.9
0.1486	5.1	7.0	751.5	202.9	597.9	513.4	3.4	-30.4	69.3	1.5	516.2	94.4	418.4
0.1023	8.4	9.4	609.1	147.8	474.0	6.0	4.9	-32.3	44.7	2.3	398.3	4.3	306.2

Table 2. Masses of water (mg) in each of the 13 sample cups at 21 values of water activity a (t = 140 °C).

	NaCl	KCl	MgCl ₂	CaCl ₂	NaNO ₃	KNO ₃	$Mg(NO_3)_2$	$Ca(NO_3)_2$
Ca(NO ₃) ₂	22, 233	232, 267		232, 287, this work	122, 206, 264-265	232, 264, 267-269	270-271	22, 26, 36, 40, 97, 142, 161-164, this work
Mg(NO ₃) ₂			184		184, 258-263	266	19, 26, 27, 36, 40, 41, 43, 112, 141, 151-160 this work	
KNO3	22, 23, 113, 144, 233, 246, 247,281, 299-303	113,143, 170, 232, 246-249, 272, 281-288, this work	304	232	7, 22-23, 113-114, 246-257, this work	19, 20, 22, 23, 26, 40, 41, 112-121, 141-150		
NaNO ₃	7, 113, 123, 246-249, 272-280, this work	113, 299			20, 22, 23, 26, 40-42, 112-140			
CaCl ₂	98, 165-169 204-216	167, 204-205, 217-218, 231-237	37, 50-51, 183,204, 217-220, 231, 238-245	5, 26-28, 36-39, 97-111, this work				
MgCl ₂	44-47, 165-166, 180-203	48, 49, 165, 180-182, 204, 217-230	19, 26-28, 36-96					
KCl	165-179	19-21 26-35						
NaCl	19-25, this work							

Table 3. Summary of references to experimental data sources for binary and ternary aqueous solutions containing Na, K, Mg, Ca, Cl, and NO₃ salts.

Salts	References
NaCl – KCl – MgCl ₂	52, 180-181, 185-186, 221-222, 238, 290-294
$NaCl - KCl - CaCl_2$	166, 168, 185, 187, 207, 295
$NaCl - MgCl_2 - CaCl_2$	183, 185, 238, 239, 296
$KCl - MgCl_2 - CaCl_2$	219-220, 238, 297-298
$NaCl - KCl - MgCl_2 - CaCl_2$	185, 238, 290, 296
NaCl – KCl – NaNO ₃	246, 299
NaCl – KCl – KNO ₃	246, 299
NaCl – NaNO ₃ – KNO ₃	22-23, 246, 250, 273, 299, this work
KCl – NaNO ₃ – KNO ₃	246, 300
$KCl - CaCl_2 - KNO_3$	232, 267, 282
$KCl - CaCl_2 - Ca(NO_3)_2$	232
$CaCl_2 - KNO_3 - Ca(NO_3)_2$	232, 267, 282
$KCl - MgCl_2 - Mg(NO_3)_2$	304
$MgCl_2 - CaCl_2 - Mg(NO_3)_2 - Ca(NO_3)_2$	this work
$NaNO_3 - KNO_3 - Mg(NO_3)_2 - Ca(NO_3)_2$	this work
$\begin{array}{l} NaCl-KCl-MgCl_2-CaCl_2-NaNO_3-\\ KNO_3-Mg(NO_3)_2-Ca(NO_3)_2 \end{array}$	this work

Table 4. Summary of references to experimental data for quaternary, quinary and higher-order aqueous systems containing Na, K, Mg, Ca, Cl and NO₃ salts

Binary ion interaction parameters						
Cl ⁻ /Na ⁺	NO_3^-/Na^+	Cl ⁻ /NO ₃				
$b_0 = 15611.$	$b_0 = 252.54$	$b_0 = 15.170$				
$b_1 = 7.9642$	$b_1 = -0.46165$	$b_1 = 0$				
$b_2 = -0.35799E + 06$	$b_2 = -42982.$	$b_2 = -5055.8$				
$b_3 = -0.36431E-02$	$b_3 = 0.23981E-03$	$b_3 = 0$				
$b_4 = -2892.7$	$b_4 = 0$	$b_4 = 0$				
$c_0 = -30086.$	$c_0 = -383.93$	$c_0 = -21.009$				
$c_1 = -15.010$	$c_1 = 0.60763$	$c_1 = 0$				
$c_2 = 0.69985E+06$	$c_2 = 70566.$	$c_2 = 7500.5$				
$c_3 = 0.68210E-02$	$c_3 = -0.19394E-03$	$c_3 = 0$				
$c_4 = 5552.3$	$c_4 = 0$	$c_4 = 0$				
Thermochemical parameters for solids ^a						
NaCl(s)	NaCl·2H ₂ O(s)	NaNO ₃ (s)				
$\Delta_f G^\circ = -384324$	$\Delta_f G^{\rm o} = -858845$	$\Delta_f G^{\circ} = -366106$				
$S^{\circ} = 70.76399$	$S^{o} = 164.6132$	$S^{\circ} = 119.7126$				
Cu as officientes	Cr. acofficientes	Cr. acafficienta				
Cp coefficients: a = 47.121	Cp coefficients: a = 130.1224	Cp coefficients: a = -493.9911				
b = 0.007219	a = 150.1224 b = 0	b = 4.577221				
c = 20900.	c = 0	c = 0				
d = 1.1156E-05	d = 0	d = -0.011965				
e = 0	e = 0	e = 1.07888E-05				

Table 5. Model parameters for the NaCl-NaNO₃-H₂O system

^a The units for $\Delta_f G^\circ$ and S° are J·mol⁻¹ and J·mol⁻¹·K⁻¹, respectively. The *Cp* equation for the solid is: $Cp = a + b/T + c/T^2 + dT^2 + eT^3$; the units for *Cp* are J·mol⁻¹·K⁻¹.

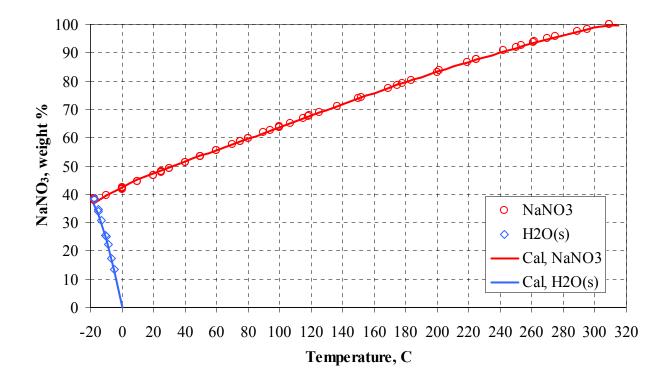


Figure 1. Calculated and experimental solid-liquid equilibria in the binary system NaNO₃-H₂O.

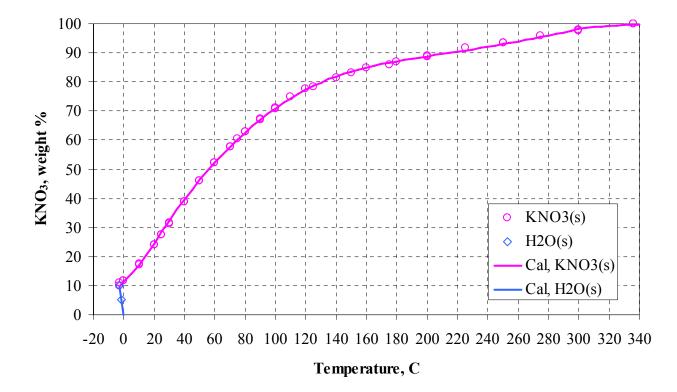


Figure 2. Calculated and experimental solid-liquid equilibria in the system KNO₃-H₂O.

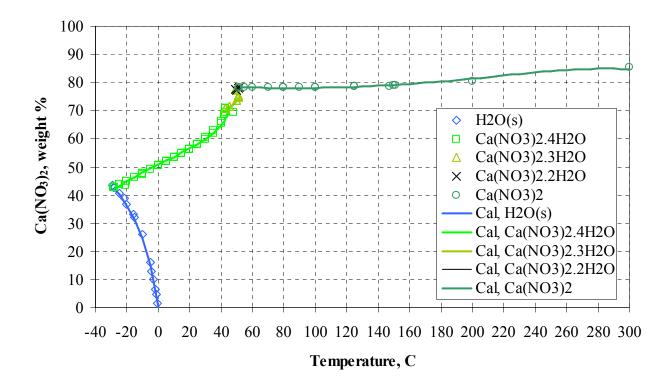


Figure 3. Calculated and experimental solid-liquid equilibria in the system Ca(NO₃)₂-H₂O.

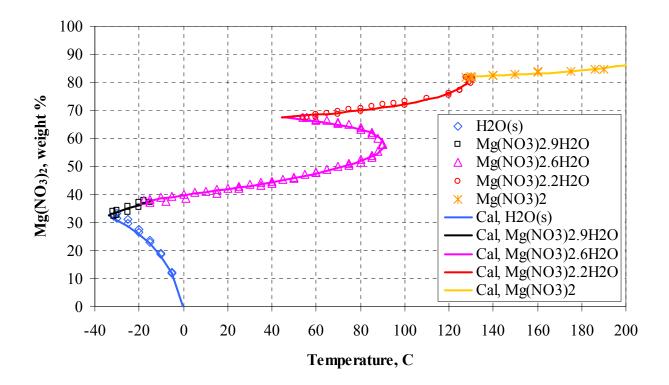


Figure 4. Calculated and experimental solid-liquid equilibria in the system $Mg(NO_3)_2 - H_2O$.

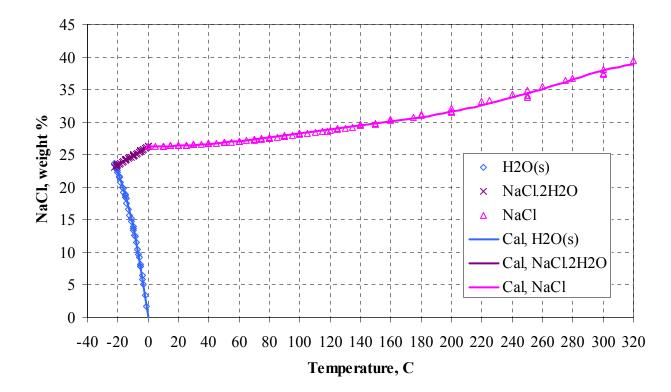


Figure 5. Calculated and experimental solid-liquid equilibria in the system NaCl-H₂O.



Figure 6. Calculated and experimental solid-liquid equilibria in the system KCl–H₂O.

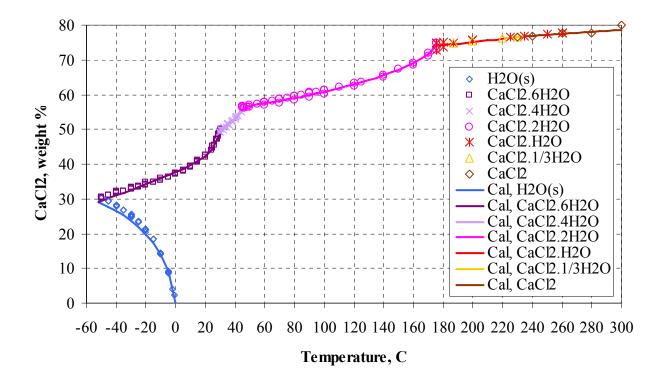


Figure 7. Calculated and experimental solid-liquid equilibria in the system CaCl₂-H₂O.

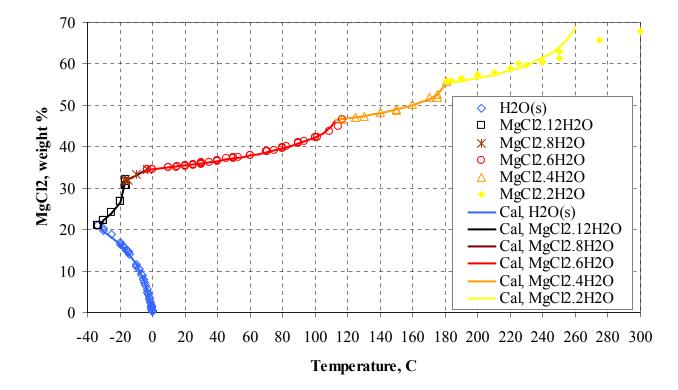


Figure 8. Calculated and experimental solid-liquid equilibria in the system MgCl₂–H₂O.

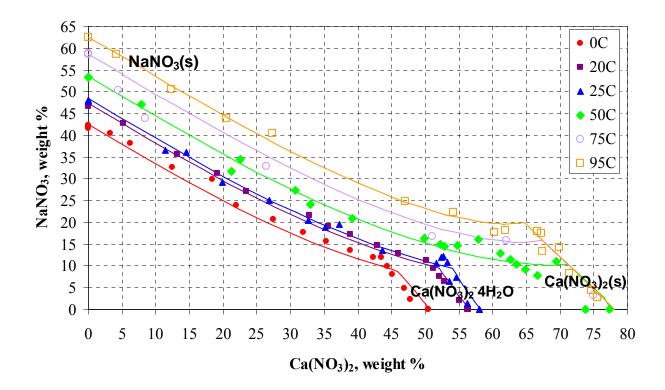


Figure 9. Calculated and experimental solubilities of solids in the system $NaNO_3$ -Ca $(NO_3)_2$ -H₂O.

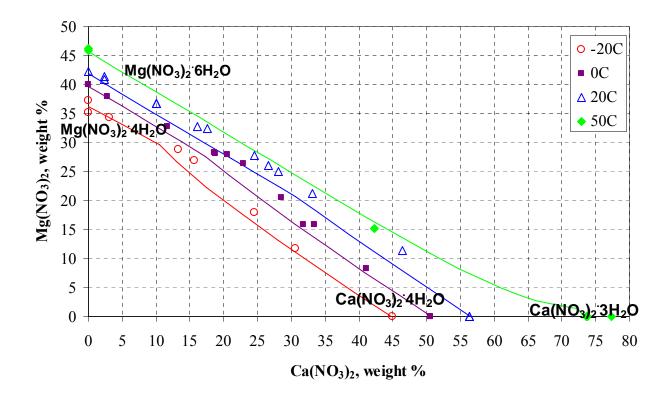


Figure 10. Calculated and experimental solid-liquid equilibria in the system Mg(NO₃)₂-Ca(NO₃)₂-H₂O.

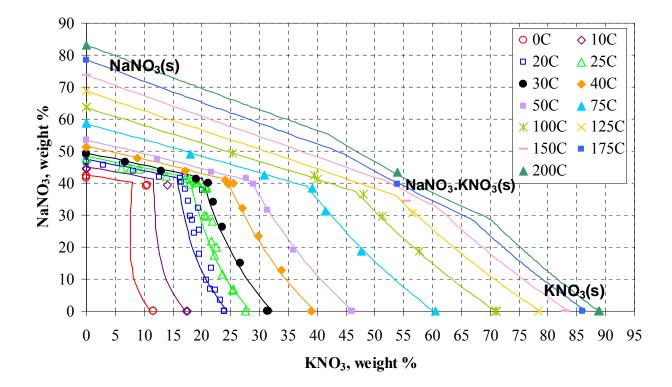


Figure 11. Calculated and experimental solubilities of solids in the system NaNO₃–KNO₃–H₂O.

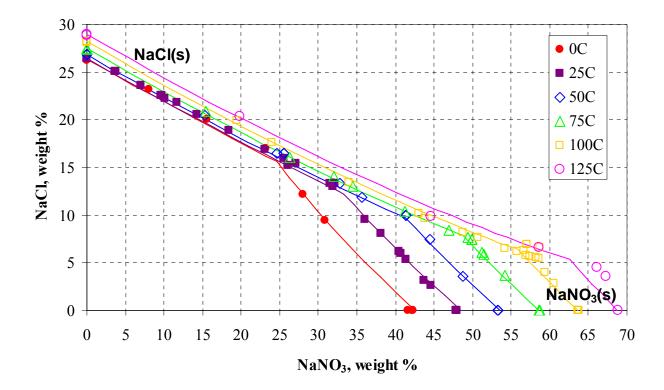


Figure 12. Calculated and experimental solid-liquid equilibria in the system NaCl–NaNO₃–H₂O.

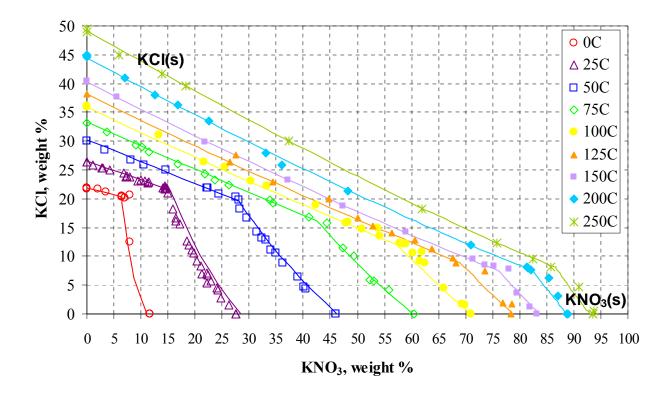


Figure 13. Calculated and experimental solid-liquid equilibria in the system KCl-KNO₃-H₂O.

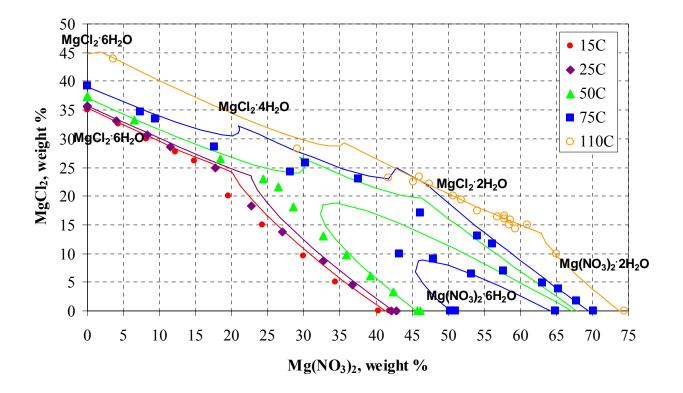


Figure 14. Calculated and experimental solid-liquid equilibria in the system $MgCl_2-Mg(NO_3)_2-H_2O$.

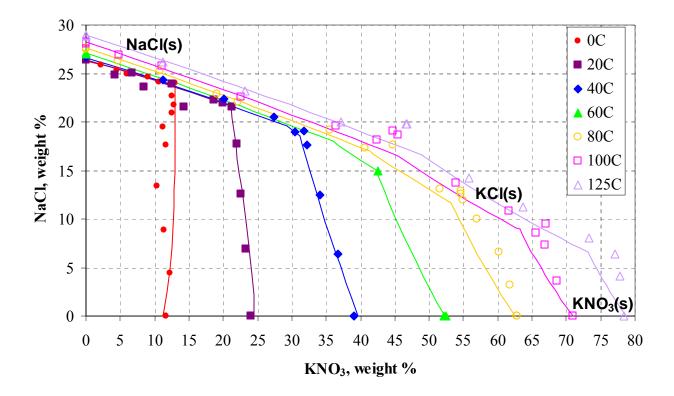


Figure 15. Calculated and experimental solid-liquid equilibria in the system NaCl-KNO₃-H₂O.

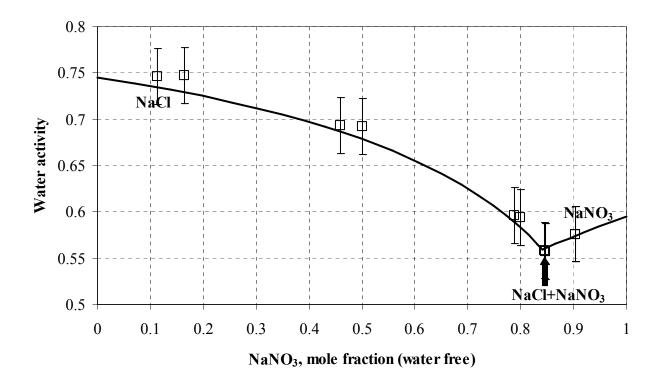


Figure 16. Calculated and experimental activity of water in solutions saturated with mixtures of NaNO₃ and NaCl at 90 °C with varying compositions. The solid phases that coexist with the saturated solutions are indicated along the water activity curve. The data are from Carroll et al. [7]

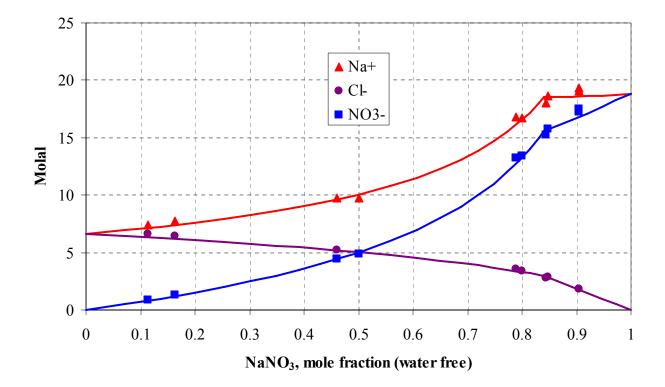


Figure 17. Concentrations of ions in the system NaNO₃–NaCl–H₂O along the solid-liquid saturation line at 90 °C. The data are from Carroll *et al.* [7]

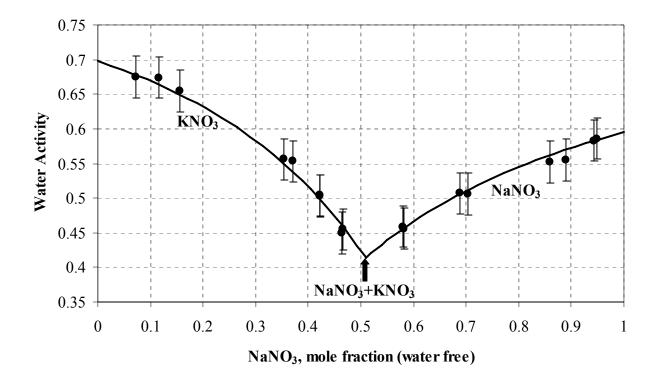


Figure 18. Calculated and experimental [7] activity of water in solutions saturated with mixtures of NaNO₃ and KNO₃ with varying compositions at 90 °C. The solid phases that coexist with the saturated solutions are indicated along the water activity curve.

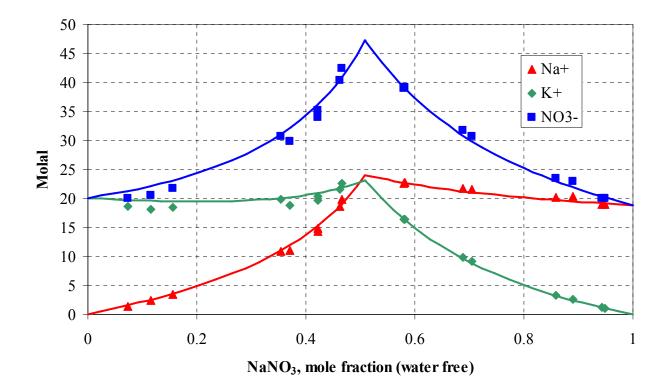


Figure 19. Concentrations of ions in the system NaNO₃ – KNO₃ along the solid-liquid saturation line at 90 °C. The data are from Carroll *et al.* [7]

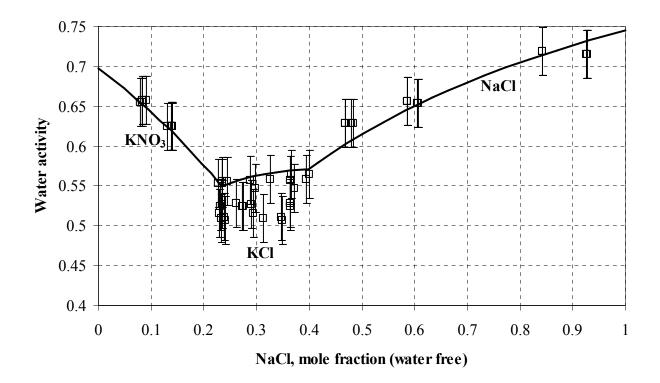


Figure 20. Calculated and experimental [7] activity of water in solutions saturated with mixtures of NaCl and KNO₃ with varying compositions at 90 °C. The solid phases that coexist with the saturated solutions are indicated along the water activity curve.

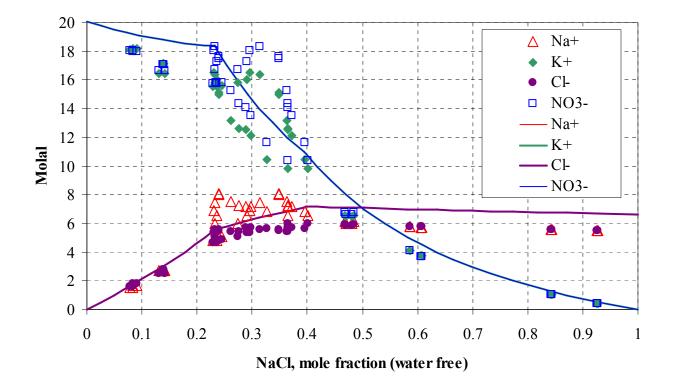


Figure 21. Concentrations of ions in the system NaCl–KNO₃–H₂O [7] along the solid-liquid saturation line at 90 °C.

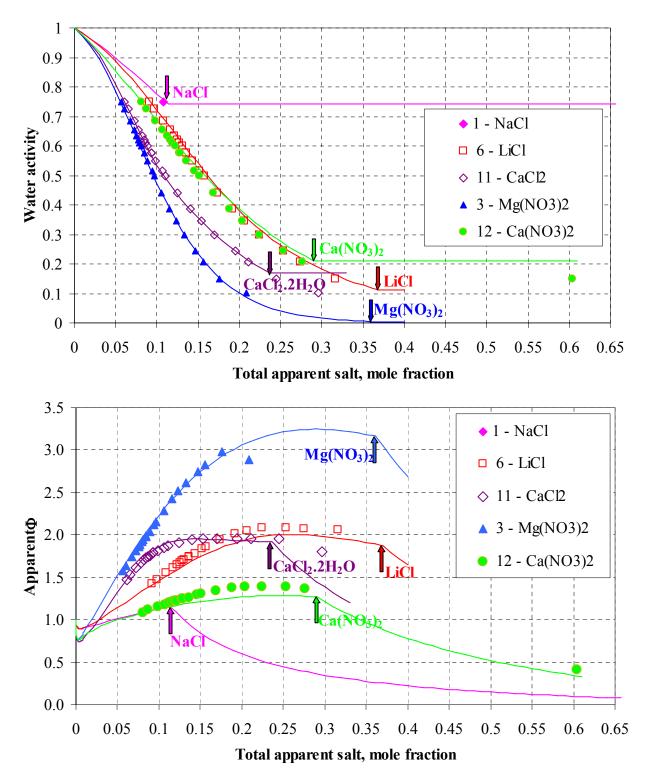


Figure 22. Calculated and experimental water activities (upper diagram) and osmotic coefficients (lower diagram) of single-salt systems at 140 °C. The system numbers correspond to the solutions defined in Table 1. The arrows indicate the total system composition at which a given solid phase starts to precipitate.

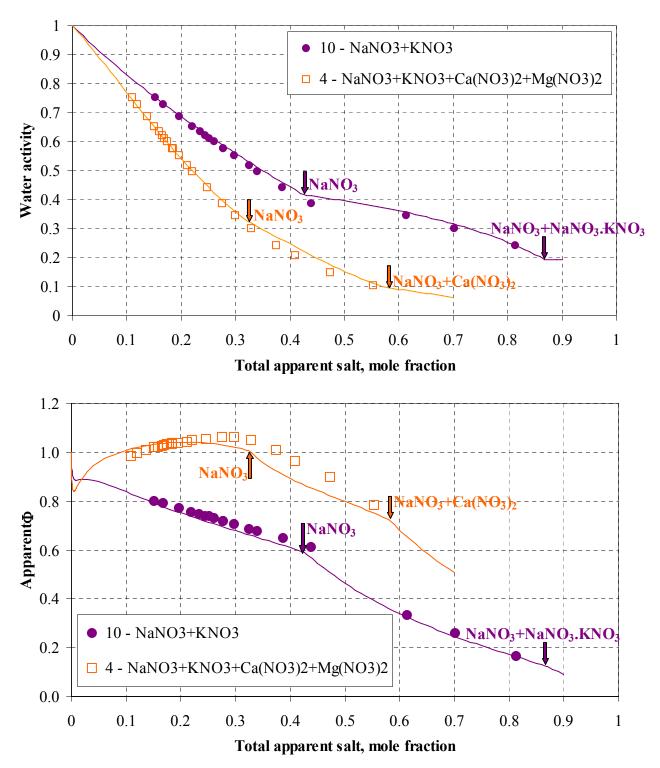


Figure 23. Calculated and experimental water activities (upper diagram) and osmotic coefficients (lower diagram) for two systems containing the nitrates of Na, K, Ca, and Mg at 140°C. The system numbers correspond to the solutions defined in Table 1. The arrows indicate the total apparent salt mole fraction at which a given solid phase starts to precipitate.

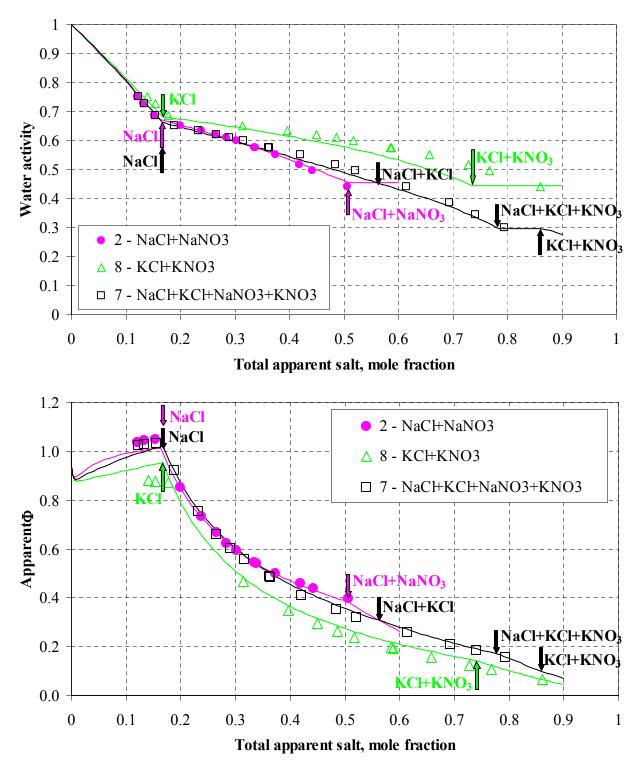


Figure 24. Calculated and experimental water activities (upper diagram) and osmotic coefficients (lower diagram) for three systems containing various combinations of the Na⁺, K⁺, NO₃⁻ and Cl⁻ ions at 140 °C. The system numbers correspond to the solutions defined in Table 1. The arrows indicate the total apparent salt mole fraction at which a given solid phase starts to precipitate.

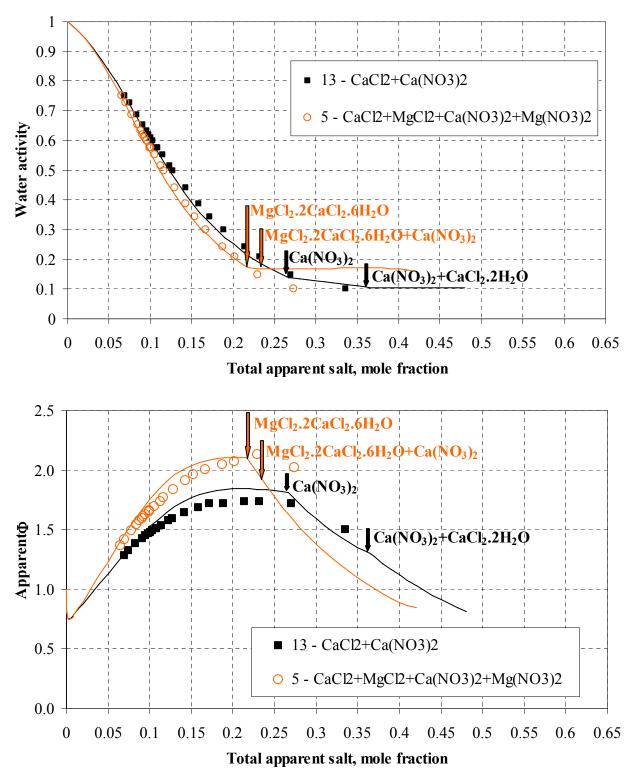


Figure 25. Calculated and experimental water activities (upper diagram) and osmotic coefficients (lower diagram) for two systems containing the Ca²⁺, Mg²⁺, Cl⁻, and NO₃⁻ ions at 140 °C. The system numbers correspond to the solutions defined in Table 1. The arrows indicate the total apparent salt mole fraction at which a given solid phase starts to precipitate.

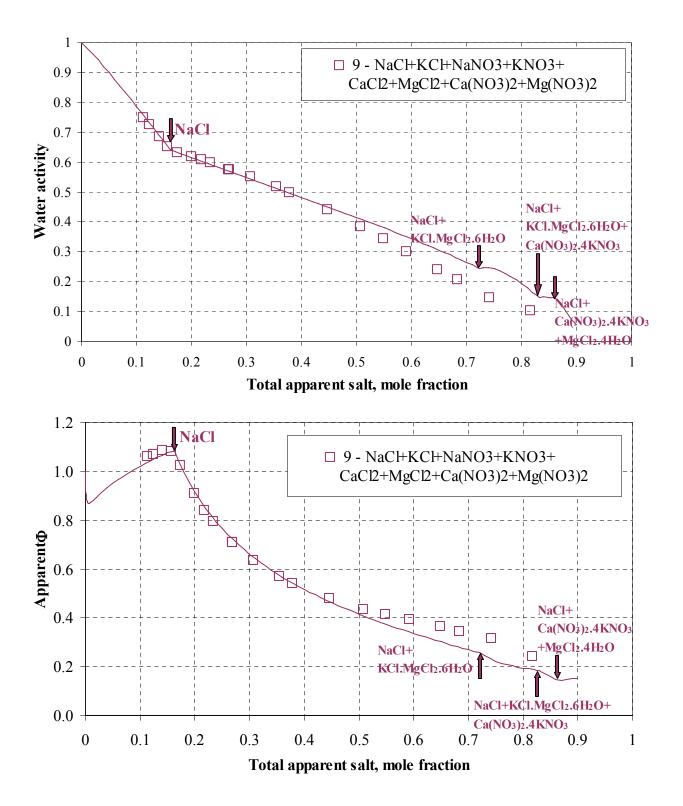


Figure 26. Calculated and experimental water activities (upper diagram) and osmotic coefficients (lower diagram) for a system containing a combination of the Na⁺, K⁺, Ca²⁺, Mg²⁺, Cl⁻, and NO₃⁻ ions at 140 °C. The solution is defined in Table 1. The arrows indicate the total apparent salt mole fraction at which a given solid phase starts to precipitate.