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We investigate a reversible polymerization process in which individual polymers aggregate and
fragment at a rate proportional to their molecular weight. We find a nonequilibrium phase transition
despite the fact that the dynamics are perfectly reversible. When the strength of the fragmentation
process exceeds a critical threshold, the system reaches a thermodynamic steady state where the
total number of polymers is proportional to the system size. The polymer length distribution has a
sharp exponential tail in this case. When the strength of the fragmentation process falls below the
critical threshold, the steady state becomes non-thermodynamic as the total number of polymers
grows sub-linearly with the system size. Moreover, the length distribution has an algebraic tail and
the characteristic exponent varies continuously with the fragmentation rate.
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I. INTRODUCTION

Equilibrium systems relax to a steady state described
by the Gibbs distribution. In contrast, nonequilibrium
systems are specified by the dynamics rather then by a
Hamiltonian, and there is no general framework for de-
scribing nonequilibrium steady states. Furthermore, un-
like equilibrium phase transitions that are characterized
by robust universality classes [1], nonequilibrium phase
transitions are highly sensitive to details of the underly-
ing dynamics [2].

In this paper, we investigate polymerization dynamics,
and we report that competition between aggregation and
fragmentation results in a remarkable non-equilibrium
phase transition. Despite the fact that the dynamics are
perfectly reversible, there is a nonequilibrium phase tran-
sition from a thermodynamic state where the number of
polymers is proportional to the system size into a non-
thermodynamic state where the number of polymers is
not proportional to the system size.

Reversible polymerization is ubiquitous in polymer and
atmospheric chemistry [3–5], and has analogies in net-
works [6] and computer science [7–9]. Reversible poly-
merization includes two competing processes: (i) The
aggregation process [i] + [j] → [i + j], merger of two
polymer chains of lengths i and j into a larger polymer,
occurs with the aggregation rate Kij ; (ii) The fragmen-
tation process [i + j] → [i] + [j], breakage of a polymer
into two smaller polymers, proceeds with rate Fij . This
process is reversible because the aggregation process and
the fragmentation process perfectly mirror each other.

Reversible polymerization is described by the master
equations [10]

dck

dt
=

1

2

∑

i+j=k

Kij ci cj − ck

∑

j≥1

Kkj cj

+
∑

j≥1

Fkj cj+k − 1

2
ck

∑

i+j=k

Fij (1)

where ck(t) is the density of polymer chains composed
of k monomers at time t. The first two terms describe
changes due to aggregation and the next two terms ac-
count for changes due to fragmentation. The aggregation
and fragmentation rates are (non-negative) symmetric
matrices, Kij = Kji and Fij = Fji. The determinis-
tic master equations are a surrogate model for the ac-
tual stochastic aggregation-fragmentation process. The
master equations yields exact average concentrations for
infinitely large systems.

In the simplest case, the steady state distribution is
found by equating the aggregation flux with the frag-
mentation flux,

Kij ci cj = Fij ci+j . (2)

This detailed balance condition specifies an equilibrium
state where the fluxes between any two microscopic states
of the system balance. Such an equilibrium steady state
exists for example when both the aggregation and the
fragmentation rates are constant [11]. Another equilib-
rium state was found in a model of strings at very high-
temperatures with the rates Kij = ij and Fij = i + j
[12].

The detailed balance equation (2) admits a solution
only when the aggregation and fragmentation rates sat-
isfy special relations, as shown in Appendix A. In gen-
eral, the steady state distribution is specified by the full
master equations (1) and moreover, the detailed balance
relations (2) may very well be violated. For example, in
a “chipping” process where only end-monomers can de-
tach from the polymer, the matrix Fij is sparse: Fij = 0
when both i, j ≥ 2. For constant aggregation rates, the
chipping process exhibits a nonequilibrium phase transi-
tion. When the fragmentation rate falls below a certain
threshold, a giant macroscopic polymer emerges [13–16].

We consider the aggregation and fragmentation rates

Kij = ij, Fij = λ. (3)

These rates, while intermediate between the linear chain
model [11] and the string model [12], violate detailed
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balance (see Appendix A). The product aggregation
rate accounts for the natural situation in which any two
monomers may form a chemical bond, thereby leading to
merger of their respective polymers. This polymerization
process has been widely studied in polymer chemistry
[17–21] and in the context of percolation [22–25]. The
constant fragmentation rate reflects situations where all
chemical bonds in the linear polymer are equally likely
to break, thereby leading to breakage into two smaller
polymers. This de-polymerization process has also been
studied extensively [26]. Like the aggregation rate, the
total fragmentation rate is linear in the molecular weight,
∑

i+j=k Fij = λ(k − 1).
Starting with N monomers, we study the nonequilib-

rium steady states that emerge in the reversible poly-
merization process (3). We find that the system gener-
ally reaches a steady state, and that a nonequilibrium
phase transition occurs at the critical fragmentation rate
λc = 1. The average total number of polymers, Ntot,
grows algebraically with the system size N ,

Ntot ∼ Nγ with γ =
2λ

2 + λ
, (4)

when fragmentation is weak, λ < λc. The total number
of polymers grows sub-linearly with the system size be-
cause γ < 1. Moreover, large polymers are likely as the
polymer size distribution has a broad algebraic tail. The
system develops this non-thermodynamic state through
a gelation transition. We probe this gelation using mo-
ments of the size distribution.

In contrast, the system reaches an ordinary steady
state when the fragmentation process is strong. The av-
erage total number of polymers is proportional to the
system size, Ntot = (1 − λ−1)N , when λ > λc. Large
polymers become rare since the polymer size distribution
has a sharp exponential tail.

Interestingly, even though the polymerization pro-
cess is reversible because the underlying aggregation
([i] + [j] → [i + j]) and fragmentation ([i + j] → [i] + [j])
processes perfectly mirror each other and none of the
transition rates (3) vanish, the breakdown of detailed
balance leads to a remarkable phase transition involv-
ing a non-thermodynamic phase where the number of
polymers is not proportional to the system size and a
thermodynamic phase where the number of polymers is
proportional to the system size.

The rest of this paper is organized as follows. The
thermodynamic steady states that occur under strong
fragmentation are examined in the next section, while
the non-thermodynamic steady states that emerge when
fragmentation is weak are analyzed in section III. The
gelation transition is probed using the moments of the
size distribution in section IV. Monte Carlo simulation
results validating the theoretical predictions for the non-
thermodynamic phase are detailed in section V. We
discuss the results and several open-ended questions in
section VI. Appendices A–C contain several technical
derivations.

II. THERMODYNAMIC PHASE

Our focus is the steady state behavior and in particu-
lar, the stationary polymer size density ck that satisfies

1

2

∑

i+j=k

ij cicj − k ck = −λ
∞
∑

j>k

cj +
λ

2
(k − 1)ck. (5)

This steady state equation is obtained by substituting the
aggregation and fragmentation rates (3) into the station-
ary master equation (1). At the steady state, changes due
to aggregation, represented on the left hand side, balance
changes due to fragmentation, represented on the right
hand side. Since both aggregation and fragmentation do
not alter the total mass, the overall mass density

∑

k kck

is a conserved quantity, as follows from the rate equation
(1). We conveniently set the normalization

∑

k kck = 1
without loss of generality.

The total polymer density M0 =
∑

k ck is the most
elementary probe for the state of the system. At the
steady state, this quantity satisfies

1

2
=

λ

2
(1 − M0) , (6)

an equation obtained by summing (5) and by using the
identity

∑

k

∑

j≥k cj =
∑

j cj

∑

k<j 1 =
∑

j(j − 1)cj and

the normalization condition
∑

k kck = 1. The total den-
sity is non-zero

M0 = 1 − λ−1, (7)

when the fragmentation rate is sufficiently strong, λ > 1.
We focus on this strong fragmentation regime in the rest
of this section.

Let us assume that the system is large but finite with
a total mass equal N , a state that can be achieved by
starting with N monomers, for example. The expected
total number of polymers, Ntot = N

∑

k ck = NM0 is
proportional to the system size N , and therefore, the
system is in a thermodynamic state.

The polymer size density can be calculated by utilizing
the recurrent nature [27] of Equation (5). For instance,
the monomer and the dimer densities are

c1 =
λ − 1

λ + 1
, (8a)

c2 =
(λ − 1)(3λ + 1)

(λ + 1)2(3λ + 4)
. (8b)

In general, the polymer size density is finite in the ther-
modynamic phase, λ > 1. Very large polymers are rare
since the size distribution decays exponentially

ck ' Ak−5/2 e−ak, (9)

when k → ∞. This result is derived in Appendix B.
When fragmentation is extremely strong, the system

consists primarily of monomers: c1 = 1 + O(λ−1) and
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c2 = λ−1 + O(λ−2) when λ → ∞. The leading asymp-
totic behavior can be obtained exactly in this strong frag-
mentation limit,

ck ' kk−2

k!

(

2

λ

)k−1

, (10)

for all k. This expression, obtained in Appendix C, is
compatible with the generic exponential tail (9).

The near-critical behavior

The total density, the monomer density, and the dimer
density all vanish near the transition point, M0 ' (λ−1),
c1 ' 1

2 (λ−1), and c2 ' 1
7 (λ−1) as λ → 1. This behavior

suggests the perturbative approach,

ck = ε bk (11)

with the small parameter ε = λ − 1. The first two co-
efficients are b1 = 1

2 and b2 = 1
7 . We substitute this

form into the stationary equation (5) and observe that
the nonlinear aggregation term ∝ ε2 is negligible. Conse-
quently, to leading order, the polymer size density obeys
the linear recursion equations

k bk =
∞
∑

j=k+1

bj −
1

2
(k − 1)bk, (12a)

(k + 1)bk+1 =

∞
∑

j=k+2

bj −
1

2
k bk+1. (12b)

The second equation is obtained from the first by an in-
dex shift. We subtract the two equations and obtain a
recursion relation for the coefficients bk,

bk+1

bk
=

k − 1
3

k + 4
3

. (13)

The coefficients can be conveniently expressed as a ratio
of Gamma functions, bk ∝ Γ(k − 1/3)/Γ(k + 4/3), by
using the identity Γ(x + 1)/Γ(x) = x. The polymer size
density is therefore

bk =
1

2

Γ( 7
3 )

Γ( 2
3 )

Γ(k − 1
3 )

Γ(k + 4
3 )

, (14)

where the proportionality constant is set by b1 = 1
2 .

Near criticality, the size density is algebraic,

ck ∼ ε k−5/3, (15)

over a substantial range, k ¿ k∗. This result follows from
(14) and limx→∞ xaΓ(x)/Γ(x + a) = 1. Therefore, the
likelihood of finding large polymers becomes substantial
as the phase transition point is approached. The cutoff

scale k∗, set by mass conservation,
∑k∗

k=1 kck = 1, is
divergent

k∗ ∼ ε−3 . (16)

The size distribution is sharply suppressed according to
(9) beyond this scale. Using the relation A ∼ a−1/2,
derived in appendix B, and a ∼ k−1

∗ we deduce that

ck ∼ ε−3/2k−5/2e−const×ε3 k (17)

for k À k∗. Indeed, this large size behavior matches the
small size behavior (15) at the crossover scale (16). We
conclude that the convolution term, that accounts for the
creation of very large polymers from smaller polymers, is
relevant only at very large scales, k À k∗. Otherwise,
this term does not affect the density of small polymers.

For completeness, we mention that the leading asymp-
totic behavior of the moments, Mn =

∑

k knck, readily
follows from the density (15) and the cutoff (16),

Mn ∼
{

ε−3(n−1) n > 2/3

1 n < 2/3.
(18)

Sufficiently large order moments diverge in the vicinity of
the transition point, a consequence of the algebraic tail
(15). The low order moments are finite, however.

III. NON-THERMODYNAMIC PHASE

As the critical point is approached, the nonlinear con-
volution term in (5) becomes irrelevant over the divergent
scale (16). By continuity, we deduce that the convolution
term is negligible when λ < 1. Consequently, the station-
ary distribution obeys the linear equation

k ck = λ





∞
∑

k=1

ck −
k
∑

j=1

cj



− λ

2
(k − 1)ck (19)

when λ < 1. We introduce the normalized size density,
ρk = ck/

∑

k ck, with
∑

k≥1 ρk = 1. With this transfor-

mation, the stationary equation (19) becomes

k ρk = λ



1 −
k
∑

j=1

ρj



− λ

2
(k − 1)ρk. (20)

The monomer and dimer densities follows immediately,

ρ1 =
λ

1 + λ
, (21a)

ρ2 =
2λ

(1 + λ)(4 + 3λ)
. (21b)

The normalized densities undergo a phase transition at
λc = 1, as shown in figure 1. The fraction of monomers
is not affected by the convolution term and (21a) holds
for all λ. However, the dimer density (21b) differs from

the expression ρ2 = λ(1+3λ)
(1+λ)2(4+3λ) for λ < 1 implied by

(8b) and (7). Similarly, the normalized size densities ρk

exhibit a phase transition for all k > 1.
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FIG. 1: The normalized dimer density ρ2 versus the normal-
ized monomer density ρ1. The phase transition at λc = 1 is re-
flected by the discontinuity in the first derivative at ρ1 = 1/2.

Generally, we recast Eq. (20) into the following recur-
sion for the normalized densities

ρk+1

ρk
=

k − λ
2+λ

k + 2(1+λ)
2+λ

. (22)

This recursion is obtained by repeating the steps
leading to (13). Again, we express the nor-
malized densities as a ratio of Gamma functions,

ρk ∝ Γ(k − λ
2+λ )/Γ(k + 2(1+λ)

2+λ ). The monomer density

(21a) sets the proportionality constant and hence,

ρk =
λ

1 + λ

Γ
(

1 + 2(1+λ)
2+λ

)

Γ
(

1 − λ
2+λ

)

Γ
(

k − λ
2+λ

)

Γ
(

k + 2(1+λ)
2+λ

) . (23)

The size density has an algebraic tail,

ρk ∼ k−β with β =
2 + 3λ

2 + λ
, (24)

as k → ∞, thereby implying that large polymers are
likely. The decay exponent 1 < β < 5/3 is not uni-
versal. Of course, this power-law behavior matches the
near-critical tail (17) since β → 5/3 when λ → 1.

The size density obeys ck ∝ ρk, and the N -dependent
proportionality constant is obtained from the mass con-

servation condition
∑N

k=1 kck = 1 where the upper limit
of integration is set by the system size. This sum is dom-
inated by the density of large polymers. By performing
the summation, we find that the polymer size density
depends on the system size

ck ∼ Nβ−2k−β . (25)

The total number of clusters Ntot ∼ N
∑

k ck grows sub-
linearly with the system size Ntot ∼ Nγ with γ = β−1 as
announced in (4). Therefore, the total polymer density,
M0 ∼ Nβ−2, depends on the system size in contrast with
the behavior when λ > 1. In deriving the steady state

equation (19), we assumed that the convolution term is
negligible. This assumption is consistent with the fact
that the amplitude Nβ−2 in (25) vanishes as the system
size diverges.

Moreover, the expected total number of polymer of size
k, Ck = Nck, is as follows, Ck ∼ Nγk−β with γ = 2λ

2+λ .
This steady state is not thermodynamic! The number of
polymers is much smaller then the system size, yet the
number of polymers still diverges with the total mass: Ck

grows sub-linearly with the system size because γ < 1.
For irreversible polymerization, λ = 0, all mass even-

tually ends up in a single giant polymer, as reflected by
the characteristic exponent γ = 0. The total number of
polymers still grows sub-linearly, Ntot ∼ N2/3, when the
critical point is approached, λ → 1.

In the thermodynamic phase, all polymers are finite
in size. Indeed, the exponential tail behavior (9) im-
plies that the largest polymers are finite in scale. Near
criticality, the scale of the largest polymers diverges ac-
cording to (16). In the non-thermodynamic phase, there
are polymers of all possible scales because the power-law
behavior (25) holds up to the system size ∝ N . Remark-
ably, there are polymers that contain a finite fraction of
all the mass in the system because according to (25), the
total number of macroscopic clusters, N

∑

k≥const.×N ck

is of the order one.
There are therefore very different behaviors in the two

phases. In the theormodynamic phase, there are many
small clusters. In the non-thermodynamic phase, there
are a few large clusters. A small number of macroscopic
clusters contain a fraction of the mass while the rest of
the mass is contained in clusters of all possible scales up
to the system size.

The power-law distribution (24) accounts for a compe-
tition between two fluxes. There is a flux of mass from
small scales to large scales that is generated by the aggre-
gation process and a flux from large scale to small scales
caused by fragmentation. The power-law behavior holds
for all scales, indicating that these two fluxes balance at
all intermediate scales. Similar competitions between the
fluxes occur in fluid turbulence [28], passive scalar advec-
tion [29], wave turbulence [30], granular gases [31], and
driven aggregation systems [32–34]. However, reversible
polymerization differs from these driven system in that
there is no external injection of mass to maintain the
steady-state.

IV. THE GELATION TRANSITION

We now study the approach toward the steady state
specified by the full master equation

dck

dt
=

1

2

∑

i+j=k

ij cicj − k ck + λ
∞
∑

j>k

cj −
λ

2
(k − 1)ck. (26)

Initially, there are only monomers, ck(t = 0) = δk,1.
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First, we consider the total polymer density M0 that
obeys the linear rate equation

dM0

dt
= −1

2
+

λ

2
(1 − M0). (27)

Subject to the initial condition M0(0) = 1, the total den-
sity is

M0 = 1 − λ−1 + λ−1 e−λt/2. (28)

Hence, the steady state (7) is approached exponen-
tially fast in the thermodynamic phase. Moreover, the
monomer and the dimer densities also relax exponentially
fast as in (28) and in general, the polymer size density
quickly approaches the steady state when λ > 1.

We focus on the kinetics in the more interesting non-
thermodynamic phase where the total polymer density
(28) vanishes at time t0 = 2

λ ln 1
1−λ . This behavior is

consistent with the vanishing total density, M0 ∼ Nβ−2,
implied by (25). Of course, the negative expression (28)
is invalid beyond the time t0.

The moments Mn =
∑

k knck provide a direct probe of
the kinetics. In the non-thermodynamic phase, the sys-
tem nucleates large macroscopic gels and consequently,
large moments diverge with the system size as follows
from (25). This, together with the vanishing overall den-
sity M0, indicates that the system undergoes a gelation
transition at a finite time. At the gelation time tg, a gi-
ant polymer or a gel emerges as is the case for irreversible
polymerization (λ = 0). From the master equation (26),
the moments evolve according to

dMn

dt
=

1

2

n−1
∑

m=1

(

n

m

)

Mm+1Mn+1−m − λ

2

n − 1

n + 1
Mn+1

+
λ

n + 1

n
∑

m=2

(

n + 1

m

)

BmMn+1−m (29)

where Bm are the Bernoulli numbers [35]. For example,
the second moment obeys dMn/dt = M2

2− λ
6 (M3−1). We

assume that large order moments diverge algebraically at
the gelation time, Mn ∼ (tg − t)−(an+b) for n ≥ 1, and
observe that the last term in the hierarchical equation
(29) is negligible compared with the rest of the terms.
We require that the time dependent term, the aggre-
gation term, and the remaining fragmentation term are
comparable and find that a = −b = 1. Hence,

Mn ∼ (tg − t)−(n−1) (30)

for n ≥ 1. Indeed, the moments diverge at a finite time.
The exponent n−1 characterizing this divergence is com-
patible with the near critical behavior (18). The diver-
gence (30) is different than the Mn ∼ (tg − t)−(2n−3)

behavior in irreversible fragmentation [23], and there-
fore, fragmentation quantitatively alters the nature of the
gelation transition.

We conclude that the solution to the master equation
(26) exhibits a finite time singularity. Even though we

can not obtain the gelation time tg exactly, relevant prop-
erties of the size density including the moments can still
be obtained analytically. In particular, the form of the
size density at the gelation time can be calculated by
balancing the fluxes of mass due to aggregation and frag-
mentation, following the scaling analysis in ref. [36].

Consider M (n), the total mass density of polymers with
size smaller then n,

M (n)(t) =

n
∑

k=1

kck(t). (31)

According to the master equation (26), this quantity
obeys

dM (n)

dt
=−

n
∑

i=1

∞
∑

j+i=n−1

i2jcicj +
1

2
λn(n+1)

∞
∑

j=n+1

cj . (32)

We now take the n → ∞ limit. The aggregation loss term
accounts for loss of finite size polymers to the infinitely
large gel while the fragmentation term accounts for the
balancing flux from the gel into small masses. We require
that the two fluxes balance at the gelation point. We
assume that at the gelation point, the size density decays
algebraically

ck(t = tg) ∼ k−τ , (33)

for k À 1, as is the case for irreversible polymerization
[24]. By dimensional counting, the aggregation flux term
scales as n5−2τ while the fragmentation flux scales as
n3−τ . The two fluxes balance when 5 − 2τ = 3 − τ and
as a result τ = 2. Therefore, ck(t = tg) ∼ k−2, a behav-
ior that is consistent with the aforementioned divergence
of the moments (30) when the power-law behavior (33)
holds up to a cutoff scale that diverges near gelation,
k ¿ (tg − t)−1.

The normalization condition
∑

k kck = 1 imposes the
exponent restriction τ > 2 but the heuristic argument
above yields precisely the marginal value τ = 2. We
therefore anticipate that there is a logarithmic correction
with the following form ck ∼ k−2(ln k)−µ. We substitute
this form into (32) and then, the aggregation term is of
the order n [ln n]1−2µ while the fragmentation term is of
the order n [ln n]−µ. Therefore, µ = 1, and [37]

ck ∼ k−2[ln k]−1 (34)

for k À 1. This decay is milder then the ck ∼ k−5/2

behavior found for irreversible polymerization [24], and
therefore, there are many more large clusters in reversible
polymerization.

The size of the largest gel at the gelation transition
follows immediately from the extreme statistics criterion,

N
∑kg

k=1 ck = 1. Remarkably, this size is nearly macro-
scopic in the size of the system,

kg ∼ N [ln N ]−1. (35)
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This gel size is much larger compared with the kg ∼ N2/3

behavior in reversible polymerization. This increased
scale enables the gel to withstand fragmentation. We
also comment that the nearly macroscopic size scale (35)
provides the appropriate cutoff in (31), n ∼ kg, and that
at the gelation point, the upward mass aggregation flux
and the downward mass fragmentation flux are nearly
macroscopic, that is, they are proportional to the system
size up to a logarithmic correction.

The critical case

For completeness, we discuss kinetics in the critical
case λ = 1 where the the cluster density (28) is purely
exponential, M0 = e−t/2. Similar decay characterizes the
leading behavior of the size density. For example, the
monomer density obeys dc1/dt = −c1 + (M0 − c1) and
consequently,

c1 =
2

3
e−t/2 +

1

3
e−2t. (36)

Only the first term is relevant asymptotically,
c1 ' 2

3 e−t/2. In general, ck ' uk e−t/2, and by
substituting this expression into the time dependent
master equation (26), we observe that the nonlinear
term is negligible. Consequently, the coefficients uk

satisfy the recursion equation

(

k − 1

2

)

uk =

∞
∑

j=k+1

uj −
1

2
(k − 1)uk. (37)

From this recursion, the coefficients uk satisfy uk+1/uk =
(k− 2/3)/(k + 1). Therefore, the leading behavior of the
size density is as follows

uk =
2

3Γ( 1
3 )

Γ(k − 2
3 )

Γ(k + 1)
. (38)

The tail of the size density matches the near critical be-
havior (15), ck ∼ e−t/2k−5/3.

V. NUMERICAL SIMULATIONS

We performed numerical simulations to validate the
theoretical predictions. Below, we present results for the
non-thermodynamic phase.

The simulations were performed by starting with N
monomers and were carried by repeating the following
Monte Carlo step. At each step, the total aggregation
rate Ra = 1

N

∑

i6=j sisj and the total fragmentation rate

Rf = 2
∑

i(si−1) are calculated where si is the size of the
ith polymer. Of course, both of these rates are propor-
tional to the system size, Ra ∝ Rf ∝ N . An aggregation
event is executed with probability Ra/(Ra + Rf ), while a
fragmentation event is executed with the complementary

probability Rf/(Ra + Rf ). In each aggregation event,
one polymer is chosen with probability proportional to
its size and is merged with another polymer, also chosen
with probability proportional to its size. In a fragmenta-
tion event, a polymer, randomly chosen with probability
proportional to the number of its bonds, is randomly split
into two smaller polymers. Time is updated by the in-
verse of the total rate t → t + (Ra + Rf )−1 after each
Monte Carlo step. As a check, we successfully reproduced
the total polymer density (7).

In the non-thermodynamic phase, the system under-
goes a gelation transition and then relaxes to the steady
state. We run the simulations until the system relaxed to
the steady state and then obtained the size distribution
from a long series of measurements to reduce statistical
fluctuations. The simulations results are for systems of
size N = 105. We present results for the normalized den-
sities ρk predicted in (23). Overall, there is very good
agreement between the theoretical predictions and the
simulation results as shown in figure 2. The size distri-
bution agrees with (23) and the tail of the distribution
follows a power-law as in (24). The simulation results
agree with the theoretical results slightly better near the
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FIG. 2: The size distribution ρk versus k for λ = 0.9 (a) and
λ = 0.5 (b). The simulations results are for a system of size
N = 105.
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FIG. 3: Fluctuations in the total number of clusters. Shown
are the average number of clusters, 〈Ntot〉 and the variance,
σ2 = 〈N2

tot〉 − 〈Ntot〉
2 for λ = 0.5.

phase transition point (Figures 2a and 2b). Since the to-
tal number of clusters grows sub-linearly with the system
size, Ntot ∼ Nγ with γ < 1, extremely large systems are
needed to reduce the magnitude of the statistical fluctu-
ations. Such fluctuations are most pronounced at the tail
region where the discrepancy between the theory and the
simulation is a result of the limited system size.

To quantify fluctuations in the total number of poly-
mers, we also measured the variance σ2 = 〈N2

tot〉 −
〈Ntot〉2. We find that the fluctuations follow a central-
limit like behavior σ2 ∼ 〈Ntot〉 (figure 3) and therefore,

σ2 ∼ Nγ with γ =
2λ

λ + 2
(39)

as in (4).

VI. DISCUSSION

In summary, we studied stationary and dynamical
properties of reversible polymerization. We found an
interesting phase transition involving a thermodynamic
phase and a non-thermodynamic phase. When fragmen-
tation is strong, the system is in a thermodynamic phase
and the number of polymers is proportional to the sys-
tem size. The system includes a large number of small
polymers. When fragmentation is weak, the system is
in a non-thermodynamic phase as the total number of
polymers grows sub-linearly with the system size. In this
phase, there is a small number of large polymers since
the size distribution is power-law. Moreover, the poly-
mer sizes are distributed at all scales. Macroscopic gels
may exist as well.

In the thermodynamic phase, the system quickly ap-
proaches the steady state. The time-dependent behavior
is much richer in the non-thermodynamic phase. The

system exhibits a finite-time singularity: large moments
of the size distribution diverge at the finite gelation time.
At this time, the system nucleates macroscopic gels and
the size distribution follows a universal algebraic decay.
Past the gelation time, there is a second relaxation stage
leading the system to a state where there are two bal-
ancing fluxes of mass: aggregation transfers mass from
small scales to large scales and fragmentation transfers
mass from large scales to small scales. The stationary size
distribution is algebraic but the characteristic exponent
is not universal.

Even though the aggregation process is described by
non-linear terms, the analysis in the non-thermodynamic
phase involves linear equations because the aggregation
gain term is relevant only at the largest scale. Neverthe-
less, formation of gels at the largest possible scale (in our
case, the system size) is crucial in maintaining a station-
ary state. Understanding the distribution of macroscopic
gels is an open challenge, and our numerical simulations
reveal an interesting anomaly with an enhancement of the
population of macroscopic gels over the algebraic distri-
bution (25) at the maximal scale.

Missing from our calculations is a finite-size scaling
analysis [38–41] near the phase transition point. In-
terestingly, the total number of clusters grows sub-
linearly, Ntot ∼ C(λ)N2/3, just below the phase tran-
sition point, but linearly just above the phase transition
point, Ntot ∼ (λ − 1)N . Therefore, the amplitude C(λ)
may very well be divergent, and moreover, there must
be an intermediate range of fragmentation rates centered
around the critical point with a smooth crossover be-
tween the two phases. The width of this transition region
should vanish as the system size increases.

Understanding fluctuations is another interesting di-
rection for further research. We find Gaussian fluctua-
tions in the thermodynamic phase and are able to com-
pute the variance σ2 = 2

λN but we are unable to obtain
(39) in the non-thermodynamic phase.

We also checked that the same phase transition gener-
ally holds as long as the aggregation rate is asymptoti-
cally proportional to the molecular weights; for instance,
when Kij = Aij + B(i + j) + C, a class of models that
often arise in polymer chemistry [3, 4]. A more com-
plete characterization of phase transitions in reversible
polymerization is another avenue for future work.

Finally, another challenge is to understand the behav-
ior in low spatial dimensions and in particular, to inves-
tigate the nature of the gelation transition as well as the
nature of the nonequilibrium steady state.
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APPENDIX A: DETAILED BALANCE

In this appendix, we demonstrate that the detailed bal-
ance equations (2) do not generally have a solution. The
size densities ck satisfy

K11c
2
1 = F11c2

K12c1c2 = F12c3

K13c1c3 = F13c4

K22c
2
2 = F22c4

(A1)

for k = 1, 2, 3, 4. The dimer density and the trimer den-
sity are uniquely expressed in terms of the monomer den-
sity,

c2 =
K11

F11
c2
1, c3 =

K11

F11

K12

F12
c3
1. (A2)

However, there are two expressions for the 4-mer density

c4 =
K11

F11

K12

F12

K13

F13
c4
1 c4 =

(

K11

F11

)2
K22

F22

c4
1. (A3)

These two are identical only when the aggregation and
the fragmentation rates satisfy the constraint

K12

F12

K13

F13
=

K11

F11

K22

F22
. (A4)

Therefore, the detailed balance equations (2) have a solu-
tion only for special aggregation and fragmentation rates.
The constraint (A4) reflects the fact that there are mul-
tiple paths between two states of the system. For ex-
ample, a 4-mer may be formed by two dimers or by a
trimer and a monomer. The detailed balance condition
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(2) requires that the fluxes between any two states of
the system balance along all possible paths. This con-
dition leads to constraints of the type (A4). The rates
(3) violate the constraint (A4) as well as infinitely many
other constraints. We conclude that in general, the de-
tailed balance equations are overdetermined — there are
infinitely many constraints like (A4), and a solution does
not necessarily exist.

APPENDIX B: LARGE-SIZE ASYMPTOTICS

We analyze the large-size asymptotic behavior of the
polymer size-density in the thermodynamic phase by in-
troducing the generating function

G(z) =
∑

k

ck ekz. (B1)

The generating function obeys the differential equation

(G′)2

2
− G′ = λ

G − M0e
z

1 − ez
− λ(G − G′)

2
(B2)

where ′ ≡ d
dz as follows from (5). Next, we shift the

generating function by the total density

G(z) = M0 + F (z), (B3)

where M0 is given by (7). With this transformation, the
differential equation (B2) becomes

(F ′)2 − (2 + λ)F ′ + 1 − λ + λF
ez + 1

ez − 1
= 0. (B4)

By solving this quadratic equation for F ′ we find

F ′(z) = 1 +
λ

2
−
√

Φ(z) (B5)

with the shorthand notation

Φ(z) =
1

4
λ2 + 2λ − λF (z)

ez + 1

ez − 1
. (B6)

The asymptotic behavior of the size density follows
from the singular behavior of the generating function.
For instance, the asymptotic behavior

ck ' Ak−α e−ak (B7)

implies that the generating function has the following
expansion

G(z) = G(a) + G′(a)(z − a) + AΓ(1− α)(a− z)α−1 + . . .
(B8)

when z → a. Here, it is implicitly assumed that
2 < α < 3. By differentiating this equation and by us-
ing G′ = F ′, we further obtain

F ′(z) = F ′(a) + AΓ(2 − α)(a − z)α−2. (B9)

We now choose a to be the root of Φ(z), Φ(a) = 0, and
as a result, equation (B5) becomes

F ′(z) = 1 +
λ

2
−
√

−Φ′(a) (a − z)1/2 + . . . (B10)

when z → a. We obtain F ′(a) = 1 + λ/2 by matching
the regular terms in (B9) and (B10), and

α = 5/2, AΓ(−1/2) = −
√

−Φ′(a) (B11)

by matching the singular terms. Therefore, the asymp-
totic behavior is (9).

The amplitude A can be expressed in terms of Φ′(a).
Differentiation of equation (B6) yields

Φ′(z) = −λ

[

F ′(z)
ez + 1

ez − 1
− 2F (z)

ez

(ez − 1)2

]

. (B12)

We next set z = a and use

F ′(a) = 1 +
λ

2
, 2F (a)

ea + 1

ea − 1
= 4 +

λ

2
, (B13)

that follows from (B6) and Φ(a) = 0 to obtain

Φ′(a) = −λ

2

[

(2 + λ)
ea + 1

ea − 1
− (8 + λ)

ea

e2a − 1

]

. (B14)

By using equations (B11) and (B14) together with the

identity Γ(−1/2) = −2Γ(1/2) = −
√

4π we obtain a rela-
tion between the amplitude A and the constant a,

A =

√

λ

8π

ea + 1

ea − 1

[

2 + λ − (8 + λ)
ea

(ea + 1)2

]

. (B15)

In particular, A '
√

3/(16πa), when λ → 1.

APPENDIX C: EXTREMELY STRONG

FRAGMENTATION

The leading asymptotic behavior in the strong frag-
mentation limit, λ → ∞, can be obtained analytically.
The steady state equation (5) shows that c1 = 1+O(λ−1)
and c2 = λ−1 + O(λ−2), and that in general,

ck '
(

2

λ

)k−1

hk (C1)

when λ → ∞.
To leading order, this form is consistent with the gov-

erning equation (5) when the coefficients hk satisfy the
recursion equation

(k − 1)hk =
1

2

∑

i+j=k

ijhihj . (C2)

The first two coefficients are h1 = 1 and h2 = 1/2.
We solve this recursion using the generating equation
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H(z) =
∑

k khkekz. Next, we multiply (C2) by kekz and
sum over all k to find that the generating function satis-
fies the nonlinear differential equation

H ′ − H = HH ′. (C3)

We now integrate this equation and find the implicit so-
lution He−H = ez. The explicit solution

H(z) =

∞
∑

k=1

kk−1

k!
ekz (C4)

follows from the Lagrange inversion formula [42]. There-

fore, the coefficients are hk = kk−2/k! and the leading
asymptotic behavior is (10). The large-size asymptotic
behavior

ck =
e√
2π

k−5/2

(

2e

λ

)k−1

, (C5)

when k À 1, obtained using the Stirling formula
n! ∼

√
2πnnne−n, is consistent with the generic asymp-

totic behavior (9).


