Thermodynamic Fuel Cell

Peter Van Blarigan Sandia National Laboratories

2003 Distributed Energy Resources Peer Review Washington DC Renaissance Hotel December 2 - 4, 2003

Background

1995 – H₂ fueled genset for series hybrid vehicle

- On / Off Operation
- Single Power level
 → electricity output

Hybrid electric vehicle platform

Illustration of burn duration penalty

Modern 4 stroke Diesel is extreme case, pressure limitations control design.

Homogeneous Charge Compression Ignition

- Fuel / air premixed.
- Charge combusts due to compression heating.

 No flame propagation / diffusion mixing required
 Chemical kinetics dominate (VERY FAST!)
- Can achieve constant-volume combustion.
- Multi-fuel capable no flammability limits.
- NOx control by dilution.
 limits combustion
 temperatures

Harnessing HCCI's Potential

Characteristics of Thermodynamic Fuel Cell

- Electronic control of CR
- Rapid compression
- High pressure capability

- Mechanical simplicity
- Two-stroke scavenging
- Electrical output

Harnessing HCCI's Potential

Characteristics of Thermodynamic Fuel Cell

- Electronic control of CR
- Rapid compression
- High pressure capability

- Mechanical simplicity
- Two-stroke scavenging
- Electrical output

Harnessing HCCI's Potential

Characteristics of Thermodynamic Fuel Cell

- Electronic control of CR
- Rapid compression
- High pressure capability

- Mechanical simplicity
- Two-stroke scavenging
- Electrical output

Approach to Development

- Demonstrate HCCI combustion potential
- Develop linear alternator
- Develop intake / exhaust process

Combine critical components into 30kW prototype research engine

RCEM Combustion Experiment

Typical free piston position, and cylinder pressure histories for RCEM

Typical pressure – volume data from a free piston, Rapid Compression Expansion Machine

Efficiency and emissions performance for different initial temperatures, and single-shot compression ratios

Pressure – volume data using low BTU bio-gas

Linear Alternator

Piston Free-Body Diagram

- Key Component:
 - Crucial term in the force balance.
 - Converts piston kinetic energy into electricity.
 - Electromagnetically couples the piston motion to the electrical load.
 - Facilitates electronic control of the piston motion e.g., compression ratio.

Linear Alternator

Parallel development plan

In-house

Electromagnetic modeling (FLUX2D) Describe velocity profile, anisotropic materials. Calculate I²R losses. Parametric variations to focus on optimal configuration.

Magnequench, International

Design, fabricate and supply at no cost.

Magnequench Design

Sandia Design

Computational modeling to develop design

Sandia Design

- Number of magnets, magnet strength
- Number of teeth per magnet
- Tooth / stator geometry
- Coil configuration

Simulate performance of Magnequench design

Experimentally verify computed results

Magnequench Design

Alternator Test Rig

Linear Alternator Test Program

- Objectives:
 - Verify Flux 2D performance predictions.
 - Measure power output and compute efficiency.
 - Characterize linear alternator dynamics
 - Determine reaction force vs. magnet position.
- Strategy:
 - Modify a Caterpillar 3304 Diesel engine to drive a linear alternator.
 - Disable two cylinders.
 - Magnets are attached to a "plunger" that is substituted for the fourth piston.
 - Mount the stator over the plunger.
 - Suspend the stator with six load cells.
 - Measure stator reaction forces and electrical output.
 - Piston position is determined from slider-crank kinematics and shaft encoder output.

Experimental Setup

Experimental Setup

Linear Alternator Installed

Linear Alternator Schematic

Data Reduction Challenges

Time Domain

- Load cell signal is a complicated waveform---even without magnets.
- Multiple frequency components.
- Employing spectral analysis to determine optimal engine operating / test conditions.
- Load cell-stator system behaves like a spring-mass system subjected to base excitation.

Data Reduction Challenges

Ascending Plunger

Descending Plunger

- Top and bottom load cell signals are complimentary.
- Reaction forces depend upon the direction of the piston motion---further complicates the force-position analysis.
- Developed a mathematical model to facilitate the interpretation of load cell signals.

Ancillary Difficulties

Stator Thermal Expansion

- Stator thermal expansion causes an apparent "static drift" in the load cell signals.
- Stator has considerable thermal inertia.
- Developed a mathematical model of the warm-up process.
- Devising experimental techniques to minimize thermal expansion effect.

Intake / Exhaust System

Critical for efficiency / emissions goals

- Charge preparation for HCCI combustion.
- Control of short-circuiting (fuel loss, HC emissions).
- Limit pumping power.

CFD modeling and visualization

- KIVA3V / Ensight; 0D pressurization; 1D friction
- Single step parametric optimization scavenging methods, charge delivery options, etc.

Turbocharging

Experimental verification

Single-shot HCCI driven, free piston device.

Scavenging Methods

Loop

- Charging pressure
- Intake / exhaust port area and timing
- Operating frequency

Scavenging Methods

Loop

Hybrid-loop

- Charging pressure
- Number & arrangement of intake / exhaust ports
- Operating frequency

Scavenging Methods

Loop

Hybrid-loop

<u>Uniflow</u>

- Port / valve configuration
- Operating frequency
- Travel past port bottom

Improving the thermodynamic cycle

4 tall air-only ports / 4 short fuel-air ports		
P _{ch} = 1.2bar, P _{ex} = 1.0bar	Bore = 7.24cm	
Frequency = 45Hz	Stroke = 25.56cm	
η_{sc} ~0.93; η_{tr} ~0.93/0.99; ϕ_{eff} ~0.38	Swirl Angle = 15°	

Stratified scavenging option

- Nominal uniflow configuration
- Low charging pressure / frequency
- Stratified scavenging
- Over-expanded (Atkinson) cycle

• DOE Support :

Office of Transportation Technologies Hydrogen Program DER Program Sandia National Laboratory

 Government Support: NASA

Collaborators:

Caterpillar, Ricardo, Lotus, Delphi, UQM, Magnequench, LANL

Summary

- Thermodynamic fuel cell provides electrochemical fuel cell like performance.
- Utilizes highly developed reciprocating engine technology.
- Near term cost <u>will</u> be low.
- Multi-fuel capability important.
- Provides an alternative, competitive path for hydrogen conversion.
- Meets FreedomCAR 2010 goals for internal combustion systems operating on hydrogen, or hydrocarbons.

	<u>GOAL</u>	Thermodynamic fuel cell	
Efficiency	45%	50%	
Cost	\$30 / kW	\$20 / kW	Sandia
Emissions	Meet Standards	s ≈ 0	National Laborato

Summary – 50% fuel to electricity conversion efficiency at 30 kw is unique

