UNITED STATES DEPARTMENT OF COMMERCE • John T. Connor, Secretary U.S, NATIONAL BUREAU OF STANDARDS • A. V. Astín, Director 11

## Copper Wire Tables

Office of Engineering Standards Institute for Applied Technology<br>National Bureau of Standards Washington, D.C. 20234



# National Bureau of Standards Handbook 100 

.Issued February ${ }_{\text {i }}$ 21, 1966
[Supersedes Circular 31]

$$
T K 3307 . U 6
$$

```
LIBRARX
NAVAL POSMRRADUATE SCHOW
```



## Foreword

This Handbook is a revision of the Copper Wire Tables previously published as NBS Circular 31. It reflects changes in the nominal diameters of gages 45 and smaller and extends the tables to 56 gage. The changed diameters and extended range were established in 1961 by the Committee on Wires for Electrical Conductors of the American Society for Testing and Materials and were published as ASTM Standard B258-61. They have also been approved as American Standard C7.36-1961 by the American Standards Association. To reduce internal inconsistencies, tables 5 through 14 were completely recomputed by the ASTM Committee on Wires for Electrical Conductors.

The first edition of Circular 31 was published in 1912 at the request of the American Institute of Electrical Engineers. Subsequent editions appeared in 1914 and 1956. The Bureau is pleased to have the continuing opportunity to increase the usefulness of the Copper Wire Tables by providing the publication outlet.
A. V, Astin, Director

## Contents

Part I. Historical and Explanatory

1. Introduction
Page
1.1. Standard values for c o p p e r - ..... 2
a. Resistivity of annealed' copper ..... 3
b. .Temperature coefficient of resistance of copper4
d. . Density of copper ..... 4
e. Resistivity of hard-dram copper wire ..... 4
if. Highest conductivity found
if. Highest conductivity found ..... 5. ..... 5.
1.2. Status of International. Annealed Copper Standard. ..... 5
2. . The, American Wire Gage ..... 6
3. General use of the.American Wire Gage .....  6.
4. Characteristics of the American Wire Gage ..... 6
5. Wire-table shortcuts ..... 6
6. Explanation of tables. ..... 8
Part II. Tables
7. The American Wire Gage ..... $12^{\prime}$
2:. Various standard values for the resistivity, temperature coefficient, and density, of annealed copper ..... 14:
8. Temperature coefficients, of copper for different initial temperatures and different conductivities ..... 14
9. ,Reduction of observations to standard temperature ..... 15
10. ""Complete table at $20^{\circ} \mathrm{C}$, English units. ..... 16
11. Ohms per 1,000 feet, $\mathbf{0}$ to $200^{\circ} \mathrm{C}$ ..... 17
12. Feet per pound, pounds per 1,000 feet, feet per ohm 0 to $200{ }^{\circ} \mathrm{C}$. ..... 18
13. Ohms per pound 0 to $200^{\circ} \mathrm{C}$ ..... 19
14. Pounds per ohm 0 to $200^{\circ} \mathrm{C}$ ..... 21
15. Complete table at $20^{\circ} \mathrm{C}$, Metric units ..... 23
16. Ohms per kilometer, $\mathbf{0}$ to $200{ }^{\circ} \mathrm{C}$ ..... 24
17. Kilograms per kilometer, meters per gram, meters per ohm 0 to $200{ }^{\circ} \mathrm{C}$ ..... 25
18. Ohms per kilogram 0 to $200^{\circ} \mathrm{C}$ - ..... 26
19. Grams per ohm 0 to $200{ }^{\circ} \mathrm{C}$ ..... 28
20. British standard wire gage. ..... 30
21. "Millimeter" wire gage ..... 31
22. Bare concentric-lay cables of standard annealed copper, English units ..... 32
23. Bare concentric-lay stranded conductors of standard annealed copper, Metric units ..... 33
24. Conversion table for resistivities ..... 34
Part III. Appendixes
25. Expression of resistivity ..... 34
26. Calculation of the resistivity-temperature constant ..... 35
27. Density of copper ..... 36
28. Calculation of the resitance and mass per unit length of cables ..... 37
29. Publication 28 of the International Electrotechnical Commission.--"Inter- national Standard of Resistance for Copper' ..... 39

# Copper Wire Tables PART 1. HISTORICAL AND EXPLANATORY 

\author{

1. Introduction
}

This Handbook was first prepared and issued as Circular 31, April 1, 1912 at the request of the Standards Committee of the American Institute of Electrical Engineers. The tables given herein are based upon standard values for the resistivity, temperature coefficient, and density of copper as adopted in 1913 by the International Electrotechnical Commission and disseminated as their Publication No. 28. In the year 1925, a revised edition of that publication was issued. The revision in no way affected the standard values but was intended as clarification of some parts of the original edition. In 1948, pursuant to the decisions of the International Committee on Weights and Measures, the International Ohm was discarded and replaced by the "Absolute Ohm". The result of this change in units would have been a change in the values in most of these tables by about one part in two thousand. However, the IEC decided at their 1950 meeting ${ }^{1}$ that the numerical value for the standard of resistivity which they had adopted in 1913 would be retained and was in the future to be in terms of the new unit of resistance. As a result of this action, it was unnecessary to change values in the tables, but the quality of "standard copper" was thereby slightly improved. This change of 0.05 percent is of little practical significance.

The experimental data upon which the International Standard for Copper is based were obtained over 50 years ago for commercial wire, mostly of American manufacture. Since that time there have been many technological advances in wire-mill practice. However, it is believed that these changes have had little effect on the electrical properties of the wires produced, and the IEC standard is still representative of copper wire produced for electrical uses. On a small scale, wire of high purity has been produced having a conductivity of slightly over 103 percent, and a density of over 8.95 $\mathrm{g} / \mathrm{cm}^{3}$ at $20^{\circ} \mathrm{C}$. These values are probably very near the upper limit which would be obtained for copper without any impurity. It is surprising that in routine commercial manufacture the product approaches in quality so nearly its theoretical limit.

[^0]The tables given in this Handbook are based on the American Wire Gage (formerly Brown \& Sharpe Gage). This gage has come into practically universal use in this country for the gaging of wire for electrical purposes, It should be emphasized that wire gages are set up for the convenience of manufacturers and users of wire. There is no natural or scientific basis for such tables and they may be set up in any arbitrary way, the best table being the one which most nearly fits the needs of its users.

For the American Wire Gage two arbitrarily selected diameters are exact whole numbers. The other sizes are calculated from these, and the values are then rounded off to a reasonable number of significant figures. The values given in the various tables for other quantities derived from the diameters may be calculated either from these rounded off values or from the more accurate values. The tabulated values must be rounded off regardless of whether exact or rounded-off values for diameters are used in their calculation. Whatever the method of rounding off, inconsistencies are inevitably introduced. Thus values listed in the tables can seldom be calculated exactly from the listed gage diameters. The inconsistencies may be made negligible by using a large number of significant figures throughout, but this makes the tables cumbersome and somewhat inconvenient to use.

In 1961, the American Society for Testing and Materials and the American Standards Association adopted a revision of nominal diameters of the American Wire Gage for gages 45 through 50 and extended the range of sizes to 56 gage. The diameters, which are published as ASTM Standard B 258-61 and American Standard C7.36-1961, are rounded to the nearest tenth of a mil for gages 0000 through 44 and to the nearest hundredth of a mil for gages 45 through 56 . The tables in the Circular were calculated as if these rounded diameters were correct. This, in effect, specifies the American Wire Gage as a certain set of numbers rather than values to be calculated by a specified formula. However, as pointed out previously, there is no objection from a theoretical point of view to such a procedure.

### 1.1 Standard Values for Copper

Copper wire tables are based on certain standard values for the density, conductivity or resistivity, and the temperature coefficient of resistance of copper. When accuracy is important, the electrical engineer does not consult the wire table, but makes actual measurements of samples of the copper used. Frequently the resulting conductivity is expressed in percentage of the standard value assumed for conductivity. "Percentage of conductivity" is meaningless without a knowledge of the standard value assumed, unless the same standard value is in use everywhere. But the standard value was not formerly the same everywhere, as may be seen by inspection of table 2, page 14 , and confusion in the expression of percent conductivity accordingly resulted. The temperature coefficient of resistance is usually assumed as some fixed standard value, but this standard value likewise was not formerly the same everywhere, and results reduced from one temperature to another had accordingly been uncertain when the temperature coefficient was not stated. These conditions led the Standards Committee of the American Institute of Electrical Engineers to request the National Bureau of Standards to make an investigation of the subject. This was done and resulted in the establishment of standard values based on measurements of a large number of representative samples of copper - values which in certain respects were more satisfactory than any preceding standard values. The investigation is described below. This study finally led in 1913 to the adoption of an international copper standard by the International Electrotechnical Commission.

The main objects of the investigation at the National Bureau of Standards were, (1) to determine a reliable average value for the resistivity of commercial copper, and (2) to find whether the temperature coefficients differ from sample to sample, and if so to find whether there is any simple relation between the resistivity and the temperature coefficient. The results of the investigation were presented in two papers in volume 7, No. 1, of the Bulletin of the Bureau of Standards: "The Temperature Coefficient of Resistance of Copper," and "The Electrical Conductivity of Commercial Copper" (abstracts of which were given in Proc. Am. Inst. Elec. Engrs., 29 p. 1995 and 1981; Dec. 1910). The results of the investigation and of the subsequent endeavor to establish international standard values are briefly summarized here.

## a. Resistivity of Annealed Copper

For annealed samples representing the copper of 14 important refiners and wire manufac-
turers, measured at the National Bureau of Standards, the mean results were:

Resistivity ${ }^{2}$ in ohm-gram/meter ${ }^{2}$ at $20{ }^{\circ} \mathrm{C}$ $=0.152$ 92. The average deviation from this mean of the results from the various sources of samples was 0.26 percent.

The results of a large collection of data were also put at the disposal of the Bureau by the American Brass Company. For samples representing more than $100,000,000$ pounds of wirebar copper, the mean results were:

Resistivity, in ohm-gram/meter ${ }^{2}$ at $20{ }^{\circ} \mathrm{C}$ $=0.15263$.

Both of these mean values of mass resistivity differed from the then used standard value, 0.153022 ohm-gram $/$ meter $^{2}$, by less than 0.26 percent, which is the above average deviation from the mean. It was therefore concluded that it would be best to continue the use of said standard value for the mass resistivity of annealed copper in the preparation of wire tables and in the expression of percent conductivity, etc. Accordingly, the previously used standard resistivity at $20^{\circ} \mathrm{C}$, together with the temperature coefficient determined in the investigation (giving the values tabulated in column 7, table 2), were adopted and used as standard by the NBS and by the American Institute of Electrical Engineers for a year or more. The results of the investigation were put before the engineers of other countries, and an endeavor was made to have an international value adopted. A proposal from Germany of a value differing slightly from the American standard value was considered a suitable basis for an international standard, and the proposed value was finally adopted by the International Electrotechnical Commission in 1913. The new value is known as the International Annealed Copper Standard, ${ }^{3}$ and is equivalent to
0.15328 ohm-gram/meter ${ }^{2}$ at $20{ }^{\circ} \mathrm{C}$.

This mass resistivity is one-sixth percent greater than the former American standard value (column 7, table 2), and is one-third percent greater than 0.15278 , the mean of the experimental values published by the National Bureau of Standards, and given in the preceding paragraph. The International Annealed Copper Standard can therefore be considered as fairly representative of average commercial copper. One of the advantages of this particular value is that in terms of volume conductivity it is an exact whole number, viz,

58 meter/ohm-mm ${ }^{2}$ at $20^{\circ} \mathrm{C}$.

[^1]The units of mass resistivity and volume resistivity are interrelated through the density; this was taken as $8.89 \mathrm{grams} / \mathrm{cm}^{3}$ at $20^{\circ} \mathrm{C}$, by the International Electrotechnical Commission. The International Annealed Copper Standard, in various units of mass and volume resistivity, is:

| 0.15328 | ohm-gram/meter ${ }^{2}$ at 20 |
| :---: | :---: |
| 875.20 | ohm-pound/mile ${ }^{\text {a }}$ at $20^{\circ} \mathrm{C}$ |
| 0.017241 | ohm-mm ${ }^{2} /$ meter at 20 |
| 1.7241 | microhm-cm at 20 |
| 0.67879 | microhm-inch at $20{ }^{\circ} \mathrm{C}$, |
| 10.371 | ohm-circular mil/ft at $20^{\circ} \mathrm{C}$. |

b. Temperature Coefficient of Resistance of Copper

While a standard resistivity is properly decided arbitrarily, the value of the temperature coefficient is a matter for experiment to decide. The National Bureau of Standards' investigation of the temperature coefficient showed that there are variations of the temperature coefficient with different samples, but that the relation of conductivity to temperature coefficient is substantially a simple proportionality. This relation is in corroboration of the results of Matthiessen ${ }^{4}$ and others for differences in conductivity due to chemical differences in samples; but this investigation showed that it holds also and with greater precision for physical differences, such as those caused by annealing or hard-drawing. Further evidence in regard to this relation were obtained informally from the Physikalisch-Technische Reichsanstalt, of Germany. The results of tests at that institution showed this relation for a wide range of conductivity, and the mean values agreed well with those obtained at NBS. The results obtained at NBS showed that, for copper samples of conductivity above 94 percent, the actual temperature coefficients agreed with the values calculated from the conductivities within 0.00001 , i. e., about 0.3 percent as the coefficients are of the order of 0.0039 . Tests made in 1913 by Geo. L. Heath, chief chemist of the Calumet \& Hecla Smelting Works, showed that the law of proportionality holds over a much wider range of conductivity. He found that for 19 samples of cast copper whose only important impurity was arsenic (besides the usual trace of oxygen), and whose conductivity ranged from 94 to 30 percent, the actual temperature coefficients agreed with the values calculated from the conductivities within 0.000 1. The general law, then, may be expressed in the form of the following practical rule: The $20^{\circ} \mathrm{C}$ temperature coefficient of a sample of copper is given by multiplying the decimal number expressing the percent conductivity by 0.003 93. This relation between conductivity and temperature coefficent cannot,

[^2]of course, be expected to apply to all types of copper alloys. For copper wires prepared by reputable manufacturers for use as electrical conductors, it may be relied upon with a considerable certainty. The practical importance of this rule is evident, for it gives the temperature coefficient of any sample when the conductivity is known. Thus, the temperature coefficient for the range of conductivity of commercial copper is shown in table 3, p. 13. Also, there are sometimes instances when the temperature coefficient is more easily measured than the conductivity, and the conductivity can be computed from the measured temperature coefficient. (The value, 0.003 93, is slightly different from the value given in Vol. 7, No. 1; of the Bulletin of the Bureau of Standards. This difference is necessitated by the change to a new standard of resistivity.)

Instances sometimes arise in practice where a temperature coefficient of resistance must be assumed. It may be concluded from the foregoing results that the best value to assume for the temperature coefficient of good commercial annealed copper wire is that corresponding to 100 percent conductivity, viz:

$$
\begin{gathered}
\alpha_{0}=0.004 \text { 27, } \alpha_{15}=0.00401, \alpha_{20}=0.00393, \\
\alpha_{25}=0.00385, \text { etc. } \\
{\left[\alpha_{20}=\frac{R_{\mathrm{t}}-R_{20}}{R_{20}(t-20)}, \text { etc. }\right]}
\end{gathered}
$$

This value was adopted as standard by the International Electrotechnical Commission in 1913. It would usually apply to instruments and machines, since their windings generally are of annealed copper wire. It might be expected that the act of winding would reduce the temperature coefficient, but experiment has shown that distortions such as those caused by winding and ordinary handling do not appreciably affect the temperature coefficent, although they may slightly affect the resistance.

Similarly, when an assumption is unavoidable, the temperature coefficient of good commercial hard-drawn copper wire may be taken as that corresponding to a conductivity of 97.5 percent, viz:
$\alpha_{0}=0.00415, \alpha_{20}=0.00383, \alpha_{25}=0.003$ 76, etc.
The change of resistivity per degree may be readily calculated, as shown in appendix 2 , page 35, taking account of the expansion of the metal with rise of temperature. The proportional relation between temperature coefficient and conductivity may be put in the following remarkably convenient form for reducing resistivity from one temperature to another: The change of resistivity of copper per degree is a constant, independent of the temperature of reference and of the sample of copper. This
'kesistivity-temperature constant' may be taken, for general purposes, as 0.00060 ohmgram/meter ${ }^{2}$ per ${ }^{\circ} \mathrm{C}$, or 0.0068 microhm-cm per ${ }^{\circ} \mathrm{C}$. More exactly (see p. 35) it is, per degree C :

0.000597 ohm-gram/meter:<br>or, 3.41 ohm-pound $/$ mile $^{2}$<br>or, 0.0000681 ohm-mm'/meter<br>or, 0.00681 microhm-cm<br>or, 0.00268 microhm-inch<br>or, 0.0409 ohm-circular mil/ft.

The International Electrotechnical Commission specified the temperature coefficient of standard copper to be 0.00393 at $20^{\circ} \mathrm{C}$, for the resistance between points fixed on a wire which is allowed to expand freely. This value is based upon measurements made at the NBS by Dellinger ${ }^{6}$ in the intervals 10 to $100{ }^{\circ} \mathrm{C}$. Over this temperature interval the temperatureresistance curve was found to be linear. In 1914 Northrup ${ }^{6}$ published data on a sample of copper, of 99.4 percent conductivity, from $20^{\circ} \mathrm{C}$ to above its melting point. He found the resistance-temperature curve to be linear to about $500{ }^{\circ} \mathrm{C}$, with the resistance rising slightly faster than the first power of temperature above $500{ }^{\circ} \mathrm{C}$.
W. F. Roeser of the Bureau obtained the following unpublished data for a sample of high purity copper when heated in a vacuum; where $R_{t}$ and $R_{0}$ are the resistances at $t{ }^{\circ} \mathrm{C}$ and $0^{\circ} \mathrm{C}$, respectively.

| Temperature | ${ }^{\circ} \mathrm{C}$ |
| :---: | :---: |$\quad R_{\mathrm{t}} / R_{0}$

The graph for these data is a straight line between 0 and $300{ }^{\circ} \mathrm{C}$ with a slightly upward curvature above $300{ }^{\circ} \mathrm{C}$. These results, together with those cited above seem to justify the assumption that has been made in calculating these tables that the resistance-temperature curve for copper is linear up to $200^{\circ} \mathrm{C}$, and probably in the interval - 100 to $+300^{\circ} \mathrm{C}$ to the accuracy to which the use of tables is justified.

## c. Calculation of Percent Conductivity

The percent conductivity of a sample of copper is calculated by dividing the resistivity of the International Annealed Copper Standard

[^3]at $20{ }^{\circ} \mathrm{C}$ by the resistivity of the sample at $20{ }^{\circ} \mathrm{C}$. Either the mass resistivity or volume resistivity may be used. Inasmuch as the temperature coefficient of copper varies with the conductivity, it is to be noted that a different value will be found if the resistivity at some other temperature is used. This difference is of practical moment in some cases. For example, suppose the resistivity of a sample of copper is 0.1597 at $20{ }^{\circ} \mathrm{C}$; dividing 0.15328 by this, the percent conductivity is 96.0 percent. Now the corresponding $0{ }^{\circ} \mathrm{C}$ resistivity of the sample is 0.1478 ; dividing 0.1413 by this, the percent conductivity is calculated to be 95.6 percent. In order that such differences shall not arise, the $20^{\circ} \mathrm{C}$ value of resistivity should always be used in computing the percent conductivity of copper. When the resistivity of the sample is known at some other temperature, $t$, it is very simply reduced to $20^{\circ} \mathrm{C}$ by adding the quantity, $(20-t)$ multiplied by the "resistivity-temperature constant" given above.

## d. Density of Copper

When it is desired to calculate the resistance of wires from dimensions, as in the calculation of wire tables, it is necessary that a density be given, in addition to the mass resistivity. The international standard density for copper, at $20^{\circ} \mathrm{C}$, is $8.89 \mathrm{~g} / \mathrm{cm}^{3}$. This is the value which was used by the AIEE and most other authorities even before its adoption in 1913 by the IEC. Measurements at the Bureau of Standards indicated this value as a mean. (See appendix 3 , p. 36.) This density, 8.89 at $20^{\circ} \mathrm{C}$, corresponds to a density of 8.90 at $0{ }^{\circ} \mathrm{C}$. In English units, the density at $20^{\circ} \mathrm{C}=0.32117 \mathrm{lb} / \mathrm{in} .{ }^{3}$

## e. Resistivity of Hard-Drawn Copper Wire

In the early investigations, it was found that in general the resistivity of hard-drawn wire varies with the size of the wire, while the resistivity of annealed wire does not. The experimental evidence obtained was limited, but it showed, as was to be expected, that the difference between the resistivity of annealed and hard-drawn wires increases as the diameter of the wire decreases. This general conclusion is, however, complicated in any particular case by the particular practice of the wire drawer in regard to the number of drawings between annealings, amount of reduction in each drawing, etc. For No. 12 AWG, the conductivity of hard-drawn wires was found to be less than the conductivity of annealed wires by 2.7 percent. However, on the average the decrease in conductivity is somewhat less than 2.7 percent. Operators of modern copper-wire mills consider the average for all sizes of wire to be about 2.5 percent. Hence, when a conduc-
tivity must be assumed for hard-drawn copper wire, it should be taken as 97.5 percent of that of standard annealed copper.

## f. Highest Conductivity Found

The lowest resistivity and highest conductivity found by Wolff and Deilinger : for a hard-drawn wire were:

> | Resistivity in ohm-gram,/meter |  |
| :--- | :--- |
|  |  |
| at $20^{\circ} \mathrm{C}$ | $=0.15386$ |
| Percent conductivity | $=99.62 \%$ |

and for an annealed wire were:
Resistivity in ohm-gram/meter ${ }^{2}$

| at $20{ }^{\circ} \mathrm{C}$ | $=0.15045$ |
| :--- | :--- |
| Percent conductivity | $=101.88 \%$ |

The former was a No. 12 wire, drawn from a cathode plate without melting. The latter wire was drawn directly from a mass of native lake copper which had never been melted down.

The data given above show the highest conductivities that had been encountered at the time the original publication, was first prepared. Since that time, however, copper wires of higher conductivity have been produced. For example, Smart, Smith, and Phlliips s obtained wire of 99.999 percent purity for which the conductivity, when annealed at 500 ${ }^{\circ} \mathrm{C}$ and rapidly quenched, was found to be slightly over 103 percent.

### 1.2. Statue of International Annealed Copper Standard

When the American Institute of Electrical Engineers in 1907 adopted a temperature coefficient, 0.0042 at 0 " C , which vitiated the wire table then in use, the need for a new table was felt; and a recomputation of the old one was under consideration. The need of more modern and representative data upon which to base the table had, however, been recognized, and, as stated above, the National Bureau of Standards was requested to secure such data. The work was done in the first half of 1910, and $\mathbf{r} \quad$ of the investigations were presented to the da Tommittee of the Instit At its meeting of October 14, 1910, that committee requested the National Bureau of Standards to prepare copper wire tables based on the investigations, to replace the old wire table of the Institute. As a result of this action, a complete set of tables was prepared. On October 14, 1910, however, the United States Committee of the International Electrotechnical Commission voted that steps should be taken to interest the Commission in the subject of an international standardization of

[^4]copper standards, and accordingly the question of standardizing the temperature coefficient was submitted to the other national committees by the United States national committee, in letters of January 26, 1911. The question of a standard conductivity was considered by the national committees of several nations in September 1911; and the result was an agreement among the representatives of Germany, France, and the United States to recommend a value proposed by Germany, differing only slightly from the value recommended by NBS and adopted by the Standards Committee of the American Institute of Electrical Engineers. The values for the temperature coefficient determined at NBS and corroborated at the German Reichsanstalt were accepted. In order to facilitate the establishment of an international standard, and at the request of the Standards Committee of the American Institute of Electrical Engineers and the United States Committee of the International Electrotechnical Commission, the publication of the copper wire tables was withheld and they were recomputed on the new basis.

In the 2 years from September 1911 to September 1913, these standard values were the subject of correspondence between the national laboratories of Germany, France, England, and the United States. They were favorably considered also by various committees of engineering societies. They were finally adopted by the International Electrotechnical Commission in plenary session at Berlin on September 5, 1913.

The commission issued a publication (IEC Pub. 28, March 1914) entitled "International Standard of Resistance for Copper," giving the values adopted and explanatory notes. A revised edition was published in 1925, with changes in the explanatory part only. This revised edition is reprinted as appendix 5 of this Handbook (p. 39).

The fundamental quantities in the international definitions are: the conductivity, 58 meter $/$ ohm $-\mathrm{mm}^{2}$; the density, 8.59 grams $/ \mathrm{cm}^{3}$; and the temperature coefficient, 0.00393 per "C; all at $20^{\circ} \mathrm{C}$ (see p. 40). All the other numerical values follow from these three (except that the coefficient of linear expansion, 0.000017 per "C, must also be taken into account in some cases). In particular, the values given for $0{ }^{\circ} \mathrm{C}$ at the end of appendix 5 follow from these fundamental quantities. In order to avoid misunderstanding, the processes by which they are calculated are here given. The coefficient 0.00426 , is obtained by the simple formula

$$
\alpha_{0}=\frac{1}{\frac{\mathbf{T}}{\alpha_{20}}-20}
$$

The coefficient 0.00428 , is obtained by adding 0.000017 to this, according to formula (17) on page 35. The value of resistivity at $0{ }^{\circ} \mathrm{C}$ is given by the use of the temperature coefficient of volume resistivity as follows:

$$
\begin{aligned}
& \rho_{0}=\rho_{20}\left[1-20\left(\alpha_{20}+0.000017\right)\right] \\
& =\frac{1}{0.58}[1-20(0.003947)]=1.5880 .
\end{aligned}
$$

This mode of calculation assumes that the resistivity is a strictly linear function of temperature. If, instead, the resistance be
assumed as a strictly linear function of temperature, we must write:

$$
\begin{gathered}
\rho_{0}=\rho_{20}\left[1-20 \alpha_{20}\right][1-20(0.000017)] \\
=\frac{1}{0.58}[1-20(0.00393)][1-0.00034]=1.5881 .
\end{gathered}
$$

The NBS proposed the simpler calculation, leading to 1.5880 , but the second calculation and 1.5881 were finally adopted because it is more convenient to think of the resistance as the strictly linear function.

## 2. American Wire Gage

### 2.1 General Uee of the American Wire Gage

As stated above, in the United States practically the only gage now used for copper wire is the American Wire Gage. In sizes larger than No. 0000 AWG copper conductors are practically always stranded. Sizes of stranded conductors are specified by the total cross section in circular mils. A mil is 0.001 inch, and the "area" in circular mils is the square of the diameter expressed in mils. It is becoming more and more the practice for the large electrical companies and others to omit gage numbers; although the stock sizes of copper wire used and specified by those who follow this practice are the American Wire Gage sizes. (See list of sizes in American Wire Gage, table 1, p. 13) Those who use the gage numbers do not customarily draw or measure wires to a greater accuracy than this, and we accordingly see that a single system of sizes of copper wire is in use in this country, both by those who use gage numbers and those who do not.

### 2.2. Characteristics of the American Wire Gage

The American Wire Gage has the property, in common with a number of other gages, that its sizes represent approximately the successive steps in the process of wire drawing. Also, like many other gages, its numbers are retrogressive, a larger number denoting a smaller wire, corresponding to the operations of drawing.

Its sizes are not so arbitrary and the differences between successive diameters are more regular than those of other gages, since it is based upon a simple mathematical law. The gage is formed by the specification of two diameters and the law that a given number of intermediate diameters are formed by geometrical progression. Thus, the diameter of No. 0300 is defined as 0.4600 inch and of No. 36 as 0.0050 inch. There are 38 sizes between
these two, hence the ratio of any diameter to the diameter of the next larger gage number= $\sqrt[39]{\frac{0.4600}{0.0059}}-\sqrt[39]{92}=1.122932$ 2. The square of this ratio $=1.2610$. The sixth power of the ratio, i. e., the ratio of any diameter to the diameter of the sixth greater gage number= 2.0050. The fact that this ratio is so nearly 2 is the basis of numerous useful relations which are given in "Wire table shortcuts."

The law of geometrical progression on which the gage is based may be expressed in either of the three following manners: (1) the ratio of any diameter to the next smaller is a constant number; (2) the difference between any two successive diameters is a constant percent of the smaller of the two diameters; (3) the difference between any two successive diameters is a constant ratio times the next smaller difference between two successive diameters.

### 2.3. Wire Table Shortcuts

Since the American Wire Gage is formed by geometrical progression, the wire table is easily reproduced from the ratio and one of the sizes as a starting point. There happen to be a number of approximate relations which make it possible practically to reproduce the wire table by remembering a few remarkably simple formulas and data. The resistance, mass, and cross section vary with the square of the diameter, hence by the use of the square of the ratio of one diameter to the next, viz, 1.2610 , it is possible to deduce the resistance, mass, or cross section of any size from the next. This number may be carried in the mind as approximately $11 / 4$. Furthermore, since the cube of this number is so very nearly 2 , it follows that every three gage numbers the resistance and mass per unit length and also the cross section are doubled or halved. The foregoing sentence is a concise expression of
the chief "wire table shortcut." It is extremely simple to find mentally, say, ohms per 1,000 feet, starting from the values for No. 10, as in the illustrative table below (p. 8). The approximate factors for finding values for the next three sizes after any given size, are 1.25, 1.6, and 2.0. Furthermore, every 10 gage numbers, the resistance and mass per unit length and the cross section are approximately multiplied or divided by 10 .

No. 10 copper wire has approximately a resistance of 1 ohm per 1,000 feet at $20^{\circ} \mathrm{C}$, a diameter of 0.1 inch, and a cross section of 10,000 circular mils. The mass may also be remembered for No. 10, viz, 31.4 pounds per 1,000 feet; but it will probably be found easier to remember it for No. 5,100 pounds per 1,000 feet; or for No. 2, 200 pounds per 1,000 feet.

Very simple approximate formulas may be remembered for computing data for any size of wire. Let:
$n=$ gage number (Take No. $0=0$, No. $00=-1$, etc.) .
$R=$ ohms per 1,000 feet at $20^{\circ} \mathrm{C}$. $M=$ pounds per 1,000 feet.
C.M. $=$ cross section in circular mills, then,

$$
\begin{align*}
& R=10^{\frac{n-10}{10}}=\frac{10^{\frac{n}{10}}}{10}  \tag{1}\\
& M=10^{\frac{25-n}{10}}  \tag{2}\\
& \text { C.M. }=10^{\frac{50-n}{10}}=\frac{10^{5}}{10^{\frac{n}{10}}} \tag{3}
\end{align*}
$$

These formulas may be expressed also in the following form, common or Briggs' logarithms being used:

$$
\begin{gather*}
\log (10 R)=\frac{n}{10},  \tag{4}\\
\log M=\frac{25-n}{10},  \tag{5}\\
\log \frac{\text { C.M. }}{100000}=-\frac{n}{10} . \tag{6}
\end{gather*}
$$

These formulas are also sometimes given in the equivalent but less useful form:

$$
\begin{equation*}
R=\frac{2^{\frac{n}{3}}}{10} \tag{7}
\end{equation*}
$$

$$
\begin{align*}
& M=\frac{10^{2.5}}{\frac{n}{2^{\frac{3}{3}}}}=\frac{320}{\frac{n}{2^{3}}},  \tag{8}\\
& C . M .=\frac{100000}{2^{\frac{n}{3}}} \tag{9}
\end{align*}
$$

Formulas (1) and (4), (2) and (5) give results correct within 2 percent for all sizes up to No. 20, and the maximum error is 5 percent for No. 40; and the errors of formulas (3) and (6) vary from 6 percent for No. 0000 to 2 percent for No. 20, and less than 2 percent for No. 20 to No. 40.

The sizes of copper rods and stranded conductors larger than No. 0000 are generally expressed by their areas in circular mils. For such cases, resistance in ohms per 1,000 feet at $20^{\circ} \mathrm{C}$ is given approximately by combining
formulas (1) and (3) ; $R=\frac{10000}{\text { C.M. }}$ or, in
other terms, $\quad$ Feet per ohm $=\frac{\text { C.M. }}{10}$
Similar formulas may be deduced for the ohms and mass per unit length, etc., in metric units. For example, we have similarly to (4), letting $r=0$ hms per kilometer,

$$
\begin{equation*}
\log (10 r)=\frac{N+5}{10} \tag{11}
\end{equation*}
$$

The slide rule may be used to great advantage in connection with these approximate formulas ; (4), (5), (6), and (11), in particular, are adapted to slide-rule computation. Thus, to find ohms per 1,000 feet, set the gage number on the slide-rule scale usually called the logarithm scale, and the resistance is given at once by the reading on the ordinary number scale of the slide rule.

An interesting additional "wire table shortcut" is the fact that between Nos. 6 and 12, inclusive, the reciprocal of the size number equals the diameter in inches, within 3 percent.
Another interesting shortcut relates the weight in pounds with the gage size. The following statement is taken from the manual of technical information of a cable manufacturer: "The approximate weight in pounds per 1,000 feet (for estimating purposes) for a certain size of copper wire is equal to the diameter in mils of a wire size double the gage number of the original size. For example, No. 8 AWG doubled is No. 16 AWG, for which the diameter in mils equals 50.8. Actual weight of No. 8 AWG is 50 lbs . per $1,000 \mathrm{ft}$."

A convenient relation may be deduced from the approximate formula frequently used by engineers, $I=a d$, in which $d$ is a diameter of wire, $a$ is a constant for given conditions, and I is either the fusing current or the current which will raise the temperature of the conductor some definite amount. For I defined either way, every 4 gage numbers I is doubled or halved.

A simple table is appended here to show the application of some of the foregoing principles. It is for resistance in ohms per 1,000 feet, using No. 10 as a starting point. A similar table might be made for mass in pounds per 1,000 feet, or for cross section in circular mils, or for ohms per kilometer.

| Gage | Ohms per 1,000 feet |  |  | Gage | Ohms per 1.000 feet |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 0 | 0.1 |  |  | 26 | 40 |  |  |
| 1 |  | 0.125 |  | 27 |  | 50 |  |
| 2 |  |  | 0.16 | 28 |  |  | 64 |
| 3 | . 2 |  |  | 29 | 80 |  |  |
| 4 |  | . 25 |  | 30 | 100. |  |  |
| 5 |  |  | . 32 | 31 |  | 125 |  |
| 6 | . 4 |  |  | 32 | --- |  | 160 |
| 7 |  | . 5 |  | 33 | 200. |  |  |
| 8 |  |  | . 64 | 34 |  | 250 | - --- |
| 9 |  |  |  | 35 |  |  | 320 |
| 10 | 1 |  |  | 36 | 400 |  |  |
| 11 |  | 1.25 |  | 37 |  | 500 |  |
| 12 |  |  | 1.6 | 38 |  |  | 640 |
| 13 | 2 |  |  | 39 | 800 |  |  |
| 14 |  | 2.5 |  | 40 | 1,000 |  |  |
| 15 |  |  | 3.2 | 41 |  | 1,250 |  |
| 16 | 4 |  |  | 42 |  |  | 1,600 |
| 17 |  | 5 | 6.4 | 43 | 2.000 | - 5000 |  |
| 19 | S |  |  | 45 |  |  | 3,200 |
| 20 | 10 |  |  | 46 | 4,000 |  |  |
|  |  | 12.5 |  | 47 |  | 5,000 |  |
| 22 |  |  | 16 | 48 |  |  | 6,400 |
| 23 24 |  |  |  | 49 50 | 8,000 | 10,000 |  |
| 25 |  |  | 32 |  |  |  |  |

## 3. Explanation of Tables

Table 1.-The American Society for Testing and Materials Standard B 258-61 and the American Standards Association Standard C7.36-1961 prescribes that the American Wire Gage diameters shall be calculated as shown in section 2.2 and then rounded to the nearest tenth of a mil for gages 0000 through 44 and to the nearest hundredth of a mil for gages 45 through 56. These rounded numbers, shown in table 1, are used as the gage diameters for commercial purposes. The data given in other tables of this Handbook are based on such rounded diameters.

Table 2. -This table gives a number of the more important standard values of resistivity, temperature coefficient, and density that have been in use. The particular standard temperature in each column is indicated by boldfaced type, and the values given for the various other temperatures are computed from the value at the standard temperature. In each column the temperature-coefficient of that column is used in computing the resistivity at the various temperatures. In some cases, e. g., in column 1 , the standard temperature is not the same for resistivity and for temperature coefficient. The temperature coefficient is in each case understood to be the "constant mass temperature coefficient of resistance," which is discussed in appendix 2, p. 35. This has not usually been specifically stated in the definition of a standard temperature coefficient. It seems fair to assume that this mode of defining the temperature coefficient is implied in the various standard values, since the temperature coefficient most frequently used in practice is
that of "constant mass," i. e., the temperature coefficient as measured between potential terminals rigidly attached to the wire. The resistivity is given in each case in terms of the resistance of a uniform wire 1 meter long weighing 1 gram. This unit of mass resistivity is conveniently designated for brevity as ohmgram per meter square. The values given in table 2 are fully discussed in previous editions of this Handbook. Column 8 gives the international standards, used as the basis of the tables of this Handbook.
Table 3.-This table is an expression of the proportionality between conductivity and temperature coefficient. The temperature coefficient at $20^{\circ} \mathrm{C}$, a,,, was computed from n , the percent conductivity expressed decimally, thus simply:

$$
\alpha_{20}=n(0.00393) .
$$

The complete expression for calculating $\alpha_{t}$, the temperature coefficient at any temperature, is given in the note to the table. The values given for $\alpha$ in the table are the "constant mass temperature coefficient of resistance," which is discussed in appendix 2, p. 35 . It is to be noted that table 3 gives either the conductivity when the temperature coefficient is known or the temperature coefficient when the conductivity is known. It may be again emphasized here that the proportional relation between conductivity and temperature coefficient is equivalent to the following: The change of resistivity per degree $C$ is a constant for copper, independent of the temperature of reference and independent of the sample of copper;
this constant is
$\quad \mathbf{0 . 0 0 0} 597{ }^{10}$ ohm-gram/meter ${ }^{2}$,
or, $\mathbf{0 . 0 0 0} \mathbf{0 6 8} 1$ ohm $-\mathrm{mm}^{2} /$ meter $^{\prime}$
or, $0.006 \mathbf{8 1}$ microhm-cm,
or, 3.41 ohm-pound $/$ mile $^{2}$, $\mathbf{6 8}$ microhm-inch,
or, $\mathbf{0 . 0 0 2 ~} \mathbf{~ o r , ~} \mathbf{0 . 0 4 0 9}$ ohm-circular mil/foot.

The Fahrenheit equivalents of the foregoing constants or of any of the $\alpha$ 's in table 3 may be obtained by dividing by $\mathbf{1 . 8}$. Thus, for example, the $20{ }^{\circ} \mathrm{C}$ or $68{ }^{\circ} \mathrm{F}$ temperature coefficient for copper of $\mathbf{1 0 0}$ percent conductivity is $\mathbf{0 . 0 0 3} 93$ per degree C , or $\mathbf{0 . 0 0 2} 18$ per degree F. Similarly, the change of resistivity per degree $F$ is $\mathbf{0 . 0 0 1} 49$ microhm-inch.

The foregoing paragraph gives two simple ways of remembering the temperature coefficient. Another method of remembering how to make temperature reductions, in extended use among engineers, is to make use of the "inferred absolute zero temperature of resistance." This is the quantity, T, given in the last column of table 3 for the various conductivities. For any percent conductivity, $-T$ is the calculated temperature on the centigrade scale at which copper of that particular percent conductivity would have zero electrical resistance provided the temperature coefficient between 0 and $100{ }^{\circ} \mathrm{C}$ applied continuously down to zero resistance. That is

$$
T=\frac{1}{\alpha_{0}}
$$

One advantage of these "inferred absolute zero temperatures of resistance" is their usefulness in calculating the temperature coefficient at any temperature, $t_{1}$. Thus, we have the following formulas:

$$
\begin{gathered}
\alpha_{t_{1}}=\frac{1}{T+t_{1}} \\
t-t_{1}=\frac{R_{t}-R_{t_{1}}}{R_{t_{1}}}\left(T+t_{1}\right) .
\end{gathered}
$$

The chief advantage, however, is in calculating the ratios of resistance at different temperatures, for the resistance of a copper conductor is simply proportional to its (fictitious) absolute temperature from the "inferred absolute zero." Thus, if $R_{t}$ and $R_{t_{1}}$ denote resistances, respectively, at any two temperatures $t$ and $t_{1}$

$$
\frac{R_{t}}{R_{t_{1}}}=\frac{T+t}{T+t_{1}}
$$

[^5]For example, a copper wire of $\mathbf{1 0 0}$ percent conductivity, at $20{ }^{\circ} \mathrm{C}$, would have a (fictitious) absolute temperature of $254.5^{\circ}$, and at $50{ }^{\circ} \mathrm{C}$ would have a (fictitious) absolute temperature of 284.5". Consequently, the ratio of its resistance at $50{ }^{\circ} \mathrm{C}$ to its resistance at $20^{\circ} \mathrm{C}$ would be 284.5 $254.5-1.118$. In a convenient form for sliderule computation, this formula may be written

$$
\frac{R_{t}}{R_{\mathrm{t}_{1}}}=1+\frac{t-t_{1}}{T+t_{1}}
$$

Table 4.-It is a simple matter to apply the formulas for temperature reduction to resistance or resistivity measurements, but the work can sometimes be shortened by having a table of temperature corrections. In the discussion of the temperature coefficient of copper, above, it was shown that the change of resistivity per degree C is a constant for copper. Accordingly, if the resistivity of any sample of copper be measured at any temperature, it can be reduced to any other temperature simply by adding a constant multiplied by the temperature difference. The first and last columns of table 4 give temperature of observation. The second, third, fourth, and fifth columns give the quantity to be added to an observed resistivity to reduce to $20{ }^{\circ} \mathrm{C}$.

The next three columns give factors by which to multiply observed resistance to reduce to resistance at $20{ }^{\circ} \mathrm{C}$. Resistance cannot be reduced accurately from one temperature to another unless either the temperature coefficient of the sample or its conductivity is known. Of course, if the temperature coefficient itself is known it should be used. If the conductivity is known, the reduction can be made by the aid of these three columns of the table, which are for 96 percent, 98 percent, and 100 percent conductivity. For other conductivities, recourse may be had to interpolation or extrapolation, or to computation by the formula. The sixth column, for 96 percent conductivity, corresponds to a temperature coefficient at $20{ }^{\circ} \mathrm{C}$ of 0.003773 ; the seventh column for 98 percent conductivity, to 0.003 851 ; and the eighth column, for 100 percent conductivity, to 0.003930 per ${ }^{\circ} \mathrm{C}$. The factors in the eighth column, for example, were computed by the expression

$$
\frac{1}{1+0.003930(t-20)},
$$

in which $t$ is the temperature of observation in ${ }^{\circ} \mathrm{C}$.
Table 5.-Complete data on the relations of length, mass, and resistance of annealed copper wires of the American Wire Gage sizes are given in table 5. This table shows all data for $20{ }^{\circ} \mathrm{C}$ only, in English units.

Data may be obtained for sizes other than those in the table either by interpolation or by independent calculation. The fundamental data, in metric units, for making the calculations are given in a footnote to table 5. The derived data in English units, as used in the calculation of table 5, are as follows:

Volume resistivity of annealed copper at $20^{\circ} \mathrm{C}$, or $68^{\circ} \mathrm{F},=0.67879$ microhm-inch.

Density of copper at $20^{\circ} \mathrm{C}$, or $68^{\circ} \mathrm{F},=0.321$ $17 \mathrm{lb} / \mathrm{in}^{3}$.

The constant given above and also in the following formulas are given to a greater number of digits than is justified by their normal use, in order to avoid introducing small errors in the calculated values.

In the following formulas, let:
$d=$ diameter of wire in mils, at $20^{\circ} \mathrm{C}$, for a round wire.
$s=$ cross section in sauare inches, at $20{ }^{\circ} \mathrm{C}$.
$D=$ density in pounds per cubic inch, at $20^{\circ} \mathrm{C}$. $\rho_{20}=$ resistivity in microhm-inches at $20^{\circ} \mathrm{C}$

Then for annealed copper wire of standard conductivity
Ohms per 1,000 feet at $20{ }^{\circ} \mathrm{C}$

$$
\frac{1.2 p_{20}}{-100 s}-\frac{0.0081455}{s}=10371.2 / d^{2}
$$

Feet per ohm at 20 "C

$$
==\frac{0}{1.2 \rho_{20}}-122770 \mathrm{~s}=0.096421 \mathrm{~d}^{2}
$$

Ohms per pound at $20^{\circ} \mathrm{C}$

$$
=\frac{10^{-6} \rho_{20}}{D s^{2}}=\frac{2.1135}{s^{2} 10^{6}}=3426200 / d^{4}
$$

Pounds per ohm at $20^{\circ} \mathrm{C}$

$$
=\frac{10^{\circ} D s^{2}}{\rho_{20}}=473160 s^{2}=0.29187 d^{4} / 10^{6}
$$

Pounds per 1,000 feet at $20^{\circ} \mathrm{C}$
$=12000 \mathrm{Ds}=3854.1 \mathrm{~s}=0.0030270 d^{2}$
Feet per pound at $20{ }^{\circ} \mathrm{C}$

$$
=\frac{1}{12 \overline{D s}}=\frac{0.25946}{s}=330360 / d^{2}
$$

The formulas may be used for wire with any shape of cross section, if the cross section in square inches, s, is known.

The data for tables 5 to 9 , inclusive, were calculated with the above formulas using values of diameter in mils, d , taken from table 1. The computer program carried out the values to six significant figures but before inclusion in the tables they were rounded to four significant figures for gages 10 and larger and to three significant figures for sizes 11 and smaller.

After having obtained the resistance at $20^{\circ} \mathrm{C}$ for any size or shape of wire, the resistances at other temperatures are usually calculated by
means of the "Constant mass temperature coefficient," 0.00393 , the wires being assumed to remain of constant mass and shape as the temperature changes. This corresponds to the method of measuring resistance by means of potential terminals attached permanently to a wire sample, or to the measurement of resistance of a coil of wire at various temperatures where no measurements are made either of the length or diameter. The diameters and cross sections are assumed to be exact at $20^{\circ} \mathrm{C}$, and to increase or decrease with change of temperature as a copper wire would naturally do. [Thus the constant mass temperature coefficient 0.00393 is not the same as would have to be used if the diameter and length were assumed to have the stated values at all temperatures; the latter would require the "constant volume temperature coefficient" $(\alpha+\gamma)=0.003947$ at $20^{\circ} \mathrm{C}$ (see appendix 2).] The length is to be understood as known at $20^{\circ} \mathrm{C}$, and to vary with the temperature.

Tables 6, 7, 8, and 9.-These tables extend the data which involve resistance in table 5 over the temperature range 0 to $200{ }^{\circ} \mathrm{C}$; the mass per unit of length and length per unit mass are not calculated at other than $20^{\circ} \mathrm{C}$ as their change with temperature is usually negligible. The quantities in the tables are computed from the listed diameter taken as exact, and are rounded to an appropriate number of places. All are in the English system of units.

The numbers given in the several columns of table 7 under the heading 'Feet per ohm" are 1,000 times the reciprocals of the corresponding numbers in table 6 (before rounding). That is, they give the number of feet of wire measured at $20^{\circ} \mathrm{C}$, having a resistance of 1 ohm at the various temperatures.

In table 8 giving "Ohms per pound", the resistances in the several columns are the number of ohms resistance at the several temperatures of a pound of wire, the length and diameter of which vary with the temperature. Hence the same temperature coefficient, 0.00393 , is used as before.

The numbers given in the several columns of table 9 under the heading "Pounds per ohm" are the reciprocals of the corresponding numbers in table 8 (before rounding).

Tables 10, 11, 12, 13, and 14.-These five tables are the exact equivalent to the preceding five except that they are expressed in metric units instead of English. The fundamental data from which all these tables for copper were computed are as follows:

Mass resistivity of annealed copper at $20^{\circ} \mathrm{C}=8.89 / 58=0.15328 \mathrm{ohm}-\mathrm{g} / \mathrm{m}^{2}$.

Density of copper at $20^{\circ} \mathrm{C}=8.89 \mathrm{~g} / \mathrm{cm}^{3}$.

Volume resistivity of annealed copper at $20^{\circ} \mathrm{C}=100 / 58=1.7241$ microhm-cm.

The data of tables 10 through 14 may be calculated for wires of any cross section by the formulas below, using the following symbols:
$d=$ diameter in mm , at $20^{\circ} \mathrm{C}$, for a round wire.
$s=$ cross section in square mm , at $20^{\circ} \mathrm{C}$.
$D=$ density in grams per cubic centimeter, at $20^{\circ} \mathrm{C}$.
$\rho_{20}=$ resistivity in microhm-cm, at $20^{\circ} \mathrm{C}$.
Ohms per kilometer at $20^{\circ} \mathrm{C}$

$$
=\frac{10 \rho_{\rho_{20}}}{s}=\frac{17.241}{s}=21.952 / d^{2}
$$

Meters per ohm at $20^{\circ} \mathrm{C}$
$=\frac{100 \mathrm{~s}}{\rho_{20}}=58.000 \mathrm{~s}=45.553 \mathrm{~d}^{2}$
Ohms per kilogram at $20^{\circ} \mathrm{C}$
$=\frac{10 \rho_{30}}{D s^{2}}=\frac{1.9394}{s^{2}}=3.1441 / d^{4}$
Grams per ohm at $20{ }^{\circ} \mathrm{C}$

$$
=\frac{100 D s^{2}}{\rho_{20}}=515.62 s^{2}=318.06 \mathrm{~d}^{4}
$$

Kilograms per kilometer at $20^{\circ} \mathrm{C}$ $=D s=8.89 \mathrm{~s}=6.9822 \mathrm{~d}^{2}$

Meters per gram at $20{ }^{\circ} \mathrm{C}$
$=\frac{1}{D S}=\frac{0.112486}{\mathrm{~s}}=0.14322 / d^{2}$
In computing the tables from the above formulas, the exact conversion of English to metric diameters was used, i. e. $d=$ diameter in mils from table 1 times .0254 . As in tables 5 to 9 , the computer program carried out the values to six significant figures, but before inclusion in the tables they were rounded to four significant figures for gages 10 and larger and to three significant figures for sizes 11 and smaller.

The same points regarding the computations for different temperatures, which were mentioned above in the explanation of tables 5 through 9 apply to tables 10 through 14 also.

It should be strictly borne in mind that tables 5 through 14 give values for annealed copper whose conductivity is that of the "International Annealed Copper Standard" described above (that is, approximately, an average of the present commercial conductivity copper). If data are desired for any sample of different conductivity, and if the conductivity is known as a percentage of this standard, the data of the table involving resistance are to be corrected by the use of this percentage, thus (letting $n=$ percent conductivity, expressed decimally) : (1) For "Ohms per 1,000 feet" and
"Ohms per pound" multiply the values given in tables 5 through 9 by $1 / n$. (2) For '"Pounds per ohm" and "Feet per ohm" multiply the values by $n$, and similarly for the metric tables, 10 through 14.

An approximate average value of percent conductivity of hard-drawn copper may be taken to be 97.5 percent when assumption is unavoidable. The method of finding approximate values for hard-drawn copper from the table may be stated thus: (1) For "Ohms per 1,000 feet" and "Ohms per pound" increase the values given in tables 5 through 9 by 2.5 percent. (2) For "Pounds per ohm" and "Feet per ohm" decrease the values by 2.5 percent. (3) "Pounds per 1,000 feet" and "Feet per pound" may be considered to be given correctly by the tables for either annealed or hard-drawn copper.

Table 15.-This is a reference table, for standard annealed copper, giving "Ohms per 1,000 feet" at two temperatures and "Pounds per 1,000 feet," for the various sizes in the (British) Standard Wire Gage. The quantities in the table were computed to five significant figures, and have been rounded off and given usually to four significant figures. The results are believed to be correct within 1 in the fourth significant figure.

Table 16.-This is a reference table for standard annealed copper wire, giving "Ohms per kilometer'? at 20 and $65^{\circ} \mathrm{C}$, and "Kilograms per kilometer," for selected sizes such that the diameter is in general an exact number of tenth millimeters. The sizes were selected arbitrarily, the attempt being to choose the steps from one size to a nother which correspond roughly to the steps in the ordinary wire gages.

Table 17. -The largest wire in the American Wire Gage has a diameter slightly less than 0.5 inch. For conductors of larger cross section, stranded conductors are used, and even for smaller conductors stranding is employed when a solid wire is not sufficiently flexible. Stranded conductors are constructed of a number of small wires in parallel, the wires being twisted to form a ropelike conductor. For any given size, the flexibility depends upon the number of wires and also upon the method of twisting. It is beyond the scope of this Handbook to list data for all types of stranded conductors now in use. .Data are given only for the commonly used "concentric-lay" type, for two degrees of flexibility. For other types, having the same nominal cross-sectional area, the data may differ by several percent. Such organizations as the American Society for Testing and Materials or the Institute of Electrical and Electronic Engineers issue specifications which list the maximum amount by which
the resistance of various stranded conductors may exceed that of an equivalent solid conductor. Since such specifications undergo frequent changes to keep up with improved manufacturing procedures, the values listed in table 17 may not agree exactly with tables issued by the national organizations. Their values should be used when they differ from table 17.

Table 17 gives data on bare concentric-lay conductors of annealed copper. A 'concentriclay conductor" is one made up of a straight central wire or wires surrounded by helical layers of bare wires, the alternate layers usually having a twist in opposite directions. In the first layer about the central core, 6 wires of the same diameter are used; in the next layer, 12 ; then 18,24 , etc. The number of layers thus determines the number of individual wires in the conductor. Conductors of special flexibility are made up of large numbers of wires having a definite gage size, while in the case of concentric-lay stranded conductors it is the more usual practice to start with a specified total cross section for the conductor and from that calculate the diameter of the wires. Thus, in table 17 the column "Diameter of wires" was calculated from the total cross section.

The sizes of stranded conductors are usually specified by a statement of the cross section in circular mils. (The cross section in circular mils of a single wire is the square of its diameter in mils.) The sizes of stranded conductors smaller than 250,000 circular mils (i. e., No. 0000 AWG or smaller) are sometimes, for brevity, stated by means of the gage number in the American Wire Gage of a solid wire having the same cross section. The sizes of conductors of special flexibility, which are made up from wires of a definite gage size, are usually specified by a statement of the number and size of the wires. The sizes of such conductors may also be stated by the approximate gage number or the approximate circular mils.

Table 17 gives the properties of two of several types of concentric-lay conductors which are made and used in this country. The practices of manufacturers vary, but stranded conductors of these types are most commonly made up as shown under "Standard concentric stranding." For greater flexibility, concentriclay conductors are sometimes made up as shown under "Flexible concentric stranding." These two types of stranding are designated by ASTM as "Class B" and "Class C," respectively. The first five columns of the table apply to both kinds of stranding.

The "Outside diameter in mils" is the diameter of the circle circumscribing the stranded conductor, and is calculated very simply for conductors having a single straight wire for
its core. Thus, for a conductor of 7 wires, the "outside diameter" is 3 times the diameter of 1 wire; for a conductor of 19 wires, it is 5 times the diameter of 1 wire, etc. The values given for the resistance are based on the International Annealed Copper Standard, discussed above. The density used in calculating the mass is $8.89 \mathrm{~g} / \mathrm{cm}^{3}$, or $0.32117 \mathrm{lb} / \mathrm{in} .^{3}$ at $20{ }^{\circ} \mathrm{C}$. The effect of the twisting of the strands on the resistance and mass per unit length is allowed for, and is discussed in the following paragraph.

Different authors and different cable companies do not agree in their methods of calculating the resistance of stranded conductors. It is usually stated that on account of the twist the lengths of the individual wires are increased, and hence the resistance of the conductor is greater than the resistance of an "equivalent solid rod"-i. e., a solid wire or rod of the same length and of cross section equal to the total cross section of the stranded conductor (taking the cross section of each wire perpendicular to the axis of the wire). However, there is always some contact area between the wires of a stranded conductor, which has the effect of increasing the cross section and decreasing the resistance; and some authors have gone so far as to state that the resistance of a stranded conductor is less than that of the equivalent solid rod. The National Bureau of Standards has made inquiries to ascertain the experience of manufacturers and others on this point. It is practically unanimously agreed that the resistance of a concentric-lay stranded conductor is actually greater than the resistance of an equivalent solid rod. It is shown mathematically in appendix 4, page 37, that the percentage increase of resistance of such a conductor with all the wires perfectly insulated from one another over the resistance of the equivalent solid rod is exactly equal to the percentage decrease of resistance of a stranded conductor in which each strand makes perfect contact with a neighboring strand at all points of its surface - that is, the resistance of the equivalent solid rod is the arithmetical mean of these two extreme cases. While neither extreme case exactly represents an actual conductor, still the increase of resistance is generally agreed to be very nearly equal to that of a stranded conductor in which all the wires are perfectly insulated from one another. Apparently the wires are very little distorted from their circular shape, and hence make very little contact with each other. It is shown in appendix 4 that the percentage increase in resistance, and in mass as well, is equal to the percentage increase in length of the wires. (The equivalent solid rod is assumed to consist of copper of the same resistivity as that in the actual stranded conductor.) A standard value
of 2 to 5 percent has been adopted for this increase in length by the Committee on Wires for Electrical Conductors of the American Society for Testing and Materials, and the resistances and masses in table 17 are accordingly made greater than for the equivalent solid rod. For sizes up to and including $2,000,000$ circular mils the increase is 2 percent; over $2,000,000$, to $3,000,000$ the increase is 3 percent; over $3,000,000$, to $4,000,000,4$ percent; over $4,000,000$, to $5,000,000,5$ percent. These involve an assumption of a value for the "lay ratio" of the conductor, but the actual resistance of a stranded conductor depends further upon the tension under which the strands are wound (cold working plus stretch), the age of the cable, variations of the resistivity of the wires, variations of temperature, etc., so that it is very doubtful whether any usefully valid correction can be made to improve upon the values of resistance as tabulated. It may be more often required to make a correction for the mass of a stranded conductor, which
can be done when the lay ratio is known. The effect of "lay" and the magnitude of the correction are discussed in appendix 4, p. 37.

Table 18.-This table gives data in metric units on bare concentric-lay stranded conductors of annealed copper; it is the equivalent of table 17. The first column gives the size in "circular mils," since the sizes are commercially so desi ated (except for the smaller sizes, for which the AWG number is given). The other quantities in this table are in metric units. The explanations of the calculations of table 17 given above and in appendix 4 apply to this table also.

Table 19. - Factors are given in this table for computing numerical values of resistivity in any of the usual sets of units when its value is known in another set. Numerical values of percentage conductivity are not reduced to decimal fractions ${ }_{\text {on }}$ For example, the numerical value for 98.3 percent conductivity is used as 98.3 not 0.983 in the conversions.

## PART II. TABLES

Table 1. The American hire Gage

| Gage | $\begin{aligned} & \text { Diameter } \\ & \text { at } 20^{\circ} \mathrm{C} \end{aligned}$ | Gage | Diameter $\text { at } 20^{\circ} \mathrm{C}$ | Gage | Diameter $\text { at } 20^{\circ} \mathrm{C}$ | Gage | Diameter $\text { at } 20^{\circ} \mathrm{C}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Mils |  | Mil. |  | Mils |  | Mils |
| 0000 | 460.0 | 12 | 80.8 | 27 | 14.2 | 42 | 2.5 |
| 000 | 409.6 | 13 | 72.0 | 28 | 12.6 | 43 | 2.2 |
| 00 | 364.8 | 14 | 64.1 | 29 | 11.3 | 44 | 2.0 |
| 0 | 324.9 | 15 | 57.1 | 30 | 10.0 | 45 | 1.76 |
| 1 | 289.3 | 16 | 50.8 | 31 | 8.9 | 46 | 1.57 |
| 2 | 257.6 | 17 | 45.3 | 32 | 8.0 | 47 | 1.40 |
| 3 | 229.4 | 18 | 40.3 | 33 | 7.1 | 48 | 1.24 |
| 4 | 204.3 | 19 | 35.9 | 34 | 6.3 | 49 | 1.11 |
| 5 | 181.9 | 20 | 32.0 | 35 | 5.6 | 50 | 0.99 |
| 6 | 162.0 | 21 | 28.5 | 36 | 5.0 | 51 | . 88 |
| 7 | 144.3 | 22 | 25.3 | 37 | 4.5 | 52 | . 78 |
| 8 | 128.5 | 23 | 22.6 | 38 | 4.0 | 53 | . 70 |
| 9 | 114.4 | 24 | 20.1 | 39 | 3.5 | 54 | . 62 |
| 10 | 101.9 | 25 | 17.9 | 40 | 3.1 | 55 | . 55 |
| 11 | 90.7 | 26 | 15.9 | 41 | 2.8 | 56 | . 49 |

TABLE2. Various standard values for resistivity, temperature coefficient, and density, of annealed copper

|  | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\underset{\mathrm{C}}{\text { Temperature }}$ | England (Eng. Stds. Corn., 1904) | Germany, Old "Normal Kupfer," density 8.91 | Old "Normal Kupfer," assuming density $\mathbf{8 . 8 9}$ | Lindeck, Matthiessen value, assuming density 8.89 | A. I. E. E. before 1907 (Matthiessen value) | $\begin{aligned} & \text { A. I. E. E. } \\ & 1907 \text { to } 1910 \end{aligned}$ | Bureau of Standards and <br> A. I. E. E. 1911 | International Annealed Copper Standard |

RESISTIVITY IN OHM-GRAM/METER ${ }^{2}$

| $0^{\circ}$ | 0.141362 | 0.139590 | 0.139277 | $0.14157_{1}$ | $0.141{ }^{72}{ }_{9}$ | $0.141{ }^{72}$ | $0.14106_{8}$ | 0.141 339 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | . 150438 | . 14850 | .148164 | . 149974 | .150141 | . $15065_{8}$ | . $15003_{4}$ | . 150290 |
| $\left(\begin{array}{c}15.66^{\circ} \\ 20^{\circ}\end{array}\right.$ | .1508 .153463 | .151470 | .151130 | $.15285_{1}$ | . 15302 | .153634 | . 15302 | . 15328 |
| $25^{\circ}$ | . 15648 | . 154440 | . 15409 | . $15576{ }^{\text {a }}$ | . 15593 | . $15661{ }^{\text {a }}$ | . 156010 | . 15626 |

TEMPERATURE COEFFICIENT OF RESISTANCE PER ${ }^{\circ} \mathrm{C}$

| $0^{\circ}$ | 0.00428 | 0.004255 | 0.004255 | (II) | (11) | 0.0042 | 0.004277 | $0.00426{ }_{5}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $15^{\circ}$ | . 00402 | 004 | . 004 | ( |  | . $000395_{1}$ | . 004019 | . 004009 |
| $20^{\circ}$ | . 003943 | . $00392{ }_{2}$ | . 003 922 |  |  | . 003875 | . 00394 | . 00393 |
| $25^{\circ}$ | . $00386{ }_{6}$ | . $00384_{6}$ | . $00384_{6}$ |  |  | . 003801 | . $00386_{4}$ | . $0038_{4}$ |

DENSITY IN GRAMS/CM ${ }^{3}$

| 128.89 | 8.91 | $(8.89)$ | $(8.89)$ | 8.89 | 8.89 | 138.89 | 138.89 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

Note.-An explanation of table is given on p. 8,
${ }_{12}^{12}$ Matthiessen's formula: $\lambda t=\lambda_{0}\left(1-0.0038701+0.000009009 t^{2}\right) . \quad \lambda t$ and $\lambda_{0}=$ reciprocal of resistance at $t$ and $0^{\circ} \mathrm{C}$, respectively.
$12 \mathrm{At} 15.6^{\circ} \mathrm{C}$.
$1^{3}$ This is the density st $20^{\circ} \mathrm{C}$. It corresponds to 8.90 at $0^{\circ} \mathrm{C}$.

Table 3. Temperature coefficients of copper for different initial Celsius (Centigrade) temperalures and different conductivities

| $\begin{gathered} \text { Ohm-gram/ } \\ \text { meter, } \\ \text { at } 20^{\circ} \mathrm{C} \end{gathered}$ | Percent condue tivity | $\alpha_{0}$ | $\alpha_{16}$ | $\alpha_{20}$ | $\alpha_{25}$ | $\boldsymbol{\alpha}_{30}$ | $\alpha_{50}$ | $T$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 0.16134 | 95 | 0.00403 | 0.00380 | 0.00373 | 0.00367 | 0.00360 | 0.00336 | 247.8 |
| . 15966 | 96 | . 00408 | . 00385 | . 00377 | . 00370 | . 00364 | . 00339 | 245.1 |
| . 15802 | 97 | . 00413 | . 00389 | . 00381 | . 00374 | . 00367 | . 00342 | 242.3 |
| . 15721 | 97.5 | . 00415 | . 00391 | . 00383 | . 00376 | . 00369 | . 00344 | 241.0 |
| . 15640 | 98 | . 00417 | . 00393 | . 00385 | . 00378 | . 00371 | . 00345 | 239.6 |
| . 15482 | 99 | . 00422 | . 00397 | . 00389 | . 00383 | . 00374 | . 00348 | 237.0 |
| . 15328 | 100 | . 00427 | . 00401 | . 00393 | . 00385 | . 00378 | . 00352 | 234.5 |
| . 15176 | 101 | . 00431 | . 00405 | . 00397 | . 00389 | . 00382 | . 00355 | 231.9 |
| . 15037 | 102 | . 00436 | . 00409 | . 00401 | . 00393 | . 00385 | . 00358 | 229.5 |

Note.-The fundamental relation between resistance and temperature is the following:

$$
\left.\mathrm{R}_{t}=\mathrm{R}_{1}\left(1+\alpha t_{1} \boldsymbol{t}-\mathrm{t}_{1}\right]\right)
$$

where $\boldsymbol{a}_{1}$ is the "temperature coefficient," and $t_{1}$ is the "initial temperature" or "temperature of reference."
The values of $\boldsymbol{\alpha}$ in the above table exhibit the fact thnt the temperature coefficient of copper is proportional to the conductivity. The table was calculated by means of the following formula. which holds for any percent conductivity, $n$, within commercial ranges, and for Celisus temperatures. ( $n$ is considered to be expressed decimally; e. g., if percent conductivity $=99$ percent, $n=0.99$.)

$$
\alpha t_{2}=\frac{1}{\frac{1}{n(0.00393)}+\left(t_{1}-20\right)}
$$

The quantity Tin the last column of the abore table presents an easy way of remembering the temperature coefficient, its usefulness being evident from the following formulas:

$$
\begin{aligned}
& t-i_{1}=\frac{\mathrm{R}_{t}-\mathrm{R}_{t 1}}{\mathrm{t} d_{1}}(T+t) \\
& \frac{\mathrm{R}_{t}}{\mathrm{R}_{L_{l}}}=1+\frac{t-t_{1}}{T+t_{1}}=\frac{T+t}{T+t_{1}}
\end{aligned}
$$

Table 4. Reductwn of observations to standard temperature

| Temper${ }^{\text {ature }}$ | Corrections to change resistivity to $20{ }^{\circ} \mathrm{C}$ |  |  |  | Factors to change resistance to $20{ }^{\circ} \mathrm{C}$ |  |  | $\underset{\substack{\text { Temper- } \\ \text { ature }}}{\text { and }}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Ohm-gram/ meter2 | Microhm-mm | Ohm-pound/ mile: | $\begin{gathered} \text { Microhm- } \\ \text { inch } \end{gathered}$ | For 96 conduc tivity | For 98 percent tivity | For 100 percent tivity |  |
| 0 | +0.011 94 | +0.1361 | $+68.20$ | +0.053 58 | 1.0816 | 1.0834 | 1.0853 | 0 |
| 5 | +. 00896 | +. 1021 | +51.15 | +.040 18 | 1.0600 | 1.0613 | 1.0626 | 5 |
| 10 | $+.00597$ | +. 0681 | +34.10 | +. 02679 | 1.0392 | 1.0401 | 1.0409 | 10 |
| 11 | +. 00537 | +. 0612 | +30.69 | $+.02411$ | 1.0352 | 1.0359 | 1.0367 | 11 |
| 12 | +. 00478 | $+.0544$ | +27.28 | +. 02143 | 1.0311 | 1.0318 | 1.0325 | 12 |
| 13 | +. 00418 | $+.0476$ | $+23.87$ | $+.01875$ | 1.0271 | 1.0277 | 1.0283 | 13 |
| 14 | +. 00358 | $+.0408$ | $+20.46$ | $+.01607$ | 1.0232 | 1.0237 | 1.0242 | 14 |
| 15 | +. 00299 | +. 0340 | +17.05 | $+.01340$ | 1.0192 | 1.0196 | 1.0200 | 15 |
| 16 | +. 00239 | +. 0272 | +13.64 | +.010 72 | 1.0153 | 1.0156 | 1.0160 | 16 |
| 17 | +.001 79 | $+.0204$ | +10.23 | $+.00804$ | 1.0114 | 1.0117 | 1.0119 | 17 |
| 18 | +.001 19 | +. 0136 | +6.82 | $+.00536$ | 1.0076 | 1.0078 | 1.0079 | 18 |
| 19 | $+.00060$ | +. 0068 | +3.41 | +. 00268 | 1.0038 | 1.0039 | 1.0039 | 19 |
| 20 | 0 | 0 | 0 | 0 | 1.000 | 1.0000 | 1.0000 | 20 |
| 21 | -. 00060 | -. 0068 | -3.41 | -. 00268 | 0.9962 | 0.9962 | 0.9961 | 21 |
| 22 | -. 00119 | -. 0136 | -6.82 | -. 00536 | . 9925 | . 9924 | . 9922 | 22 |
| 23 | -. 00179 | -. 0204 | -10.23 | -. 00804 | . 9888 | . 9888 | . 9883 | 23 |
| 24 | -. 00239 | -. 0272 | -13.64 | -. 01072 | . 9851 | . 9848 | . 9845 | 24 |
| 25 | -. 00299 | -. 0304 | -17.05 | -. 01340 | . 9815 | . 9811 | . 9807 | 25 |
| 26 | -. 00358 | -. 0408 | -20.46 | -. 01607 | . 9779 | . 9774 | . 9770 | 26 |
| 27 | -. 00418 | -. 0476 | -23.87 | -. 01875 | . 9743 | . 9737 | . 9732 | 27 |
| 28 | -. 00478 | -. 0544 | -27.28 | -. 02143 | . 9707 | . 9701 | . 9695 | 28 |
| 29 | -. 00537 | -. 0612 | -30.69 | -. 02411 | . 9672 | . 9665 | . 9658 | 29 |
| 30 | -. 00597 | -. 0681 | -34.10 | -. 02679 | . 9636 | . 9629 | . 9622 | 30 |
| 35 | -. 00896 | $-.1021$ | -51.15 | -.040.18 | . 9464 | -. 9454 | . 9443 | 35 |
| 40 | -. 01194 | -. 1361 | -68.20 | -.053 58 | . 9298 | -. 9285 | . 9271 | 40 |
| 45 | -. 01493 | -. 1701 | -85.25 | -. 06698 | . 9138 | . 9122 | . 9105 | 45 |
| 50 | -. 01792 | -. 2042 | -102.30 | -. 08037 | . 8983 | . 8964 | . 8945 | 50 |
| 55 | -. 02090 | -. 2382 | -119.35 | -. 09376 | . 8833 | . 8812 | . 8791 | 55 |
| 60 | -. 02389 | -. 2722 | -136.40 | -. 10716 | . 8689 | . 8665 | . 8642 | 60 |
| 65 | -. 02687 | -. 3062 | -153.45 | -. 12056 | . 8549 | . 8523 | . 8497 | 65 |
| 70 | -. 02986 | -. 3403 | -170.50 | -. 13395 | . 8413 | . 8385 | . 8358 | 70 |
| 75 | -. 03285 | -. 3743 | -187.55 | -. 14734 | . 8281 | . 8252 | . 8223 | 75 |

Table 5. Wire table, standard annealed copper
American Wire Gage. English units. Values at $20^{\circ} \mathrm{C}$.

| Gage | Diameter in mils | Cross section |  | $\begin{aligned} & \text { Ohms er } \\ & 1,000 \mathrm{Pet} \end{aligned}$ | Feet per | Pounds per 1,000 feet | Feet per pound | Ohms per pound | Pounds per ohm |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Circular mils | Square inch |  |  |  |  |  |  |
| 0000 | 460.0 | 211600 | 0.1662 | 0.04901 | 20400 | 640.5 | 1.561 | 0.00007652 | 13070 |
| 000 | 409.6 | 167800 | . 1318 | . 06182 | 16180 | 507.8 | 1.969 | . 0001217 | 8215 |
| 00 | 364.8 | 133100 | . 1045 | . 07793 | 12830 | 402.8 | 2.482 | . . 0001935 | 5169 |
| 0 | 324.9 | 105600 | . 08291 | . 09825 | 10180 | 319.5 | 3.130 | . 0003075 | 3252 |
| 1 | 289.3 | 83690 | . 06573 | . 1239 | 8070 | 253.3 | 3.947 | . 0004891 | 2044 |
| 2 | 257.6 | 66360 | . 05212 | . 1563 | 6398 | 200.9 | 4.978 | . 0007781 | 1285 |
| 3 | 229.4 | 52620 | . 04133 | . 1971 | 5074 | 159.3 | 6.278 | . 001237 | 808.3 |
| 4 | 204.3 | 41740 | . 03278 | . 2485 | 4024 | 126.3 | 7.915 | . 001967 | 508.5 |
| 5 | 181.9 | 33090 | . 02599 | . 3134 | 3190 | 100.2 | 9.984 | . 003130 | 319.5 |
| 6 | 162.0 | 26240 | . 02061 | . 3952 | 2530 | 79.44 | 12.59 | . 004975 | 201.0 |
| 7 | 144.3 | 20820 | . 01635 | . 4981 | 2008 | 63.03 | 15.87 | . 007902 | 126.5 |
| 8 | 128.5 | 16510 | . 01297 | . 6281 | 1592 | 49.98 | 20.01 | . 01257 | 79.58 |
| 9 | 114.4 | 13090 | . 01028 | . 7925 | 1262 | 39.62 | 25.24 | . 02000 | 49.99 |
| 10 | 101.9 | 10380 | . 008155 | . 9988 | 1001 | 31.43 | 31.82 | . 03178 | 31.47 |
| 11 | 90.7 | 8230 | . 00646 | 1.26 | 793 | 24.9 | 40.2 | . 0506 | 19.8 |
| 12 | 80.8 | 6530 | . 00513 | 1.59 | 629 | 19.8 | 50.6 | . 0804 | 12.4 |
| 13 | 72.0 | 5180 | . 00407 | 2.00 | 500 | 15.7 | 63.7 | . 127 | 7.84 |
| 14 | 64.1 | 4110 | . 00323 | 2.52 | 396 | 12.4 | 80.4 | . 203 | 4.93 |
| 15 | 57.1 | 3260 | . 00256 | 3.18 | 314 | 9.87 | 101 | . 322 | 3.10 |
| 16 | 50.8 | 2580 | . 00203 | 4.02 | 249 | 7.81 | 128 | . 514 | 1.94 |
| 17 | 45.3 | 2050 | . 00161 | 5.05 | 198 | 6.21 | 161 | . 814 | 1.23 |
| 18 | 40.3 | 1620 | . 00128 | 6.39 | 157 | 4.92 | 203 | 1.30 | 0.770 |
| 19 | 35.9 | 1200 | . 00101 | 8:05 | 124 | 3.90 | 256 | 2.06 | . 485 |
| 20 | 32.0 | 1020 | . 000804 | 10.1 | 98.7 | 3.10 | 323 | 3.27 | . 306 |
| 21 | 28.5 | 812 | . 000638 | 12.8 | 78.3 | 2.46 | 407 | 5.19 | . 193 |
| 22 | 25.3 | 640 | . 000503 | 16.2 | 61.7 | 1.94 | 516 | 8.36 | . 120 |
| 23 | 22.6 | 511 | . 000401 | 20.3 | 49.2 | 1.55 | 647 | 13.1 | . 0761 |
| 24 | 20.1 | 404 | . 000317 | 25.7 | 39.0 | 1.22 | 818 | 21.0 | . 0476 |
| 25 | 17.9 | 320 | . 000252 | 32.4 | 30.9 | 0.970 | 1030 | 33.4 | . 0300 |
| 26 | 15.9 | 253 | . 000199 | 41.0 | 24.4 | . 765 | 1310 | 53.6 | . 0187 |
| 27 | 14.2 | 202 | . 000158 | 51.4 | 19.4 | . 610 | 1640 | 84.3 | . 0119 |
| 28 | 12.6 | 159 | . 000125 | 65.3 | 15.3 | . 481 | 2080 | 136 | . 00736 |
| 29 | 11.3 | 128 | . 000100 | 81.2 | 12.3 | . 387 | 2590 | 210 | . 00476 |
| 30 | 10.0 | 100 | . 0000785 | 104 | 9.64 | . 303 | 3300 | 343 | . 00292 |
| 31 | 8.9 | 79.2 | . 0000622 | 131 | 7.64 | . 240 | 4170 | 546 | . 00183 |
| 32 | 8.0 | 64.0 | . 0000503 | 162 | 6.17 | . 194 | 5160 | 836 | . 00120 |
| 33 | 7.1 | 50.4 | . 0000396 | 206 | 4.86 | . 153 | 6550 | 1350 | . 000742 |
| 34 | 6.3 | 39.7 | . 0000312 | 261 | 3.83 | . 120 | 8320 | 2170 | . 000460 |
| 35 | 5.6 | 31.4 | . 0000246 | 331 | 3.02 | . 0949 | 10500 | 3480 | . 000287 |
| 36 | 5.0 | 25.0 | . 0000196 | 415 | 2.41 | . 0757 | 13200 | 5480 | . 000182 |
| 37 | 4.5 | 20.2 | . 0000159 | 512 | 1.95 | . 0613 | 16300 | 8360 | . 000120 |
| 38 | 4.0 | 16.0 | . 0000126 | 648 | 1.54 | . 0484 | 20600 | 13400 | . 0000747 |
| 39 | 3.5 | 12.2 | . 00000092 | 847 | 1.18 | . 0371 | 27000 | 22800 | . 0000438 |
| 40 | 3.1 | 9.61 | . 00000755 | 1080 | 0.927 | . 0291 | 34400 | 37100 | . 0000270 |
| 41 | 2.8 | 7.84 | . 00000616 | 1320 | . 756 | . 0237 | 42100 | 55700 | . 0000179 |
| 42 | 2.5 | 6.25 | . 00000491 | 1660 | . 603 | . 0189 | 52900 | 87700 | . 0000114 |
| 43 | 2.2 | 4.84 | . 00000380 | 2140 | . 467 | . 0147 | 68300 | 146000 | . 00000684 |
| 44 | 2.0 | 4.00 | . 00000314 | 2590 | . 386 | . 0121 | 82600 | 214000 | . 00000467 |
| 45 | 1.76 | 3.10 | . 00000243 | 3350 | . 299 | . 00938 | 107000 | 357000 | . 00000280 |
| 46 | 1.57 | 2.46 | . 00000194 | 4210 | . 238 | . 00746 | 134000 | 564000 | . 00000177 |
| 47 | 1.40 | 1.96 | . 000000154 | 5290 | . 189 | . 00593 | 169000 | 892000 | . 00000112 |
| 48 | 1.24 | 1.54 | . 00000121 | 6750 | . 148 | . 00465 | 215000 | 1450000 | . 000000690 |
| 49 | 1.11 | 1.23 | . 000000968 | 8420 | . 119 | . 00373 | 268000 | 2260000 | . 000000443 |
| 50 | 0.99 | 0.980 | . 000000770 | 10600 | . 0945 | . 00297 | 337000 | 3570000 | . 000000280 |
| 51 | 0.88 | 0.774 | . 000000608 | 13400 | . 0747 | . 00234 | 427000 | 5710000 | . 000000175 |
| 52 | 0.78 | 0.608 | . 000000478 | 17000 | . 0587 | . 00184 | 543000 | 9260000 | . 000000108 |
| 53 | 0.70 | 0.490 | . 000000385 | 21200 | . 0472 | . 00148 | 674000 | 14300000 | . 00000000701 |
| 54 | 0.62 | 0.384 | . 000000302 | 27000 | . 0371 | . 00116 | 859000 | 23200000 | . 0000000431 |
| 55 | 0.56 | 0.302 | . 000000238 | 34300 | . 0292 | . 000916 | 1090000 | 37400000 | . 0000000267 |
| 56 | 0.49 | 0.240 | . 000000189 | 43200 | . 0232 | . 000727 | 1380000 | 59400000 | . 0000000168 |


 tivity, and hence the change of resistivity per ${ }^{\circ} \mathrm{C}$ is a constant. $0.000597 \mathrm{ohm}-\mathrm{g} / \mathrm{m}^{\mathbf{2}}$. The "constant mass' temperature coeffient of any sample is
$0.000597+0.000005$
The density is $8.89 \mathbf{g} / \mathrm{cm}^{5}$ at $20^{\circ} \mathrm{C}$.
 copper of any other resistivity, Hard-drapn copper may be taken as about 2.5 percent higher resistivity than annealed copper.

TABLE 6. Wire table, standard annealed copper
American Wire Gage. English units.
Ohms per 1,000 feet. 0 to $200^{\circ} \mathrm{C}$.

| Gage | Diam${ }_{20}{ }^{\circ}{ }^{\circ} \mathrm{C}$ mils | Cross section at $20^{\circ} \mathrm{C}$ |  | Ohms per 1.000 feet ${ }^{14}$ at the temperature of - |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Circular mils | Square inch | $0^{\circ} \mathrm{C}$ | $20^{\circ} \mathrm{C}$ | $25{ }^{\circ} \mathrm{C}$ | $30^{\circ} \mathrm{C}$ | $75{ }^{\circ} \mathrm{C}$ | $100{ }^{\circ} \mathrm{C}$ | $200^{\circ} \mathrm{C}$ |
| 0000 | 460.0 | 211600 | 0.1662 | 0.04516 | 0.04901 | 0.04998 | 0.05479 | 0.059 61 | 0.06442 | 0.08369 |
| 000 | 409.6 | 167800 | . 1318 | . 05696 | . 06182 | . 06303 | . 06911 | . 07518 | . 08125 | . 1055 |
| 00 | 364.8 | 133100 | . 1045 | . 07181 | . 07793 | . 07946 | . 08712 | . 09478 | . 1024 | . 1331 |
| 0 | 324.9 | 105600 | . 0829 l | .090.53 | . 09825 | . 1002 | . 1098 | . 1195 | . 1291 | . 1673 |
| 1 | 289.3 | 83690 | . 06573 | . 1142 | . 1239 | . 1264 | . 1385 | . 1507 | . 1629 | . 2116 |
| 2 | 257.6 | 66360 | . 05212 | . 1440 | . 1563 | . 1594 | . 1747 | . 1901 | . 2054 | . 2669 |
| 3 | 229.4 | 52620 | . 04133 | . 1816 | . 1971 | . 2010 | . 2203 | . 2397 | . 2590 | . 3365 |
| 4 | 204.3 | 41740 | . 03278 | . 2289 | . 2485 | . 2534 | . 2778 | . 3022 | . 3266 | . 4243 |
| 5 | 181.9 | 33090 | . 02599 | . 2888 | . 3134 | . 3196 | . 3504 | . 3812 | . 4120 | . 5352 |
| 6 | 162.0 | 26240 | . 02061 | . 3641 | . 3952 | . 4029 | . 4418 | . 4805 | . 5194 | . 6747 |
| 7 | 144.3 | 20820 | . 01635 | . 4589 | . 4981 | . 5079 | . 5568 | . 6057 | . 6547 | . 8504 |
| 8 | 128.5 | 16510 | . 01297 | . 5787 | . 6281 | . 6404 | . 7021 | . 7639 | . 8256 | 1.072 |
| 9 | 114.4 | 13090 | . 01028 | . 7302 | . 7925 | . 8080 | . 8859 | . 9637 | 1.042 | 1.353 |
| 10 | 101.9 | 10380 | . 008155 | . 9203 | . 9988 | 1.018 | 1.117 | 1.215 | 1.313 | 1.705 |
| 11 | 90.7 | 8230 | . 00646 | 1.16 | 1.26 | 1.29 | 1.41 | 1.53 | 1.66 | 2.15 |
| 12 | 80.8 | 6530 | . 00513 | 1.46 | 1.59 | 1.62 | 1.78 | 1.93 | 2.09 | 2.71 |
| 13 | 72.0 | 5180 | . 00407 | 1.84 | 2.00 | 2.04 | 2.24 | 2.43 | 2.63 | 3.42 |
| 14 | 64.1 | 4110 | . 00323 | 2.33 | 2.52 | 2.57 | 2.82 | 3.07 | 3.32 | 4.31 |
| 15 | 57.1 | 3260 | . 00256 | 2.93 | 3.18 | 3.24 | 3.56 | 3.87 | 4.18 | 5.43 |
| 16 | 50.8 | 2580 | . 00203 | 3.70 | 4.02 | 4.10 | 4.49 | 4.89 | 5.28 | 6.86 |
| 17 | 45.3 | 2050 | . 00161 | 4.66 | 5.05 | 5.15 | 5.65 | 6.15 | 6.64 | 8.63 |
| 18 | 40.3 | 1620 | . 00128 | 5.88 | 6.39 | 6.51 | 7.14 | 7.77 | 8.39 | 10.9 |
| 19 | 35.9 | 1290 | . 00101 | 7.41 | 8.05 | 8.21 | 9.00 | 9.79 | 10.6 | 13.7 |
| 20 | 32.0 | 1020 | . 000804 | 9.33 | 10.1 | 10.3 | 11.3 | 12.3 | 13.3 | 17.3 |
| 21 | 28.5 | 812 | . 000638 | 11.8 | 12.8 | 13.0 | 14.3 | 15.5 | 16.8 | 21.8 |
| 22 | 25.3 | 640 | . 000503 | 14.9 | 16.2 | 16.5 | 18.1 | 19.7 | 21.3 | 27.7 |
| 23 | 22.6 | 511 | . 000401 | 18.7 | 20.3 | 20.7 | 22.7 | 24.7 | 26.7 | 34.7 |
| 24 | 20.1 | 404 | . 000317 | 23.7 | 25.7 | 26.2 | 28.7 | 31.2 | 33.7 | 43.8 |
| 25 | 17.9 | 320 | . 000252 | 29.8 | 32.4 | 33.0 | 36.2 | 39.4 | 42.5 | 55.3 |
| 26 | 15.9 | 253 | . 000199 | 37.8 | 41.0 | 41.8 | 45.9 | 49.9 | 53.9 | 70.0 |
| 27 | 14.2 | 202 | . 000158 | 47.4 | 51.4 | 52.4 | 57.5 | 62.6 | 67.6 | 87.8 |
| 28 | 12.6 | 159 | . 000125 | 60.2 | 65.3 | 66.6 | 73.0 | 79.4 | 85.9 | 112 |
| 29 | 11.3 | 128 | . 000100 | 74.8 | 81.2 | 82.8 | 90.8 | 98.8 | 107 | 139 |
| 30 | 10.0 | 100 | . 0000785 | 95.6 | 104 | 106 | 116 | 126 | 136 | 177 |
| 31 | 8.9 | 79.2 | . 0000622 | 121 | 131 | 134 | 146 | 159 | 172 | 224 |
| 32 | 8.0 | 64.0 | . 0000503 | 149 | 162 | 165 | 181 | 197 | 213 | 277 |
| 33 | 7.1 | 50.4 | . 0000396 | 190 | 206 | 210 | 230 | 250 | 270 | 351 |
| 34 | 6.3 | 39.7 | . 0000312 | 241 | 261 | 266 | 292 | 318 | 343 | 446 |
| 35 | 5.6 | 31.4 | . 0000246 | 305 | 331 | 337 | 370 | 402 | 435 | 565 |
| 36 | 5.0 | 25.0 | . 0000196 | 382 | 415 | 423 | 464 | 505 | 545 | 708 |
| 37 | 4.5 | 20.2 | . 0000159 | 472 | 512 | 522 | 573 | 623 | 673 | 874 |
| 38 | 4.0 | 16.0 | . 0000126 | 597 | 648 | 661 | 725 | 788 | 852 | 1110 |
| 39 | 3.5 | 12.9 | . 00000962 | 780 | 847 | 863 | 946 | 1030 | 1110 | 1450 |
| 40 | 3.1 | 9.61 | . 00000755 | 994 | 1080 | 1100 | 1210 | 1310 | 1420 | 1840 |
| 41 | 2.8 | 7.84 | . 00000616 | 1220 | 1320 | 1350 | 1480 | 1610 | 1740 | 2260 |
| 42 | 2.5 | 6.25 | . 00000491 | 1530 | 1660 | 1690 | 1860 | 2020 | 2180 | 2830 |
| 43 | 2.2 | 4.84 | . 00000380 | 1970 | 2140 | 2180 | 2400 | 2610 | 2820 | 3660 |
| 44 | 2.0 | 4.00 | . 00000314 | 2390 | 2590 | 2640 | 2900 | 3150 | 3410 | 4430 |
| 45 | 1.76 | 3.10 | . 00000243 | 3080 | 3350 | 3410 | 3740 | 4070 | 4400 | 5720 |
| 46 | 1.57 | 2.46 | . 000000194 | 3880 | 4210 | 4290 | 4700 | 5120 | 5530 | 7180 |
| 47 | 1.40 | 1.96 | . 00000154 | 4880 | 5290 | 5400 | 5920 | 6440 | 6960 | 9030 |
| 48 | 1.24 | 1.54 | . 00000121 | 6210 | 6750 | 6880 | 7540 | 8200 | 8870 | 11500 |
| 49 | 1.11 | 1.23 | . 000000968 | 7760 | 8420 | 8580 | 9410 | 10200 | 11100 | 14400 |
| 50 | 0.99 | 0.980 | . 000000770 | 9750 | 10600 | 10800 | 11800 | 12900 | 13900 | 18100 |
| 51 | 0.88 | 0.774 | . 000000608 | 12300 | 13400 | 13700 | 15000 | 16300 | 17600 | 22900 |
| 52 | 0.78 | 0.608 | . 000000478 | 15700 | 17000 | 17400 | 19100 | 20700 | 22400 | 29100 |
| 53 | 0.70 | 0.490 | . 000000385 | 19500 | 21200 | 21600 | 23700 | 25700 | 27800 | 36100 |
| 54 | 0.62 | 0.384 | . 000000302 | 24900 | 27000 | 27500 | 30200 | 32800 | 35500 | 46100 |
| 55 | 0.55 | 0.302 | . 000000238 | 31600 | 34300 | 35000 | 38300 | 41700 | 45100 | 58500 |
| 56 | 0.49 | 0.240 | . 000000189 | 39800 | 43200 | 44000 | 48300 | 52500 | 56800 | 73800 |

[^6]Table 7. Wire table, standard annealed copper
American Wire Gage. English units.
Feet per pound. Pounds per $\mathbf{1 , 0 0 0}$ feet. Feet per ohm, 0 to $20^{\circ} \mathrm{C}$.

| Gage | $\begin{aligned} & \text { Diam } \\ & \text { eter } \\ & 20{ }^{\circ} \mathrm{Ct} \\ & \text { mili } \end{aligned}$ | Pounds per 1.000 fee | Feet per pound | Feet per ohm ${ }^{15}$ at- |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  | $0^{\circ} \mathrm{C}$ | $20^{\circ} \mathrm{C}$ | $25^{\circ} \mathrm{C}$ | $50^{\circ} \mathrm{C}$ | 75 C | $100^{\circ} \mathrm{C}$ | $200{ }^{\circ} \mathrm{C}$ |
| 0000 | 460.0 | 640.5 | 1.561 | 22140 | 20400 | 20010 | 18250 | 16780 | 15520 | 11950 |
| 000 | 409.6 | 507.8 | 1.969 | 17560 | 16180 | 15860 | 14470 | 13300 | 12310 | 9474 |
| 00 | 364.8 | 402.8 | 2.482 | 13930 | 12830 | 12580 | 11480 | 10550 | 9762 | 7515 |
| 0 | 324.9 | 319.5 | 3.130 | 11050 | 10180 | 9982 | 9105 | 8369 | 7744 | 5961 |
| 1 | 289.3 | 253.3 | 3.947 | 8758 | 8070 | 7914 | 7219 | 6636 | 6140 | 4726 |
| 2 | 257.6 | 200.9 | 4.978 | 6944 | 6396 | 6275 | 5723 | 5261 | 4668 | 3747 |
| 3 | 229.4 | 159.3 | 6.278 | 5507 | 5074 | 4976 | 4539 | 4172 | 3860 | 2972 |
| 4 | 204.3 | 126.3 | 7.915 | 4366 | 4024 | 3947 | 3600 | 3309 | 3062 | 2357 |
| 5 | 181.9 | 100.2 | 9.964 | 3462 | 3190 | 3129 | 2854 | 2623 | 2427 | 1869 |
| 6 | 162.0 | 79.44 | 12.59 | 2746 | 2530 | 2482 | 2264 | 2081 | 1925 | 1482 |
| 7 | 144.3 | 63.03 | 15.87 | 2179 | 2006 | 1969 | 1796 | 1651 | 1527 | 1176 |
| 8 | 128.5 | 49.98 | 20.01 | 1726 | 1592 | 1561 | 1424 | 1309 | 1211 | 932.5 |
| 9 | 114.4 | 39.62 | 25.24 | 1370 | 1262 | 1238 | 1129 | 1036 | 960.1 | 739.1 |
| 10 | 101.9 | 31.43 | 31.82 | 1087 | 1001 | 981.9 | 895.6 | 823.3 | 761.7 | 586.4 |
| 11 | 90.7 | 24.9 | 40.2 | 861 | 793 | 778 | 710 | 652 | 603 | 465 |
| 12 | 80.8 | 19.8 | 50.6 | 683 | 629 | 617 | 563 | 518 | 479 | 369 |
| 13 | 72.0 | 15.7 | 63.7 | 542 | 500 | 490 | 447 | 411 | 380 | 293 |
| 14 | 64.1 | 12.4 | 80.4 | 430 | 396 | 389 | 354 | 326 | 301 | 232 |
| 15 | 57.1 | 9.87 | 101 | 341 | 314 | 308 | 281 | 258 | 239 | 184 |
| 16 | 50.8 | 7.81 | 126 | 270 | 249 |  | 223 | 205 | 189 | 146 |
| 17 | 45.3 | 6.21 | 161 | 215 | 198 | 194 | 177 | 163 | 151 | 116 |
| 18 | 40.3 | 4.92 | 203 | 170 | 157 | 154 | 140 | 129 | 119 | 91.7 |
| 19 | 35.9 | 3.90 | 256 | 135 | 124 | 122 | 111 | 102 | 94.5 | 72.6 |
| 20 | 32.0 | 3.10 | 323 | 107 | 98.7 | 96.8 | 88.3 | 81.2 | 75.1 | 57.6 |
| 21 | 28.5 | 2.46 | 407 | 85.0 | 78.3 | 76.8 | 70.1 | 64.4 | 59.6 | 45.9 |
| 22 | 25.3 | 1.94 | 516 | 67.0 | 61.7 | 60.5 | 55.2 | 50.7 | 47.0 | 36.1 |
| 23 | 22.6 | 1.55 | 647 | 53.4 | 49.2 | 48.3 | 44.1 | 40.5 | 37.5 | 28.6 |
| 24 | 20.1 | 1.22 | 818 | 42.3 | 39.0 | 38.2 | 34.8 | 32.0 | 29.6 | 22.8 |
| 25 | 17.9 | 0.970 | 1030 | 33.5 | 30.9 | 30.3 | 27.6 | 25.4 | 23.5 | 18.1 |
| 26 | 15.9 | . 765 | 1310 | 26.5 | 24.4 | 23.9 | 21.8 | 20.0 | 18.5 | 14.3 |
| 27 | 14.2 | . 610 | 1640 | 21.1 | 19.4 | 19.1 | 17.4 | 16.0 | 14.8 | 11.4 |
| 28 | 12.6 | . 481 | 2080 | 16.6 | 15.3 | 15.0 | 13.7 | 12.6 | 11.6 | 8.97 |
| 29 | 11.3 | . 387 | 2590 | 13.4 | 12.3 | 12.1 | 11.0 | 10.1 | 9.37 | 7.21 |
| 30 | 10.0 | . 303 | 3300 | 10.5 | 9.64 | 9.46 | 8.63 | 7.93 | 7.34 | 5.65 |
| 31 | 8.9 | . 240 | 4170 | 8.29 | 7.64 | 7.49 | 6.83 | 6.28 | 5.81 | 4.47 |
| 32 | 8.0 | . 194 | 5160 | 6.70 | 6.17 | 6.05 | 5.52 | 5.07 | 4.69 | 3.61 |
| 33 | 7.1 | . 153 | 6550 | 5.28 | 4.86 | 4.77 | 4.35 | 4.00 | 3.70 | 2.85 |
| 34 | 6.3 | . 120 | 8320 | 4.15 | 3.83 | 3.75 | 3.42 | 3.15 | 2.91 | 2.24 |
| 35 | 5.6 | . 0949 | 10500 | 3.28 | 3.02 | 2.97 | 2.70 | 2.49 | 2.30 | 1.77 |
| 36 | 5.0 | . 0757 | 13200 | 2.62 | 2.41 | 2.36 | 2.16 | 1.98 | 1.83 | 1.41 |
| 37 | 4.5 | . 0613 | 16300 | 2.12 | 1.95 | 1.91 | 1.75 | 1.61 | 1.49 | 1.14 |
| 38 | 4.0 | . 0484 | 20600 | 1.67 | 1.54 | 1.51 | 1.36 | 1.27 | 1.17 | 0.904 |
| 39 | 3.5 | . 0371 | 27000 | 1.28 | 1.18 | 1.16 | 1.06 | 0.971 | 0.899 | . 692 |
| 40 | 3.1 | . 0291 | 34400 | 1.01 | 0.927 | 0.909 | 0.829 | . 726 | . 705 | . 543 |
| 41 | 2.8 | . 0237 | 42100 | 0.620 | . 756 | . 741 | . 676 | . 622 | . 575 | . 443 |
| 42 | 2.5 | . 0189 | 52900 | . 654 | . 603 | . 591 | . 539 | . 496 | . 458 | . 353 |
| 43 | 2.2 | . 0147 | 66300 | . 506 | . 467 | . 458 | . 417 | . 384 | . 355 | . 273 |
| 44 | 2.0 | . 0121 | 82600 | . 419 | . 386 | . 378 | . 345 | . 317 | . 293 | . 226 |
| 45 | 1.76 | . 00938 | 107000 | . 324 | . 299 | . 293 | . 267 | . 246 | . 227 | . 175 |
| 46 | 1.57 | . 00746 | 134000 | . 258 | . 238 | . 233 | . 213 | . 195 | . 181 | . 139 |
| 47 | 1.40 | . 00593 | 169000 | . 205 | . 189 | . 185 | . 169 | . 155 | . 144 | . 111 |
| 48 | 1.24 | . 00465 | 215000 | . 161 | . 148 | . 145 | -133 | . 122 | . 113 | . 0868 |
| 49 | 1.11 | . 00373 | 268000 | . 129 | . 119 | . 117 | . 106 | . 0977 | . 0904 | -0696 |
| 50 | 0.99 | . 00297 | 337000 | . 103 | . 0945 | . 0927 | . 0845 | . 0777 | . 0719 | . 0553 |
| 51 | 0.88 | . 00234 | 427000 | . 0810 | . 0747 | . 0732 | . 0668 | . 0614 | . 0568 | . 0437 |
| 52 | 0.78 | . 00184 | 543000 | . 0637 | . 0587 | . 0575 | . 0525 | . 0482 | . 0446 | . 0344 |
| 53 | 0.70 | . 00148 | 674000 | . 0513 | . 0472 | . 0463 | . 0423 | . 0388 | . 0359 | . 0277 |
| 54 | 0.62 | . 00116 | 859000 | . 0402 | . 0371 | . 0363 | . 0332 | . 0305 | . 0282 | . 0217 |
| 55 | 0.56 | . 000916 | 090000 | . 0317 | . 0292 | . 0286 | . 0261 | . 0240 | . 0222 | . 0171 |
| 56 | 0.49 | . 000727 | 380000 | . 0251 | . 0232 | . 0227 | . 0207 | . 0190 | . 0176 | . 0136 |

[^7]Tanle 8. Wire table, standard annealed copper
Ancrican Wire Gage. English units.
Ohms per pound, $\mathbf{0}$ to 200 ' C .

| Gago | $\begin{array}{\|c\|c} \text { Diam- } \\ \text { eter nt } \\ 20 \\ \text { 20ile } \\ \text { nnils } \end{array}$ | Ohms per pound at- |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | $0{ }^{\circ} \mathrm{C}$ | $20^{\circ} \mathrm{C}$ | $25{ }^{\circ} \mathrm{C}$ | $50{ }^{\circ} \mathrm{C}$ | $76{ }^{\circ} \mathrm{C}$ | $100{ }^{\circ} \mathrm{C}$ | $200{ }^{\circ} \mathrm{C}$ |
| 0000 | 490.0 | 0.00007051 | 0.00007652 | 0.00007802 | 0.00008554 | 0.00009306 | 0.0001006 | 0.0001307 |
| 000 | 409.6 | . 0001122 | . 0001217 | . 0001241 | . 0001361 | . 0001480 | . 0001600 | . 000207.8 |
| 00 | 364.8 | . 0001783 | . 0001935 | . 0001973 | . 0002163 | . 0002353 | . OM 2543 | . 0003303 |
| 0 | 324.9 | . 0002833 | . 0003075 | . 0003135 | . 0003437 | . 0003730 | . 0004041 | . 0005250 |
| 1 | 289.3 | . 0004507 | .000 4891 | . 0004987 | . 0005468 | .000 5948 | .000 6429 | . 0008351 |
| 2 | 257.6 | . 0007169 | . 0007781 | . 0007934 | . 0008698 | . 0009463 | . 001023 | . 0013129 |
| 3 | 229.4 | . 001140 | . 001237 | . 001262 | . 001383 | . 001505 | . 001626 | . 002112 |
| 4 | 204.3 | . 001812 | . 001967 | . 002005 | . 002199 | . 002392 | . 002585 | . 003358 |
| 5 | 181.9 | . 002884 | . 003130 | .003191 | . 003499 | . 003806 | . 004113 | . 005343 |
| 6 | 162.0 | . 004564 | . 004975 | . 005072 | . 005561 | . 006050 | .006 539 | . 008494 |
| 7 | 144.3 | . 007281 | . 007902 | . 008057 | . 008834 | . 009610 | . 01039 | . 01349 |
| 8 | 128.5 | . 01158 | . 01257 | . 01281 | . 01405 | . 01528 | . 01652 | . 02146 |
| 9 | 114.4 | . 01843 | . 02000 | . 02040 | . 02236 | . 02433 | . 02629 | . 03416 |
| 10 | 101.9 | . 02928 | . 03178 | . 03240 | . 03552 | . 03865 | . 04177 | . 05426 |
| 11 | 90.7 | . 0466 | . 0506 | . 0516 | . 0566 | . 0616 | . 0665 | . 0864 |
| 12 | 80.8 | . 0741 | . 0804 | . 0820 | . 0899 | . 0978 | .106 | . 137 |
| 13 | 72.0 | . 117 | . 127 | . 130 | . 143 | . 155 | . 168 | . 218 |
| 14 | 64.1 | . 187 | . 203 | . 207 | . 227 | . 247 | . 267 | . 347 |
| 15 | 57.1 | . 297 | . 322 | . 329 | . 360 | . 392 | , 424 | . 550 |
| 16 | 50.8 | . 474 | . 514 | . 525 | . 575 | . 626 | . 676 | . 878 |
| 17 | 45.3 | . 750 | . 814 | . 830 | . 910 | . 989 | 1.07 | 1.39 |
| 18 | 40.3 | 1.20 | 1.30 | 1.32 | 1.45 | 1.58 | 1.71 | 2.22 |
| 19 | 35.9 | 1.90 | 2.06 | 2.10 | 2.31 | 2.51 | 2.71 | 3.52 |
| 20 | 32.0 | 3.01 | 3.27 | 3.33 | 3.65 | 3.97 | 4.29 | 5.58 |
| 21 | 28.5 | 4.78 | 5.19 | 5.30 | 5.81 | 6.32 | 6.83 | 8.87 |
| 22 | 25.3 | 7.71 | 8.36 | 8.53 | 9.35 | 10.2 | 11.00 | 14.3 |
| 23 | 22.6 | 12.1 | 13.1 | 13.4 | 14.7 | 16.0 | 17.3 | 22.4 |
| 24 | 20.1 | 19.3 | 21.0 | 21.4 | 23.5 | 25.5 | 27.6 | 35.8 |
| 25 | 17.9 | 30.8 | 33.4 | 34.0 | 37.3 | 40.6 | 43.9 | 57.0 |
| 26 | 15.9 | 49.4 | 53.6 | 54.7 | 59.9 | 65.2 | 70.5 | 91.5 |
| 27 | 14.2 | 77.6 | 84.3 | 85.9 | 94.2 | 102 | 111 | 144 |
| 28 | 12.6 | 125 | 136 | 139 | 152 | 165 | 179 | 232 |
| 29 | 11.3 | 194 | 210 | 214 | 235 | 256 | 276 | 359 |
| 30 | 10.0 | 316 | 343 | 349 | 383 | 417 | 450 | 585 |
| 31 | 8.9 | 603 | 546 | 557 | 610 | 664 | 718 | 932 |
| 32 | 8.0 | 771 | 836 | 853 | 935 | 1020 | 1100 | 1430 |
| 33 | 7.1 | 1240 | 1350 - | 1370 | 1510 | 1640 | 1770 | 2300 |
| 34 | 6.3 | 2000 | 2170 | 2220 | 2430 | 2650 | 2860 | 3710 |
| 35 | 5.6 | 3210 | 3480 | 3550 | 3890 | 4240 | 4580 | 5950 |

Table 8. Wire table, alundard annealed copper (Continued)

| Gage | (1) | Ohms per pound at- |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | $0^{\circ} \mathrm{C}$ | $20^{\circ} \mathrm{C}$ | $25^{\circ} \mathrm{C}$ | $60^{\circ} \mathrm{C}$ | $75{ }^{\circ} \mathrm{C}$ | $100{ }^{\circ} \mathrm{C}$ | $200{ }^{\circ} \mathrm{C}$ |
| 36 | 5.0 | 5050 | 5480 | 5590 | 6130 | 6670 | 7210 | 9360 |
| 37 | 4.5 | 7700 | 8360 | 8520 | 9340 | 10200 | 11000 | 14300 |
| 38 | 4.0 | 12300 | 13400 | 13600 | 15000 | 16300 | 17600 | 22900 |
| 39 | 3.5 | 21000 | 22800 | 23300 | 25500 | 27800 | 30000 | 39000 |
| 40 | 3.1 | 34200 | 37100 | 37800 | 41500 | 45100 | 48800 | 63300 |
| 41 | 2.8 | 51400 | 55700 | 56800 | 63300 | 67800 | 73300 | 95200 |
| 42 | 2.5 | 80800 | 87700 | 89400 | 98100 | 107000 | 115000 | 150000 |
| 43 | 2.2 | 135000 | 146000 | 149000 | 164000 | 178000 | 192000 | 250000 |
| 44 | 2.0 | 197000 | 214000 | 218000 | 239000 | 260000 | 281000 | 366000 |
| 45 | 1.76 | 329000 | 357000 | 364000 | 399000 | 434000 | 469000 | 610000 |
| 46 | 1.57 | 520000 | 564000 | 575000 | 630000 | 686000 | 741000 | 963000 |
| 47 | 1.40 | 822000 | 892000 | 909000 | 997000 | 1080000 | 1170000 | 1520000 |
| 48 | 1.24 | 1340000 | 1450000 | 1480000 | 1620000 | 1760000 | 1900000 | 2470000 |
| 49 | 1.11 | 2080000 | 2260000 | 2300000 | 2520000 | 2740000 | 2970000 | 3850000 |
| 50 | 0.99 | 3290000 | 3570000 | 3640000 | 3990000 | 4340000 | 4690000 | 6090000 |
| 51 | 0.88 | 5260000 | 5710000 | 5830000 | 6390000 | 6950000 | 7510000 | 9750000 |
| 52 | 0.78 | 8530000 | 9260000 | 9440000 | 10300000 | 11300000 | 12200000 | 15800000 |
| 53 | 0.70 | 13100000 | 14300000 | 14600000 | 16000000 | 17400000 | 18800000 | 24400000 |
| 54 | 0.62 | 21400000 | 23200000 | 23600000 | 25900000 | 28200000 | 30500000 | 39600000 |
| 55 | 0.55 | 34500000 | 37400000 | 38200000 | 41900000 | 45500000 | 49200000 | 63900000 |
| 56 | 0.49 | 54800000 | 59400000 | 60600000 | 66400000 | 72300000 | 78100000 | 101000000 |

Thble $^{\text {9. Wire table, standard annealed copper }}$
American Wire Gage. Enclish units.
Pounds par ohm, 0 to $200^{\circ} \mathrm{C}$.

| Gage | Diameter at mils | Pounds per ohm at- |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | $0^{\circ} \mathrm{C}$ | $20^{\circ} \mathrm{C}$ | $25^{\circ} \mathrm{C}$ | $50^{\circ} \mathrm{C}$ | $75{ }^{\circ} \mathrm{C}$ | $100{ }^{\circ} \mathrm{C}$ | $200{ }^{\circ} \mathrm{C}$ |
| 0000 | 460.0 | 14180 | 13070 | 12820 | 11690 | 10750 | 0942 | 7654 |
| 000 | 409.6 | 8916 | 8215 | 8057 | 7349 | 6755 | 6250 | 4812 |
| 00 | 364.8 | 5610 | 5169 | 5069 | 4624 | 4250 | 3933 | 3027 |
| 0 | 324.9 | 3530 | 3252 | 3190 | 2909 | 2674 | 2474 | 1905 |
| 1 | 289.3 | 2219 | 2044 | 2005 | 1829 | 1681 | 1555 | 1197 |
| 2 | 257.6 | 1395 | 1285 | 1260 | 1150 | 1057 | 977.8 | 752.7 |
| 3 | 229.4 | 877.2 | 808.3 | 792.7 | 723.0 | 664.6 | 614.9 | 473.4 |
| 4 | 204.3 | 551.8 | 508.5 | 498.7 | 454.8 | 418.1 | 386.8 | 297.8 |
| 5 | 181.9 | 346.8 | 319.5 | 313.4 | 285.8 | 262.7 | 243.1 | 187.1 |
| 6 | 162.0 | 218.2 | 201.0 | 197.1 | 179.8 | 165.3 | 152.9 | 117.7 |
| 7 | 144.3 | 137.3 | 126.5 | 124.1 | 113.2 | 104.1 | 96.28 | 74.12 |
| 8 | 128.5 | 86.37 | 79.58 | 78.05 | 71.19 | 65.44 | 60.54 | 46.61 |
| 9 | 114.4 | 54.26 | 49.99 | 49.03 | 44.72 | 41.11 | 38.03 | 29.28 |
| 10 | 101.9 | 34.15 | 31.47 | 30.86 | 28.15 | 25.88 | 23.94 | 18.43 |
| 11 | 90.7 | 21.4 | 19.8 | 19.4 | 17.7 | 16.2 | 15.0 | 11.6 |
| 12 | 80.8 | 13.5 | 12.4 | 12.2 | 11.1 | 10.2 | 9.46 | 7.29 |
| 13 | 72.0 | 8.51 | 7.84 | 7.69 | 7.02 | 6.45 | 5.97 | 4.59 |
| 14 | 64.1 | 5.35 | 4.93 | 4.83 | 4.41 | 4.05 | 3.75 | 2.89 |
| 15 | 57.1 | 3.37 | 3.10 | 3.04 | 2.78 | 2.55 | 2.36 | 1.82 |
| 16 | 50.8 | 2.11 | 1.94 | 1.91 | 1.74 | 1.60 | 1.48 | 1.14 |
| 17 | 45.3 | 1.33 | 1.23 | 1.21 | 1.10 | 1.01 | 0.935 | 0.720 |
| 18 | 40.3 | 0.836 | 0.770 | 0.755 | 0.689 | 0.663 | . 586 | . 451 |
| 19 | 35.9 | . 526 | . 485 | . 475 | . 434 | . 399 | . 369 | . 284 |
| 20 | 32.0 | . 332 | . 306 | . 300 | . 274 | . 252 | . 233 | . 179 |
| 21 | 28.5 | . 209 | . 193 | . 189 | . 172 | . 158 | . 147 | . 113 |
| 22 | 25.3 | . 130 | . 120 | . 117 | . 107 | . 0983 | . 0910 | . 0700 |
| 23 | 22.6 | . 0826 | . 0761 | . 0747 | . 0681 | . 0626 | . 0579 | . 0446 |
| 24 | 20.1 | . 0517 | . 0476 | . 0467 | . 0426 | . 0392 | . 0362 | . 0279 |
| 25 | 17.9 | . 0325 | . 0300 | . 0294 | . 0268 | . 0246 | . 0228 | . 0175 |
| 26 | 15.9 | . 0202 | . 0187 | . 0183 | . 0167 | . 0153 | . 0142 | . 0109 |
| 27 | 14.2 | . 0129 | . 0119 | . 0116 | . 0106 | . 00976 | . 00903 | . 00695 |
| 28 | 12.6 | . 00798 | . 00736 | . 00721 | . 00658 | . 00605 | . 00560 | . 00431 |
| 29 | 11.3 | . 00516 | . 00476 | . 00467 | . 00426 | . 00391 | . 00362 | . 00279 |
| 30 | 10.0 | .00317 | . 00292 | . 00286 | . 00261 | .00240 | . 00222 | . 00171 |
| 31 | 8.9 | . 00199 | .00183 | . 00180 | .00164 | .00151 | . 00139 | . 00107 |
| 32 | 8.0 | . 00130 | . 00120 | .00117 | . 00107 | . 000983 | . 000910 | . 000700 |
| 33 | 7.1 | . 000805 | . 000742 | . 000727 | . 000663 | . 000610 | . 000564 | . 000434 |
| 34 | 6.3 | . 000499 | . 000460 | . 000451 | . 000441 | . 000378 | . 000350 | . 000269 |
| 35 | 5.6 | . 000312 | . 000287 | . 000282 | . 000257 | . 000236 | . 000218 | . 000168 |

Table 9. Wire table, standard annealed copper (Continued)

| Gage | $\begin{gathered} \text { Diame } \\ \text { ctar } \\ 20 \text { ot } \\ \text { mila } \\ \text { milo } \end{gathered}$ | Pounds per ohm at- |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | $0^{\circ} \mathrm{C}$ | 20 C | $25^{\circ} \mathrm{C}$ | $50^{\circ} \mathrm{C}$ | $75{ }^{\circ} \mathrm{C}$ | $100{ }^{\circ} \mathrm{C}$ | $200{ }^{\circ} \mathrm{C}$ |
| 36 | 5.0 | . 000198 | . 000182 | . 000179 | . 000163 | . 000150 | . 000139 | . 000107 |
| 37 | 4.5 | . 000130 | . 000120 | . 000117 | . 000107 | . 0000984 | . 0000911 | . 0000707 |
| 38 | 4.0 | . 0000811 | . 0000747 | . 0000733 | . 0000668 | . 0000614 | . 0000568 | . 0000438 |
| 39 | 3.5 | . 0000475 | . 0000438 | . 0000430 | . 0000392 | . 0000360 | . 0000333 | . 0000257 |
| 40 | 3.1 | . 0000293 | . 0000270 | . 0000264 | . 0000241 | . 0000222 | . 0000205 | . 0000158 |
| 41 | 2.8 | . 0000195 | . 0000179 | . 0000176 | . 0000160 | . 0000148 | . 0000136 | . 0000105 |
| 42 | 2.5 | . 00000124 | . 0000114 | . 0000112 | . 0000102 | . 00000937 | . 00000867 | . 000000668 |
| 43 | 2.2 | . 000000742 | . 00000684 | . 000000671 | . 00000612 | . 00000562 | . 00000520 | . 000000400 |
| 44 | 2.0 | . 00000507 | . 00000467 | . 00000458 | . 00000418 | . 000000384 | . 00000355 | . 000000274 |
| 45 | 1.76 | . 00000304 | . 00000280 | . 00000275 | . 00000251 | . 00000230 | . 00000213 | . 00000164 |
| 46 | 1.57 | . 000000192 | . 000000177 | . 000000174 | . 00000159 | . 000000146 | . 000000135 | . 000000104 |
| 47 | 1.40 | . 000000122 | . 00000112 | . 000000110 | . 00000100 | . 0000000922 | . 0000000853 | . 0000000657 |
| 48 | 1.24 | . 000000749 | . 000000690 | . 000000677 | . 000000617 | . 000000567 | . 000000525 | . 000000404 |
| 49 | 1.11 | . 000000481 | . 000000443 | . 0000000435 | . 000000396 | . 0000003364 | . 0000000337 | . 0000000260 |
| 50 | 0.99 | . 000 OM) 304 | . 000000280 | . 000000275 | . 000000251 | . 000000231 | . 000000213 | . 000000164 |
| 51 | 0.88 | . 000000190 | . 000000175 | . 000000172 | . 000000157 | . 000000144 | . 000000133 | . 0000000103 |
| 52 | 0.78 | . 000000117 | . 000000108 | . 0000000106 | . 0000000966 | . 0000000888 | . 0000000822 | . 00000000633 |
| 53 | 0.70 | . 0000000761 | . 00000000701 | . 0000000687 | . 0000000627 | . 0000000576 | . 0000000533 | . 00000000410 |
| 54 | 0.62 | . 0000000468 | . 00000000431 | . 0000000423 | . 0000000386 | . 0000000355 | . 0000000328 | . 0000000253 |
| 55 | 0.55 | . 0000000290 | . 0000000267 | . 0000000262 | . 0000000239 | . 0000000220 | . 0000000203 | . 000000015 a |
| 56 | 0.49 | . 0000000183 | . 0000000168 | . 0000000165 | . 0000000151 | . 0000000138 | . 0000000128 | . 0000000985 |


| $\begin{aligned} & \text { 통 } \\ & 0 \\ & 0 \\ & \text { 冎 } \end{aligned}$ |  |  | 00000 <br>  Бincoñ |  | NMOOO <br>  |  があ゙がい |  $\infty$ かっだ | Wixitep | －moner 잉NㅇN <br>  |  | स |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | 유무N웅 <br>  <br>  | 与국워요 <br>  <br>  |  | ตִํํํํํㅜㅜ <br> Hincitit |  $\rightarrow \infty$ |  | ลิ¢¢¢¢ |  <br>  |  | 88888 <br> 옹웅 <br> いいたが |  |
|  | 웅№ <br> － <br>  | 셍ㅇㅇㅇㅇㅇ 6 लिल Nㅡㅇ뀽ㅇㅇㅇ <br>  |  <br>  | $0000-$ 성훙웡강ㅇㅇㅇ | 0 <br> 088 的家 <br> ㅇ․ㄱ․․․ |  |  |  |  |  <br>  |  |  |
|  |  | $00-100$ <br> No웅 <br>  |  がががが | ヶザがッ <br>  | $\bullet$ स్య్ల్ల్ $\ddot{-1} \sigma \underset{\sim}{\circ}$ | \＆ix Pom <br>  | He onine |  |  | madooo <br>  గ్రీం઼ִరి |  |  |
|  |  |  |  Tenotis <br>  |  | moner <br> HORFO |  |  | MompiN |  స్セִ우유ণ |  |  |  |
| （ |  | 10000 N 쿠숭유웅 |  －incicis |  サi $\dot{0}^{\circ} \infty$ | NOOOHCH ตคำสผึ |  みค่ | 보혐ㅇㅇㅇ न－NलM |  | 8్రిశ్మiగ <br> ワールハNか | 아어융잉ㅇㅁ <br> かいにが |  |  |
|  |  | －Coltinn <br>  | － ²이웅 |  |  | 어겅ㅇㅇㅇㅇ <br>  | 잉요영ㅇ <br> －17000 |  |  |  | 농엉ㅇ －10000 8은은 |  |
| 㔛 | EBOCOM <br> arocio | 엉NN잉ㅇㅇ <br>  | 1010 <br>  |  | Hiccose | ボNㅓㅇN゙に | ずあotion <br>  |  | Nㅓㄱ응ㅇㅇㅇㅇㅇ |  | 8： \％oㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇ |  |
| ¢0゙ | $8$ | Fovention | －Noos윽 | コベำずロ |  | ลベMが心 |  |  |  |  | 안여웅숭 |  |

Table 11. Wire table, standard annealed copper
American Wire Gage. Metric units.
Ohms per kilometer, 0 to $200^{\circ} \mathrm{C}$.

| Gage | Diameter | Cross section at $20^{\circ} \mathrm{C}$ | Ohms per Fillometer ${ }^{16}$ at- |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | $0^{\circ} \mathrm{C}$ | $20^{\circ} \mathrm{C}$ | $25^{\circ} \mathrm{C}$ | $50{ }^{\circ} \mathrm{C}$ | $75^{\circ} \mathrm{C}$ | $100^{\circ} \mathrm{C}$ | $200 \%$ |
| 0000 | ${ }_{\text {i1 }} \mathrm{m}$ m | $\begin{gathered} \text { sq. } \mathrm{mm} \\ \mathbf{1 0 7 . 2} \end{gathered}$ | 0.1482 | 0.1608 | 0.1640 | 0.1798 | 0.1956 | 0.2114 | 0.2746 |
| 000 | 10.40 | S5.01 | . 1869 | . 2028 | . 2068 | . 2267 | . 2466 | . 2666 | . 3463 |
| 00 | 9.266 | 67.43 | . 2356 | .2557 | . 2607 | . 2858 | . 3109 | . 3361 | . 4365 |
| - | 8.252 | 53.49 | . 2970 | . 3223 | . 3287 | . 3603 | . 3920 | . 4237 | . 5504 |
| 1 | 7.348 | 42.41 | . 3746 | . 4065 | . 4145 | . 4545 | . 4944 | . 5344 | . 6941 |
| 2 | 6.543 | 33.62 | . 4725 | . 5128 | . 5228 | . 5732 | . 6236 | . 6740 | . 8755 |
| 3 | 5.827 | 26.67 | . 5958 | . 6466 | . 6593 | . 7228 | . 7863 | . 4899 | 1.104 |
| 4 | 5.189 | 21.15 | . 7511 | . 8152 | . 8312 | . 9113 | . 9914 | 1.072 | 1.392 |
| 5 | 4.620 | 16.77 | . 9475 | 1.028 | 1.049 | 1.150 | 1.251 | 1.352 | 1.756 |
| 6 | 4.115 | 13.30 | 1.195 | 1.297 | 1.322 | 1.449 | 1.577 | 1.704 | 2.214 |
| 7 | 3.665 | 10.55 | 1.506 | 1.634 | 1.666 | 1.827 | 1.987 | 2.148 | 2.790 |
| 8 | 3.264 | S. 367 | 1.899 | 2.061 | 2.101 | 2.304 | 2.506 | 2.708 | 3.518 |
| 9 | 2.906 | 6.631 | 2.396 | 2.600 | 2.651 | 2.906 | 3.162 | 3.417 | 4.439 |
| 10 | 2.588 | 5.261 | 3.019 | 3.277 | 3.341 | 3.663 | 3.985 | 4.307 | 5.595 |
| 11 | 2.30 | 4.17 | 3.81 | 4.14 | 4.22 | 4.62 | 5.03 | 5.44 | 7.06 |
| 12 | 2.05 | 3.31 | 4.80 | 5.21 | 5.31 | 5.83 | 6.34 | 6.85 | 8.90 |
| 13 | 1.83 | 2.63 | 6.05 | 6.56 | 6.69 | 7.34 | 7.98 | 8.63 | 11.2 |
| 14 | 1.63 | 2.08 | 7.63 | 8.28 | 8.44 | 9.26 | 10.1 | 10.9 | 14.1 |
| 15 | 1.45 | 1.65 | 9.62 | 10.4 | 10.6 | 11.7 | 12.7 | 13.7 | 17.8 |
| 16 | 1.29 | 1.31 | 12.1 | 13.2 | 13.4 | 14.7 | 16.0 | 17.3 | 22.5 |
| 17 | 1.15 | 1.04 | 15.3 | 16.6 | 16.9 | 18.5 | 20.2 | 21.8 | 28.3 |
| 18 | 1.02 | 0.823 | 19.3 | 21.0 | 21.4 | 23.4 | 25.5 | 27.5 | 35.8 |
| 19 | . 0.912 | . 653 | 23.4 | 26.4 | 26.9 | 29.5 | 32.1 | 34.7 | 45.1 |
| 20 | . 813 | . 519 | 30.6 | 33.2 | 33.9 | 37.1 | 40.4 | 43.7 | 56.7 |
| 21 | . 724 | . 412 | 38.6 | 41.9 | 42.7 | 46.8 | 50.9 | 55.1 | 71.5 |
| 22 | . 643 | . 324 | 49.0 | 53.2 | 54.2 | 59.4 | 64.6 | 69.9 | 90.8 |
| 23 | . 574 | . 259 | 61.4 | 66.6 | 67.9 | 74.5 | 81.0 | 87.6 | 114 |
| 24 | . 511 | . 205 | 77.6 | 84.2 | 85.9 | 94.1 | 102 | 111 | 144 |
| 25 | . 455 | . 162 | 97.8 | 106 | 108 | 119 | 129 | 140 | 181 |
| 26 | . 404 | . 128 | 124 | 135 | 137 | 150 | 164 | 177 | 230 |
| 27 | . 361 | . 102 | 155 | 169 | 172 | 189 | 205 | 222 | 288 |
| 28 | . 320 | . 0804 | 197 | 214 | 219 | 240 | 261 | 282 | 366 |
| 29 | . 287 | . 0647 | 246 | 266 | 272 | 298 | 324 | 350 | 455 |
| 30 | . 254 | . 0507 | 314 | 340 | 347 | 380 | 414 | 447 | 581 |
| 31 | . 226 | . 0401 | 396 | 430 | 438 | 480 | 522 | 565 | 733 |
| 32 | . 203 | . 0324 | 490 | 532 | 542 | 594 | 647 | 699 | 908 |
| 33 | . 180 | . 0255 | 622 | 675 | 688 | 755 | 821 | 887 | 1150 |
| 34 | . 160 | . 0201 | 790 | 857 | 874 | 958 | 1040 | 1130 | 1460 |
| 35 | . 142 | . 0159 | 1000 | 1090 | 1110 | 1210 | 1320 | 1430 | 1850 |
| 36 | . 127 | . 0127 | 1250 | 1360 | 1390 | 1520 | 1660 | 1790 | 2320 |
| 37 | . 114 | . 0103 | 1550 | 1680 | 1710 | 1880 | 2040 | 2210 | 2870 |
| 38 | . 102 | . 00811 | 1960 | 2130 | 2170 | 2380 | 2590 | 2800 | 3630 |
| 39 | . 089 | . 00621 | 2560 | 2780 | 2830 | 3110 | 3380 | 3650 | 4740 |
| 40 | . 079 | . 00487 | 3260 | 3540 | 3610 | 3960 | 4310 | 4650 | 6050 |
| 41 | . 071 | . 00397 | 4000 | 4340 | 4430 | 4850 | 5280 | 5700 | 7410 |
| 42 | . 064 | . 00317 | 5020 | 5440 | 5550 | 6090 | 6620 | 7160 | 9300 |
| 43 | . 056 | . 00245 | 6480 | 7030 | 7170 | 7860 | 8550 | 9240 | 12000 |
| 44 | . 051 | . 00203 | 7840 | 8510 | 8670 | 9510 | 10300 | 11200 | 14500 |
| 45 | . 0447 | . 00157 | 10100 | 11000 | 11200 | 12300 | 13400 | 14400 | 18800 |
| 46 | . 0399 | . 00125 | 12700 | 13800 | 14100 | 15400 | 16800 | 18100 | 23600 |
| 47 | . 0356 | . 000993 | 16000 | 17400 | 17700 | 19400 | 21100 | 22800 | 29600 |
| 48 | . 0315 | . 000779 | 20400 | 22100 | 22600 | 24700 | 26900 | 29100 | 37800 |
| 49 | . 0282 | . 000624 | 25400 | 27600 | 28200 | 30900 | 33600 | 36300 | 47200 |
| 50 | . 0251 | . 000497 | 32000 | 34700 | 35400 | 38800 | 42200 | 45600 | 59300 |
| 51 | . 0224 | . 0003392 | 40500 | 43900 | 44800 | 49100 | 53400 | 57800 | 75000 |
| 52 | . 0198 | . 000308 | 51500 | 55900 | 57000 | 62500 | 68000 | 73500 | 95500 |
| 53 | . 0178 | . 000248 | 64000 | 69400 | 70800 | 77600 | 84400 | 91300 | 119000 |
| 54 | . 0157 | . 000195 | 81600 | 88500 | 90300 | 99000 | 108000 | 116000 | 151000 |
| 55 | . 0140 | . 000153 | 104000 | 112000 | 115000 | 126000 | 137000 | 148000 | 192000 |
| 56 | . 0124 | . 000122 | 131000 | 142000 | 144000 | 158000 | 172000 | 186000 | 242000 |

[^8]Table 12. Wire table, standard annealed copper
American Wire Gage. Metric units.
Kilograms per kilometer meters per gram. Meters per ohm, 0 to $20^{\circ} \mathrm{C}$.

| Gage | $\left\|\begin{array}{c} \text { Diam- } \\ \text { eter- } \\ \text { et }{ }^{\circ} \mathrm{CO} \end{array}\right\|$ | Eilograms <br> kilome | $\begin{gathered} \text { Meters per } \\ \text { gram } \end{gathered}$ | Meters per ohm ${ }^{17}$ at- |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  | $0^{\circ} \mathrm{C}$ | $20^{\circ} \mathrm{C}$ | $25{ }^{\circ} \mathrm{C}$ |  | $75{ }^{\circ} \mathrm{C}$ | $100^{\circ} \mathrm{C}$ | $200{ }^{\circ} \mathrm{C}$ |
| 0000 | $\underset{11.68}{\text { m }}$ | 953.2 | 0.001049 | 6749 | 6219 | 6099 | 5563 |  | 4731 | 3642 |
| 000 | 10.40 | 755.8 | . 001323 | 5351 | 4931 | 4836 | 4411 | 4054 | 3751 | 2888 |
| 00 | 9.266 | 599.5 | . 001668 | 4245 | 3911 | 3830 | 13499 | 3216 | 2976 | 2291 |
| 0 | 8.252 | 475.5 | . 002103 | 3367 | 3103 | 3043 | 2775 | 2551 | 2360 | 1817 |
| 1 | 7.348 | 377.0 | . 002652 | 2670 | 2460 | 2412 | 2200 | 2023 | 1871 | 1441 |
| 2 | 6.543 | 298.9 | . 003345 | 2117 | 1950 | 1913 | 1745 | 1604 | 1484 | 1142 |
| 3 | 5.827 | 237.1 | . 004218 | 1679 | 1547 | 1517 | 1383 | 1372 | 1177 | 905.8 |
| 4 | 5.189 | 188.0 | . 005319 | 1331 | 1227 | 1203 | 1097 | 1009 | 933.3 | 718.4 |
| 5 | 4.620 | 149.0 | . 006709 | 1055 | 972.4 | 953.7 | 869.9 | 799.6 | 739.8 | 569.5 |
|  | 4.115 | 118.2 | . 008459 | 837.1 | 771.3 | 756.4 | 600.0 | 634.2 | 586.8 | 451.7 |
|  | 3.665 | 93.80 | . 01066 | 664.2 | 612.0 | 600.2 | 547.4 | 503.2 | 465.6 | 358.4 |
|  | 3.264 | 74.38 | . 01344 | 526.7 | 485.3 | 475.9 | 434.1 | 399.0 | 369.2 | 284.2 |
|  | 2.906 | 58.95 | . 01696 | 417.4 | 384.6 | 377.2 | 344.1 | 316.3 | 292.6 | 225.3 |
|  | 2.588 | 46.77 | . 02138 | 331.2 | 305.2 | 299.3 | 273.0 | 250.9 | 232.2 | 178.7 |
| 11 | 2.30 | 37.1 | . 0270 | 262 | 242 | 237 | 216 | 199 | 184 | 142 |
| 12 | 2.05 | 29.4 | . 0340 | 208 | 192 | 188 | 172 | 158 | 146 | 112 |
| 13 | 1.83 | 23.4 | . 0428 | 165 | 152 | 149 | 136 | 125 | 116 | 89.2 |
| 14 | 1.63 | 18.5 | . 0540 | 131 | 121 | 118 | 108 | 99.3 | 91.9 | 70.7 |
| 15 | 1.45 | 14.7 | . 0681 | 104 | 95.8 | 94.0 | 85.7 | 78.8 | 72.9 | 56.1 |
| 16 | 1.29 | 11.6 | . 0860 | 82.3 | 75.8 | 74.4 | 67.8 | 62.4 | 57.7 | 44.4 |
| 17 | 1.15 | 9.24 | . 108 | 65.5 | 60.3 | 59.1 | 53.9 | 49.6 | 45.9 | 35.3 |
| 18 | 1.02 | 7.32 | . 137 | 51.8 | 47.7 | 46.8 | 42.7 | 39.2 | 36.3 | 28.0 |
| 19 | 0.912 | 5.81 | . 172 | 41.1 | 37.9 | 37.1 | 33.9 | 31.1 | 28.8 | 22.2 |
| 20 | . 813 | 4.61 | . 217 | 32.7 | 30.1 | 29.5 | 26.9 | 24.7 | 22.9 | 17.6 |
| 21 | . 724 | 3.66 | . 273 | 25.9 | 23.9 | 23.4 | 21.4 | 19.6 | 18.2 | 14.0 |
| 22 | . 643 | 2.83 | . 347 | 20.4 | 18.8 | 18.4 | 16.8 | 15.5 | 14.3 | 11.0 |
| 23 | . 574 | 2.30 | . 435 | 16.3 | 15.0 | 14.7 | 13.4 | 12.3 | 11.4 | 8.79 |
| 24 | . 511 | 1.82 | . 549 | 12.9 | 11.9 | 11.6 | 10.6 | 9.76 | 9.03 | 6.95 |
| 25 | . 455 | 1.44 | . 693 | 10.2 | 9.42 | 9.24 | 8.42 | 7.74 | 7.16 | 5.52 |
| 26 | . 404 | 1.14 | . 878 | 8.06 | 7.43 | 7.29 | 6.65 | 6.11 | 5.65 | 4.35 |
| 27 | . 361 | 0.908 | 1.10 | 6.43 | 5.93 | 5.81 | 5.30 | 4.87 | 4.51 | 3.47 |
| 28 | . 320 | . 715 | 1.40 | 5.06 | 4.67 | 4.58 | 4.17 | 3.84 | 3.55 | 2.73 |
| 29 | . 287 | . 575 | 1.74 | 4.07 | 3.75 | 3.68 | 3.36 | 3.09 | 2.86 | 2.20 |
| 30 | . 254 | . 450 | 2.22 | 3.19 | 2.94 | 2.88 | 2.63 | 2.42 | 2.24 | 1.72 |
| 31 | . 226 | . 357 | 2.80 | 2.53 | 2.33 | 2.28 | 2.08 | 1.91 | 1.77 | 1.36 |
| 32 | .203 | . 288 | 3.47 | 2.04 | 1.88 | 1.84 | 1.68 | 1.55 | 1.43 | 1.10 |
| 33 | . 180 | . 227 | 4.40 | 1.61 | 1.48 | 1.45 | 1.33 | 1.22 | 1.13 | 0.868 |
| 34 | . 160 | . 179 | 5.59 | 1.27 | 1.17 | 1.14 | 1.04 | 0.959 | 0.887 | . 683 |
| 35 | . 142 | . 141 | 7.08 | 1.00 | 0.922 | 0.904 | 0.824 | . 758 | . 701 | . 540 |
| 36 | . 127 | . 113 | 8.58 | 0.797 | . 735 | . 721 | . 657 | . 604 | . 559 | . 430 |
| 37 | . 114 | . 0912 | 11.0 | . 646 | . 595 | . 584 | . 532 | . 489 | . 453 | . 349 |
| 38 | . 102 | . 0721 | 13.9 | . 510 | . 470 | . 461 | . 421 | . 387 | . 358 | . 275 |
| 39 | . 089 | . 0552 | 18.1 | . 391 | . 360 | . 353 | . 322 | . 296 | . 274 | . 211 |
| 40 | . 079 | . 0433 | 23.1 | . 307 | . 282 | . 277 | . 253 | . 232 | . 215 | . 165 |
| 41 | . 071 | . 0353 | 28.3 | . 250 | . 230 | . 226 | . 206 | . 189 | . 175 | . 135 |
| 42 | . 064 | . 0282 | 35.5 | . 199 | . 184 | . 180 | . 164 | . 151 | . 140 | . 108 |
| 43 | . 056 | . 0218 | 45.9 | . 154 | . 142 | . 140 | . 127 | . 117 | . 108 | . 0833 |
| 44 | . 051 | . 0180 | 55.5 | . 128 | . 118 | . 115 | . 105 | . 0967 | . 0894 | . 0689 |
| 45 | . 0447 | . 0140 | 71.7 | . 0988 | . 0910 | . 0893 | . 0814 | . 0749 | . 0693 | . 0533 |
| 46 | . 0399 | . 0111 | 90.1 | . 0786 | . 0724 | . 0710 | . 0648 | . 0596 | . 0551 | . 0424 |
| 47 | . 0356 | . 00883 | 113 | . 0625 | . 0576 | . 0565 | . 0515 | . 0474 | . 0438 | . 0337 |
| 48 | . 0315 | . 00693 | 144 | . 0490 | . 0452 | . 0443 | . 0404 | . 0372 | . 0344 | . 0265 |
| 49 | . 0282 | . 00555 | 180 | . 0393 | . 0362 | . 0355 | . 0324 | . 0298 | . 0275 | . 0212 |
| 50 | . 0251 | . 00441 | 226 | . 0313 | . 0288 | . 0232 | . 0258 | . 0237 | . 0219 | . 0169 |
| 51 | . 0224 | . 00349 | 287 | . 0247 | . 0228 | . 0223 | . 0204 | . 0157 | . 0173 | . 0133 |
| 52 | . 0198 | . 00274 | 365 | . 0194 | . 0179 | . 0175 | . 0160 | . 0147 | . 0136 | . 0105 |
| 53 | . 0178 | . 00221 | 453 | . 0156 | . 0144 | . 0141 | . 0129 | . 0118 | . 0110 | . 00843 |
| 54 | . 0157 | . 00173 | 57S | . 0123 | . 0113 | . 0111 | . 0101 | . 00929 | . 00860 | . 00662 |
| 55 | . 0140 | . 00136 | 734 | . 00965 | . 00889 | . 00872 | . 00795 | . 00731 | . 00676 | . 00521 |
| 56 | . 0124 | . 00108 | 925 | . 00766 | . 00706 | . 00692 | . 00631 | . 00580 | . 00537 | . 00413 |

[^9]Table 13. Kire table, standard annealed copper
Americnn Wire Gage. Metric units.
Ohm per kilogram, 0 to $200{ }^{\circ} \mathrm{C}$.

| Gage | Diamcter at $20^{\circ} \mathrm{C}$ | Ohms per kilogram at - |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | $0^{\circ} \mathrm{C}$ | $20^{\circ} \mathrm{C}$ | $25^{\circ} \mathrm{C}$ | $50^{\circ} \mathrm{C}$ | $75{ }^{\circ} \mathrm{C}$ | $100^{\circ} \mathrm{C}$ | $200^{\circ} \mathrm{C}$ |
|  | $m m$ |  |  |  |  |  |  |  |
| 0000 | 11.68 | 0.0001554 | 0.0001637 | 0.0001720 | 0.0001886 | 0.0002052 | 0.0002217 | 0.0002880 |
| 000 | 10.40 | . 0002473 | . 0002684 | 000.2736 | . 0003000 | . 0003264 | . 0003527 | . 0004582 |
| 00 | 9.266 | . 0003930 | . 0004265 | . 0004349 | . 0004768 | . 0005187 | . 0005606 | . 0007282 |
| 0 | 8.252 | . 0006246 | . 0006779 | . 0006912 | . 0007578 | . 0008244 | .0008910 | .001157 |
| 1 | 7.348 | . 0009936 | . 001078 | . 001100 | . 001206 | . 001311 | . 001417 | . 001841 |
| 2 | 6.543 | . 001531 | . 001715 | . 001749 | . 001918 | . 002086 | . 002255 | . 002929 |
| 3 | 5.827 | . 002513 | . 002728 | . 002781 | . 003049 | . 003317 | . 003585 | . 004657 |
| 4 | 5. 189 | . 003995 | . 004336 | . 004421 | . 004847 | . 005273 | . 005699 | .007403 |
| 5 | 4.620 | . 006357 | . 006900 | . 007035 | . 007713 | . 008391 | . 009069 | .01178 |
| 6 | 4.115 | . 01011 | . 01097 | . 01118 | . 01226 | . 01334 | . 01442 | . 01873 |
| 7 | 3.665 | . 01605 | . 01742 | . 01776 | . 01948 | . 02119 | . 02290 | . 02975 |
| 8 | 3.264 | . 02553 | . 02770 | . 02825 | . 03097 | . 03369 | .03641 | .04730 |
| 9 | 2.906 | . 04064 | . 04410 | . 04497 | . 04930 | . 05363 | . 05797 | .075 30 |
| 10 | 2.588 | . 06455 | . 07006 | . 07144 | . 07832 | .08520 | .09209 | .1196 |
| 11 | 2.30 | . 103 | . 112 | . 114 | . 125 | . 136 | . 147 | . 191 |
| 12 | 2.05 | . 163 | . 177 | . 181 | . 198 | . 216 | . 233 | . 303 |
| 13 | 1.83 | . 259 | . 281 | . 287 | . 314 | . 342 | . 369 | . 480 |
| 14 | 1.63 | . 412 | . 447 | . 456 | . 500 | . 544 | . 588 | . 764 |
| 15 | 1.45 | . 655 | . 711 | . 725 | . 794 | . 864 | . 934 | 1.21 |
| ID | 1.29 | 1.05 | 1.13 | 1.16 | 1.27 | 1.38 | 1.49 | 1.94 |
| 17 | 1.15 | 1.65 | 1.79 | 1.83 | 2.01 | 2.18 | 2.36 | 3.06 |
| 18 | 1.02 | 2.64 | 2.86 | 2.92 | 3.20 | 3.48 | 3.76 | 4.89 |
| 19 | 0.912 | 4.19 | 4.55 | 4.64 | 5.08 | 5.53 | 5.98 | 7.76 |
| 20 | . 813 | 6.64 | 7.20 | 7.34 | 8.05 | 8.76 | 9.47 | 12.3 |
| 21 | . 724 | 10.5 | 11.4 | 11.7 | 12.8 | 13.9 | 15.0 | 19.5 |
| 22 | . 643 | 17.0 | 18.4 | 18.8 | 20.6 | 22.4 | 24.2 | 31.5 |
| 23 | . 574 | 26.7 | 29.0 | 29.5 | 32.4 | 35.2 | 38.1 | 49.4 |
| 24 | . 511 | 42.6 | 46.3 | 47.2 | 51.7 | 56.3 | 60.8 | 79.0 |
| 25 | . 455 | 67.8 | 73.6 | 75.0 | 82.3 | 89.5 | 96.7 | 126 |
| 26 | . 404 | 109 | 118 | 121 | 132 | 144 | 155 | 202 |
| 27 | . 361 | 171 | 186 | 189 | 208 | 226 | 244 | 317 |
| 28 | . 320 | 276 | 300 | 306 | 335 | 364 | 394 | 512 |
| 29 | . 287 | 427 | 463 | 472 | 518 | 563 | 609 | 791 |
| 30 | . 254 | 696 | 755 | 770 | 844 | 919 | 993 | 1290 |
| 31 | . 226 | 1110 | 1200 | 1230 | 1350 | 1460 | 1580 | 2060 |
| 32 | . 203 | 1700 | 1840 | 1880 | 2060 | 2240 | 2420 | 3150 |
| 33 | .180 | 2740 | 2970 | 3030 | 3320 | 3620 | 3910 | 5080 |
| 34 | .160) | 4420 | 4800 | 4890 | 5360 | 5830 | 6300 | 8190 |
| 35 | . 142 | 7080 | 7680 | 7830 | 8590 | 9340 | 10100 | 13100 |

Table 13. Wire lable, standard annealed copper (Continued)

| Gage | $\begin{aligned} & \text { Diam- } \\ & \text { eterint } \\ & 20^{\circ} \mathrm{C} \end{aligned}$ | Ohms per kilogrnm at- |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | $0^{\circ} \mathrm{C}$ | $20^{\circ} \mathrm{C}$ | $25^{\circ} \mathrm{C}$ | $50^{\circ} \mathrm{C}$ | $75^{\circ} \mathrm{C}$ | $100{ }^{\circ} \mathrm{C}$ | $200{ }^{\circ} \mathrm{C}$ |
| 36 | . 127 | 11100 | 12100 | 12300 | 13500 | 14700 | 15900 | 20600 |
| 37 | . 114 | 17000 | 18400 | 18800 | 20600 | 22400 | 24200 | 31500 |
| 38 | . 102 | 27200 | 29500 | 30100 | 33000 | 35900 | 38800 | 50400 |
| 39 | . 089 | 46400 | 50300 | 51300 | 56300 | 61200 | 66200 | 85900 |
| 40 | . 079 | 75400 | 81800 | 83400 | 91400 | 99500 | 108000 | 140000 |
| 41 | . 071 | 113000 | 123000 | 125000 | 137000 | 149000 | 162000 | 210000 |
| 42 | . 064 | 178000 | 193000 | 197000 | 216000 | 235000 | 254000 | 330000 |
| 43 | . 056 | 297000 | 322000 | 329000 | 360000 | 392000 | 424000 | 551000 |
| 44 | . 051 | 435000 | 472000 | 481000 | 528000 | 574000 | 621000 | 806000 |
| 45 | . 0447 | 725000 | 787000 | 803000 | 880000 | 957000 | 1030000 | 1340000 |
| 46 | . 0399 | 1150000 | 1240000 | 1270000 | 1390000 | 1510000 | 1630000 | 2120000 |
| 47 | . 0356 | 1181000 | 1970000 | 2000000 | 2200000 | 2390000 | 2580000 | 3300000 |
| 48 | . 0315 | 2940000 | 3200000 | 3260000 | 3570000 | 3890000 | 4200000 | 5460000 |
| 49 | . 0282 | 4580000 | 4980000 | 5070000 | 5560000 | 6050000 | 0540000 | 8500000 |
| 50 | . 0251 | 7250000 | 7860000 | 8020000 | 8790000 | 9560000 | 10300000 | 13400000 |
| 51 | . 0224 | 11 G00 000 | 12600000 | 12800000 | 14100000 | 15300000 | 16600000 | 21500000 |
| 52 | . 0198 | 18800000 | 20400000 | 20800000 | 22800000 | 24800000 | 26800000 | 34800000 |
| 53 | . 0178 | 29000000 | 31500000 | 32100000 | 35200000 | 38300000 | 41400000 | 53700000 |
| 54 | . 0157 | 47100000 | 51100000 | 52100000 | 57100000 | 62200000 | 67200000 | 87300000 |
| 55 | . 0140 | 76100000 | 82500000 | 84200000 | 92300000 | 100000000 | 100000000 | 141000000 |
| 56 | . 0124 | 121000000 | 131000000 | 134000000 | 146000000 | 159000000 | 172000000 | 224000000 |

American Wire Gage. Metrio units.
Grams per ohm. 0 to $200^{\circ} \mathrm{C}$.

| Gage | Diametcr nt $20^{\circ} \mathrm{C}$ | Grams per ohm at- |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | $0{ }^{\circ} \mathrm{C}$ | $20^{\circ} \mathrm{C}$ | $25{ }^{\circ} \mathrm{C}$ | $50^{\circ} \mathrm{C}$ | $75{ }^{\circ} \mathrm{C}$ | $100{ }^{\circ} \mathrm{C}$ | $200{ }^{\circ} \mathrm{C}$ |
| 0000 | 11.68 | 6433000 | 5928000 | 5813000 | 5302000 | 4874000 | 4510000 | 3472000 |
| 000 | 10.40 | 4044000 | 3726000 | 3654000 | 3333000 | 3064000 | 2835000 | 2182000 |
| 00 | 0.266 | 2545000 | 2345000 | -299000 | 2097000 | 1928000 | 1784000 | 1 373000 |
| 0 | 8.252 | 1601000 | 11475000 | 1447000 | 1320000 | 1213000 | t 122000 | 864000 |
| 1 | 7.348 | 1006000 | 027300 | 909500 | 829500 | 762500 | 705500 | 543100 |
| 2 | 6.543 | 632700 | 582900 | 571700 | 521500 | 479300 | 443500 | 341400 |
| 3 | 5.827 | 397900 | 366600 | 359600 | 328000 | 301500 | 278900 | 214700 |
| 4 | 5.189 | 250300 | 230600 | 226200 | 206300 | 189600 | 175500 | 135100 |
| 5 | 4.620 | 157300 | 144900 | 142100 | 129600 | 119200 | 110300 | 84890 |
| 6 | 4.115 | 98960 | 91180 | 89420 | 81560 | 74970 | 69370 | 53400 |
| 7 | 3.665 | 62300 | 57400 | 56290 | 51350 | 47200 | 43670 | 33620 |
| 8 | 3.264 | 39170 | 36100 | 35400 | 32290 | 29680 | 27460 | 21140 |
| 9 | 2.906 | 24610 | 22680 | 22240 | 20280 | 18640 | 17250 | 13280 |
| 10 | 2.588 | 15490 | 14270 | 14000 | 12770 | 11740 | 10860 | 8360 |
| 11 | 2.30 | 9270 | 8960 | 8790 | 8010 | 7370 | 6830 | 5250 |
| 12 | 2.05 | 6120 | 5640 | 5530 | 5050 | 4640 | 4290 | 3300 |
| 13 | 1.53 | 3860 | 3560 | 3490 | 3180 | 2930 | 2710 | 2080 |
| 14 | 1.63 | 2430 | 2230 | 2190 | 2000 | 1840 | 1700 | 1310 |
| 15 | 1.45 | 1530 | 1410 | 1380 | 1260 | 1160 | 1070 | 824 |
| 16 | 1.29 | 957 | 882 | 865 | 789 | 725 | 671 | 516 |
| 17 | 1.15 | 605 | 557 | 547 | 499 | 458 | 424 | 327 |
| 18 | 1.02 | 379 | 349 | 342 | 312 | 287 | 266 | 205 |
| 19 | 0.912 | 239 | 220 | 216 | 197 | 181 | 167 | 129 |
| 20 | . 813 | 151 | 139 | 136 | 124 | 114 | 106 | 81.3 |
| 21 | . 724 | 94.8 | 87.3 | 85.7 | 78.1 | 71.8 | 66.4 | 51.2 |
| 22 | . 643 | 58.9 | 54.2 | 53.2 | 48.5 | 44.6 | 41.3 | 31.8 |
| 23 | . 574 | 37.5 | 34.5 | 33.9 | 30.9 | 28.4 | 26.3 | 20.2 |
| 24 | . 511 | 23.5 14.8 | 21.6 | 21.2 | 19.3 | 17.8 | 16.4 | 12.7 |
| 25 | . 455 | 14.8 | 13.6 | 13.3 | 12.2 | 11.2 | 10.3 | 7.96 |
| 26 | . 404 | 9.18 | 8.46 | 8.30 | 7.57 | 6.96 | 6.44 | 4.96 |
| 27 | . 361 | 5.84 | 5.38 | 5.28 | 4.81 | 4.43 | 4.10 | 3.15 |
| 28 | . 320 | 3.62 | 3.34 | 3.27 | 2.98 | 2.74 | 2.54 | 1.95 |
| 29 | .287 | 2.34 1.44 | 2.16 | 2.12 | 1.93 | 1.77 | 1.64 | 1.28 |
| 30 | . 254 | 1.44 | 1.32 | 1.30 | 1.18 | 1.09 | 1.01 | 0.775 |
| 31 | . 226 | 0.901 | 0.831 | 0.815 | 0.743 | 0.683 | 0.632 | . 486 |
| 32 | . 203 | . 589 | . 542 | . 523 | . 485 | . 446 | .413 | . 318 |
| 33 | . 180 | . 365 | . 336 | . 330 | . 301 | . 277 | .256 | . 197 |
| 34 | . 160 | . 226 | . 209 | . 205 | . 187 | . 171 | . 159 | . 122 |
| 35 | . 142 | . 141 | . 130 | . 128 | . 116 | . 107 | . 0991 | . 0763 |

Table 14. Wive table, standard annealed copper (Continued)

| Gage | $\begin{aligned} & \text { Diam- } \\ & \text { etcr }_{\text {at }} \\ & 20 \end{aligned}$ | Grams per ohm at- |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | $0{ }^{\circ} \mathrm{C}$ | $20^{\circ} \mathrm{C}$ | $25^{\circ} \mathrm{C}$ | $50{ }^{\circ} \mathrm{C}$ | $75{ }^{\circ} \mathrm{C}$ | $100{ }^{\circ} \mathrm{C}$ | $200{ }^{\circ} \mathrm{C}$ |
| 36 | . 127 | . 0808 | . 0827 | . 0811 | . 0740 | . 0680 | . 0629 | . 0485 |
| 37 | . 114 | . 0589 | . 0543 | . 0532 | . 0486 | . 0446 | . 0413 | . 0318 |
| 38 | . 102 | . 0368 | . 0339 | . 0332 | . 0303 | . 0279 | . 02.58 | . 0198 |
| 39 | . 089 | . 0216 | . 0199 | . 0195 | . 0178 | . 0163 | . 0151 | . 0116 |
| 40 | . 079 | . 0133 | . 0122 | . 0120 | . 0109 | . 0101 | . 00930 | .007 16 |
| 41 | . 071 | . 00883 | . 00814 | . 00798 | . 00728 | . 00669 | . 00619 | . 00477 |
| 42 | . 064 | . 00561 | . 00517 | . 00507 | . 00463 | . 00425 | . 00393 | . 003303 |
| 43 | . 056 | . 00337 | . 00310 | . 00304 | . 00277 | . 00255 | . 00236 | . 00182 |
| 44 | . 051 | . 00230 | . 00212 | . 00208 | . 00189 | . 00174 | . 001 (6) | .001 24 |
| 45 | . 0447 | .00138 | . 00127 | . 00125 | . 00114 | . 00104 | . 000966 | .000 744 |
| 46 | . 0399 | . 000873 | . 000804 | . 000789 | . 000720 | . 000661 | . 000612 | .000 471 |
| 47 | . 0350 | . 000552 | . 000509 | . 000499 | . 000455 | . 000418 | . 000387 | .000 298 |
| 48 | . 0315 | . 000340 | . 000313 | . 000307 | . 000280 | . 000257 | . 000238 | .000 183 |
| 49 | . 0282 | . 000218 | . 000201 | .000197 | . 000180 | . 000165 | . 0000153 | . 000118 |
| 50 | . 0251 | . 000138 | . 000127 | .000125 | . 000114 | .000105 | . 0000068 | . 0000745 |
| 51 | . 0224 | . 0000862 | .0000794 | . 0000779 | .0000710 | . 0000653 | . 00000004 | . 0000465 |
| 52 | . 0198 | . 0000532 | . 0000490 | . 0000481 | . 0000438 | . 0000403 | .000 0373 | .000 0287 |
| 53 | . 0178 | . 0000345 | . 0000318 | . 0000312 | . 0000284 | . 0000261 | .0000242 | . 00000186 |
| 54 | . 0157 | .0000212 | . 0000196 | . 0000192 | . 0000175 | . 0000161 | . 0000149 | .0000115 |
| 55 | . 0140 | . 0000131 | .0000121 | .0000119 | .0000108 | . 00000996 | . 00000922 | .00000710 |
| 56 | . 0124 | . 00000828 | . 00000763 | . 00000748 | . 00000683 | . 00000628 | .00000581 | . 000000447 |

Table 15. Standard annealed copper wire, British Standard Wire Gage

| Gage | Diameter in mils | Cross section |  | Ohms per 1,000 feet ${ }^{18}$ |  | Pounds per |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Circular mils | Square inch | $\begin{aligned} & 15.6{ }^{\circ} \mathrm{C} \\ & \left(60^{\circ} \mathrm{F}\right) \end{aligned}$ | $\left(\begin{array}{l} 65{ }^{\circ} \mathrm{C} \\ \left(149{ }^{\circ} \mathrm{F}\right) \end{array}\right.$ |  |
| 7-0 | 500 | 250000 | 0.1964 | 0.04077 | 0.04882 | 756.8 |
| 6-0 | 464 | 215300 | . 1691 | . 04734 | . 05669 | 651.7 |
| 5-0 | 432 | 186600 | . 1466 | . 05461 | .06540 | 564.9 |
| 4-0 | 400 | 160000 | . 1257 | . 06370 | . 07628 | 484.3 |
| 3-0 | 372 | 138400 | . 1087 | . 07365 | . 08820 | 418.9 |
| 2-0 | 348 | 121100 | . 09512 | . 08416 | . 1008 | 366.6 |
| 0 | 324 | 105000 | . 08245 | . 09709 | . 1163 | 317.8 |
| 1 | 300 | 90000 | . 07069 | . 1132 | . 1356 | 272.4 |
| 2 | 276 | 76180 | . 05983 | . 1338 | . 1602 | 230.6 |
| 3 | 252 | 63500 | . 04988 | . 1605 | . 1922 | 192.2 |
| 4 | 232 | 53820 | . 04227 | . 1894 | . 2268 | 162.9 |
| 5 | 212 | 44940 | . 03530 | . 2268 | . 2716 | 136.0 |
| 6 | 192 | 36860 | . 02895 | . 2765 | . 3311 | 111.6 |
| 7 | 176 | 30980 | . 02433 | . 3290 | . 3940 | 93.76 |
| 8 | 160 | 25600 | . 02011 | . 3981 | . 4768 | 77.49 |
| 9 | 144 | 20740 | . 01629 | . 4915 | . 5886 | 62.77 |
| 10 | 128 | 16380 | . 01287 | . 6221 | . 7450 | 49.59 |
| 11 | 116 | 13460 | . 01057 | . 7574 | . 9071 | 40.73 |
| 12 | 104 | 10820 | . 008495 | . 9423 | 1.128 | 32.74 |
| 13 | 92 | 8464 | . 006648 | 1.204 | 1.442 | 25.62 |
| 14 | 80 | 6400 | . 005027 | 1.592 | 1.907 | 19.37 |
| 15 | 72 | 5184 | . 004072 | 1.966 | 2.354 | 15.69 |
| 16 | 64 | 4096 | . 003217 | 2.488 | 2.980 | 12.40 |
| 17 | 56 | 3136 | . 002463 | 3.250 | 3.892 | 9.493 |
| 18 | 48 | 2304 | . 001810 | 4.424 | 5.297 | 6.974 |
| 19 | 40 | 1600 | . 001257 | 6.370 | 7.628 | 4.843 |
| 20 | 36 | 1296 | . 001018 | 7.864 | 9.418 | 3.923 |
| 21 | 32 | 1024 | . 0008042 | 9.953 | 11.92 | 3.098 |
| 22 | 28 | 784.0 | . 0006158 | 13.00 | 15.57 | 2.373 |
| 23 | 24 | 576.0 | . 0004524 | 17.69 | 21.19 | 1.744 |
| 24 | 22 | 484.0 | . 00003801 | 21.06 | 25.22 | 1.465 |
| 25 | 20 | 400.0 | . 0003142 | 25.48 | 30.51 | 1.211 |
| 26 | 18 | 324.0 | . 0002545 | 31.46 | 37.67 | 0.9807 |
| 27 | 16.4 | 269.0 | . 0002112 | 37.89 | 45.37 | . 8141 |
| 28 | 14.8 | 219.0 | . 0001720 | 46.54 | 55.73 | . 6630 |
| 29 | 13.6 | 185.0 | . 0001453 | 55.09 | 65.97 | . 5599 |
| 30 | 12.4 | 153.8 | . 0001208 | 66.28 | 79.38 | . 4654 |
| 31 | 11.6 | 134.6 | . 0001057 | 75.74 | 90.71 | . 4073 |
| 32 | 10.8 | 116.6 | . 00009161 | 87.38 | 104.6 | . 3531 |
| 33 | 10.0 | 100.0 | . 00007854 | 101.9 | 122.1. | . 3027 |
| 34 | 9.2 | 84.64 | . 00006648 | 120.4 | 144.2 | . 2562 |
| 35 | 8.4 | 70.56 | . 00005542 | 144.4 | 173.0 | . 2136 |
| 36 | 7.6 | 57.76 | . 00004536 | 176.5 | 211.3 | . 1748 |
| 37 | 6.8 | 46.24 | . 00003632 | 220.4 | 264.0 | . 1400 |
| 38 | 6.0 | 36.00 | . 00002827 | 283.1 | 339.0 | . 1090 |
| 39 | 5.2 | 27.04 | . 00002124 | 376.9 | 451.4 | . 08185 |
| 40 | 4.8 | 23.04 | . 00001810 | 442.4 | 529.7 | . 06974 |
| 41 | 4.4 | 19.36 | . 00001521 | 526.4 | 630.4 | . 05860 |
| 42 | 4.0 | 16.00 | . 00001257 | 637.0 | 762.8 | . 04843 |
| 43 | 3.6 | 12.96 | . 00001018 | 786.4 | 941.8 | . 03923 |
| 44 | 3.2 | 10.24 | . 000008042 | 995.3 | 1192 | . 03100 |
|  | 2.8 | 7.840 | . 000006158 | 1300 | 1557 | . 02373 |
| 46 | 2.4 | 5.760 | . 000004524 | 1769 | 2119 | . 01744 |
| 47 | 2.0 | 4.000 | . 000003142 | 2548 | 3051 | . 01211 |
| 48 | 1.6 | 2.560 | . 000002011 | 3981 | 4768 | . 00775 |
| 49 | 1.2 | 1.440 | . 000001131 | 7078 | 8476 | . 00436 |
| 50 | 1.0 | 1.000 | . 000000785 | 10190 | 12210 | . 00303 |

[^10]Table 16. Standard annealed copper wire, "millimeter" wire gage

| Diameter 1 n mm | Crose sectionin $\operatorname{man}^{2}$ | Ohms per bilometer ${ }^{\prime \prime}$ |  | Kilograms per kilometer |
| :---: | :---: | :---: | :---: | :---: |
|  |  | $20^{\circ} \mathrm{C}$ | $65^{\circ} \mathrm{C}$ |  |
| 10.0 | 78.54 | 0.2195 | 0.2583 | 698.2 |
| 9.0 | 63.62 | . 2710 | . 3189 | 565.6 |
| 8.0 | 50.27 | . 3430 | . 4037 | 446.9 |
| 7.0 | 38.48 | . 4480 | . 5272 | 342.1 |
| 6.0 | 28.27 | . 6098 | . 7176 | 251.4 |
| 5.0 | 19.64 | . 8781 | 1.033 | 174.6 |
| 4.5 | 15.90 | 1.084 | 1.276 | 141.4 |
| 4.0 | 12.57 | 1.372 | 1.615 | 111.7 |
| 3.5 | 9.621 | 1.792 | 2.109 | 85.53 |
| 3.0 | 7.069 | 2.439 | 2.871 | 62.84 |
| 2.5 | 4.909 | 3.512 | 4.134 | 43.64 |
| 2.0 | 3.142 | 5.488 | 6.459 | 27.93 |
| 1.8 | 2.545 | 6.775 | 7.974 | 22.62 |
| 1.6 | 2.011 | 8.575 | 10.09 | 17.87 |
| 1.4 | 1.539 | 11.20 | 13.18 | 13.69 |
| 1.2 | 1.131 | 15.24 | 17.94 | 10.05 |
| 1.0 | 0.7854 | 21.95 | 25.83 | 6.982 |
| 0.90 | . 6362 | 27.10 | 31.89 | 5.656 |
| . 50 | . 5027 | 34.30 | 40.37 | 4.469 |
| . 70 | . 3848 | 44.80 | 52.72 | 3.421 |
| . 60 | . 2827 | 60.98 | 71.76 | 2.514 |
| . 50 | . 1964 | 87.81 | 103.3 | 1.746 |
| . 45 | . 1590 | 108.4 | 127.6 | 1.414 |
| . 40 | . 1257 | 137.2 | 161.5 | 1.117 |
| . 35 | . 09621 | 179.2 | 210.9 | 0.8553 |
| . 30 | . 07069 | 243.9 | 287.1 | . 6284 |
| . 25 | . 04909 | 351.2 | 413.4 | . 4364 |
| . 20 | . 03142 | 548.8 | 645.9 | . 2793 |
| . 15 | . 01767 | 975.7 | 1148 | . 1571 |
| . 10 | . 00785 | 2195 | 2583 | . 0698 |
| . 05 | . 00196 | 8781 | 10330 | . 0175 |
| . 03 | . 000707 | 24390 | 28710 | . 00628 |
| . 02 | . 000314 | 54880 | 64590 | . 00279 |

${ }^{\mathbf{n}}$ Resistance at the stated temperature of wire whose length is $\mathbf{1 ~ k m}$ at $20^{\circ} \mathrm{C}$.
Notz 1. -The fundamental resistivity used in calculating the table is the International Annealed Copper Standard, viz, 0.15328 ohm- $/ \mathbf{m} \mathbf{m}^{\mathbf{2}} \mathbf{3 t} \mathbf{2 0}{ }^{\circ} \mathrm{C}$. The temperature coefficient for this particular resistivity is $\alpha 00=0.00393$, or $a_{0}=0.00427$. However. the temperature coefficatis proportional to the conductivity, and hence the change of resistivity per degree $C$ ia a constant $0.000597 \mathrm{ohm}-\mathrm{g} / \mathrm{m}^{2}$. The "constant mass" temperature coefficient of $\mathbf{3 n y}$ sample is

$$
\alpha t=\frac{0.000597+0.000005}{\text { resistivity in ohm }-\mathrm{g} / \mathrm{m}^{2} \text { at } t^{5} \mathrm{C},}
$$

The density is $8.89 \mathrm{~g} / \mathrm{cm}^{5}$ at $20^{\circ} \mathrm{C}$.
Nоте 2. -The values given in the table are only for annealed copper of the standard resistivity. The user of the table must apply the proper correction for copper of any other resistivity. Hard-drawn copper may be token as about 2.5 percent higier resistivity than annealed copper.

Table 17. Bare concentric-lay stranded conductors of standard annealed copper
English units

| Nominal size of conductor |  | Ohms per 1,000 feet |  | Standard concentric stranding (Class B) |  |  |  | Flexible concentric stranding (Class C ) |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\begin{gathered} \text { Circular } \\ \text { mils } \end{gathered}$ | AWG | $\left(\begin{array}{c} 25^{\circ} \\ =77 \\ \end{array}{ }^{\mathrm{C}} \mathrm{~F}\right)$ | $\left(\begin{array}{l} 65^{\circ} \mathrm{C} \\ \left(=149{ }^{\circ} \mathrm{F}\right) \end{array}\right.$ | Pounds per 1000 feet | $\begin{aligned} & \text { Number } \\ & \text { of wires } \end{aligned}$ | Diameter of wires | Outside diameter | Number of wires | Diameter of nires | Outside diameter |
|  |  |  |  |  |  | Mils | Mils |  | Mils | Mils |
| 5000000 | ---- | 0.00222 | 0.00256 | 15890 | 217 | 151.8 | 2580 | 271 | 135.8 | 2580 |
| 4500000 | ----- | . 00247 | . 00285 | 14300 | 217 | 144.0 | 2450 | 271 | 128.9 | 2450 |
| 4000000 | -... | . 00275 | . 00317 | 12600 | 217 | 135.8 | 2310 | 271 | 121.5 | 2310 |
| 3500000 | ---- | . 00314 | . 00363 | 11020 | 169 | 143.9 | 2160 | 217 | 127.0 | 2160 |
| 3000000 |  | . 00363 | . 00419 | 9349 | 169 | 133.2 | 2000 | 217 | 117.6 | 2000 |
| 2500000 | ---- | . 00436 | . 00503 | 7794 | 127 | 140.3 | 1820 | 169 | 121.6 | 1820 |
| 2000000 | ---- | . 00539 | . 00622 | 6176 | 127 | 125.5 | 1630 | 169 | 108.8 | 1630 |
| 1900000 | --.- | . 00568 | . 00655 | 5865 | 127 | 122.3 | 1590 | 169 | 106.0 | 1590 |
| 1800000 | --. - | . 00599 | . 00692 | 5562 | 127 | 119.1 | 1550 | 169 | 103.2 | 1450 |
| 1700000 |  | . 00634 | . 00732 | 5249 | 127 | 115.7 | 1500 | 169 | 100.3 | 1500 |
| 1600000 |  | . 00674 | . 00778 | 4936 | 127 | 112.2 | 1460 | 169 | 97.3 | 1460 |
| 1500000 | $\ldots$ | . 00719 | . 00830 | 4632 | 91 | 128.4 | 1410 | 127 | 108.7 | 1410 |
| 1400000 |  | . 00770 | . 00889 | 4320 | 91 | 124.0 | 1360 | 127 | 105.0 | 1360 |
| 1300000 | $\cdots$ | . 00830 | . 00958 | 4012 | 91 | 119.5 | 1310 | 127 | 101.2 | 1320 |
| 1200000 | . | . 00899 | .0104 | 3703 | 91 | 114.8 | 1260 | 127 | 97.2 | 1260 |
| 1100000 | $\cdots$ | . 00981 | . 0113 | 3394 | 91 | 109.9 | 1210 | 127 | 93.1 | 1210 |
| 1000000 | $\ldots$ | . 0108 | . 0124 | 3086 | 61 | 128.0 | 1150 | 91 | 104.8 | 1150 |
| 950000 | -..- | . 0114 | . 0131 | 2933 | 61 | 124.8 | 1120 | 91 | 102.2 | 1120 |
| 900000 | ---- | . 0120 | . 0138 | 2780 | 61 | 121.5 | 1090 | 91 | 99.4 | 1090 |
| 850000 | ---- | . 0127 | . 0146 | 2622 | 61 | 118.0 | 1060 | 91 | 96.6 | 1060 |
| 800000 | ---- | . 0135 | . 0156 | 2469 | 61 | 114.5 | 1030 | 91 | 93.8 | 1030 |
| 750000 | ---- | . 0144 | . 0166 | 2316 | 61 | 110.9 | 998 | 91 | 90.8 | 1000 |
| 700000 | -... | . 0154 | . 0178 | 2160 | 61 | 107.1 | 964 | 91 | 87.7 | 965 |
| 650000 | -..- | . 0166 | . 0192 | 2006 | 61 | 103.2 | 929 | 91 | 84.5 | 930 |
| 600000 | --.. | . 0180 | . 0207 | 1850 | 61 | 99.2 | 893 | 91 | 81.2 | 893 |
| 550000 | -.-- | . 0196 | . 0226 | 1700 | 61 | 95.0 | 855 | 91 | 77.7 | 855 |
| 500000 | ---- | . 0216 | . 0249 | 1542 | 37 | 116.2 | 813 | 61 | 90.5 | 814 |
| 450000 |  | . 0240 | . 0277 | 1390 | 37 | 110.3 | 772 | 61 | 85.9 | 773 |
| 400000 | --. | . 0270 | . 0311 | 1236 | 37 | 104.0 | 728 | 61 | 81.0 | 729 |
| 350000 | --.. | . 0308 | . 0356 | 1080 | 37 | 97.3 | 681 | 61 | 75.7 | 681 |
| 300000 |  | . 0360 | . 0415 | 925 | 37 | 90.0 | 630 | 61 | 70.1 | 631 |
| 250000 |  | . 0431 | . 0498 | 772 | 37 | 82.2 | 575 | 61 | 64.0 | 576 |
| 211600 | 0000 | . 0509 | . 0587 | 653 | 19 | 105.5 | 528 | 37 | 75.6 | 529 |
| 167800 | 000 | . 0642 | . 0741 | 518 | 19 | 94.0 | 470 | 37 | 67.3 | 471 |
| 133100 | 00 | . 0811 | . 0936 | 411 | 19 | 83.7 | 418 | 37 | 60.0 | 420 |
| 105600 | 0 | . 102 | . 117 | 326 | 19 | 74.5 | 372 | 37 | 53.4 | 374 |
| 83690 | 1 | . 129 | . 149 | 259 | 19 | 66.4 | 332 | 37 | 47.6 | 333 |
| 66360 |  | . 162 | . 187 | 205 | 7 | 97.4 | 292 | 19 | 59.1 | 296 |
| 52620 | 3 | . 205 | . 237 | 162 | 7 | 86.7 | 260 | 19 | 52.6 | 263 |
| 41740 | 4 | . 259 | . 299 | 129 | 7 | 77.2 | 232 | 19 | 46.9 | 234 |
| 33090 | 5 | . 326 | . 376 | 102 | 7 | 68.8 | 206 | 19 | 41.7 | 208 |
| 26240 | 6 | . 410 | . 473 | 80.9 | 7 | 61.2 | 184 | 19 | 37.2 | 186 |
| 20820 | 7 | . 519 | . 599 | 64.2 | 7 | 54.5 | 164 | 19 | 33.1 | 166 |
| 16510 | 8 | . 654 | . 755 | 51.0 | 7 | 48.6 | 146 | 19 | 29.5 | 148 |

Note 1.-The fundamental resistivity used in calculating the table is the International Annealed Copper Standard, viz, 0.15328 ohrn-g/ma at $20{ }^{\circ} \mathrm{C}$. The temperature coeficient is given in table 3. The density is $8.89^{\circ} \mathrm{grams}$ per cubic centimeter at $20^{\circ} \mathrm{C}$.

Note 2.-The values given for "Ohms per 1,000 feet" and "Pounds per 1,000 feet" are 2 to 5 percent greater than for a solid rod of cross section equal to the total cross section of the wires of the stranded conductor. See p. 12. The values of "pounds per 1,000 feet" are correct for Class B stranding and approximate for Class C stranding. The "ohms per 1,000 feet" are approximate for either stranding.
$\mathrm{T}_{\text {able 18 }}$ 18. Bare concentric-lay stranded conductors of standard annealed copper
Metric units

| Size of "circular mage So.) | $\begin{gathered} \text { Total } \\ \text { cross } \\ \text { section } \\ \text { in } m m^{2} \end{gathered}$ | Ohms per kilometer |  | Kilograms per per <br> kilometer | Standard concentric stranding (Class B) |  |  | Flexible coneentric stranding (Class C) |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | $25^{\circ} \mathrm{C}$ | $6.3{ }^{\circ} \mathrm{C}$ |  | Num wires | Diameter of in mm | Outside diamin mm | Numwires | Diamcter of wires wires. in $m m$ . | Outside diamin mm , |
| 5000000 | 2530 | 0.00729 | 0.00841 | 23600 | 217 | 3.86 | 65.6 | 271 | 3.45 | 65.5 |
| 4500000 | 2230 | . 00809 | . 00934 | 21300 | 217 | 3.66 | 62.2 | 271 | 3.27 | 62.2 |
| 4000000 | 2030 | . 00902 | . 0104 | 18700 | 217 | 3.45 | 58.6 | 271 | 3.09 | 58.6 |
| 3500000 | 1770 | . 0103 | . 0119 | 16400 | 169 | 3.66 | 54.8 | 217 | 3.23 | $54 . \mathrm{S}$ |
| 3000000 | 1520 | . 0119 | . 0137 | 13900 | 169 | 3.38 | 50.7 | 217 | 2.99 | 50.8 |
| 2500000 | 1270 | . 0143 | . 016 ¢5 | 11600 | 127 | 3.56 | 46.3 | 169 | 3.09 | 46.3 |
| 2000000 | 1010 | . 0177 | . 0204 | 9190 | 127 | 3.19 | 41.5 | 169 | 2.76 | 41.5 |
| 1900000 | 963 | . 0186 | . 0215 | 8730 | 127 | 3.11 | 40.4 | 169 | 2.69 | 40.4 |
| 1800000 | 912 | . 0197 | . 0227 | 8270 | 127 | 3.02 | 39.3 | 169 | 2.62 | 39.3 |
| 1700000 | 861 | . 0208 | . 0240 | 7810 | 127 | 2.91 | 38.2 | 169 |  | 38.2 |
| 1600000 | 811 | . 0221 | . 0255 | 7350 | 127 | 2.85 | 37.1 | 169 | 2.47 | 37.1 |
| 1500000 | 760 | ,0236 | . 0272 | 6890 | 91 | 3.16 | 35.9 | 127 | 2.76 | 35.9 |
| 1400000 | 709 | ,0253 | . 0292 | 6430 | 91 | 3.15 | 34.7 | 127 | 3.67 | 34.7 |
| 1300000 | 659 | . 0272 | . 0314 | 5970 | 91 | 3.04 | 33.4 | 127 | 2.57 | 33.4 |
| 1200000 | 608 | . 0295 | . 0540 | 5510 | 91 | 2.92 | 32.1 | 127 | 2.47 | 32.1 |
| 1100000 | 557 | . 0322 | . 0371 | 5050 | 91 | 2.79 | 30.7 | 127 | 2.36 | 30.7 |
| 1000000 | 507 | . 0354 | . 0408 | 4590 | 61 | 3.25 | 29.3 | 91 | 2.6\% | 29.3 |
| 950000 | 481 | . 0373 | . 0430 | 4370 | 61 | 3.17 | 28.5 | 91 | 2.60 | 28.5 |
| 900000 | 456 | . 0393 | . 0454 | 4140 | 61 | 3.09 | 27.8 | 91 | 2.53 | 27.8 |
| 850000 | 431 | . 0416 | . 0481 | 3910 | 61 | 3.00 | 27.0 | 91 | 2.45 | 27.0 |
| 800000 | 405 | . 0442 | . 0511 | 3680 | 61 | 2.91 | 26.3 | 91 | 2.38 | 26.2 |
| 750000 | 380 | . 0472 | . 0545 | 3450 | 61 | 2.82 | 25.3 | 91 | 2.31 | 25.4 |
| 700000 | 355 | . 0506 | . 0583 | 3220 | 61 | 2.72 | 24.5 | 91 | 3.23 | 24.3 |
| 650000 | 329 | . 0544 | . 0628 | 2990 | 61 | 2.62 | 23.6 | 91 | 2.15 | 23.6 |
| 600000 | 304 | . 0590 | . 0681 | 2760 | 61 | 2.32 | 22.7 | 91 | 2.06 | '32.7 |
| 550000 | 279 | . 0643 | . 0743 | 2530 | 61 | 2.41 | 21.7 | 91 | 1.97 | 31.7 |
| 500000 | 253 | . 0708 | . 0817 | 2300 | 37 | 2.95 | 20.7 | 61 | 2.30 | '10.7 |
| 450000 | 228 | . 0786 | . 0908 | 2070 | 37 | 2.80 | 19.6 | 61 | 2.18 | 19.6 |
| 400000 | 203 | . 0885 | . 102 | 1840 | 37 | 2.64 | 18.5 | 61 | 3.06 | 18.5 |
| 350000 | 177 | . 101 | . 117 | 1610 | 37 | 2.47 | 17.3 | 61 | 1.92 | 17.3 |
| 300000 | 152 | 118 | . 136 | 1380 | 37 | 2.29 | 16.0 | 61 | 1.78 | 16.0 |
| 250000 | 127 | .142 | . 163 | 1150 | 37 | 2.09 | 14.6 | 61 | 1.63 | 14.6 |
| AWG 0000 | 107 | 167 | . 193 | 972 | 19 | 2.68 | 13.4 | 37 | 1.92 | 13.4 |
| 000 | 85.0 | . 211 | . 243 | 771 | 19 | 2.39 | 11.9 | 37 | 1.71 | 12.0 |
| 00 | 67.4 | .266 | . 307 | 611 | 19 | 2.13 | 10.6 | 37 | 1.52 | 10.7 |
| 0 | 53.5 | . 334 | . 385 | 485 | 19 | 1.89 | 9.46 | 37 | 1.36 | 9.50 |
| 1 | 42.4 | . 423 | . 488 | 385 | 19 | 1.69 | S. 43 | 37 | $1{ }^{1} 1$ | 8.46 |
| 3 | 33.6 | . 533 | 61.5 | 305 | 7 | 2.47 | 7.42 | 19 | 1.50 | 7.51 |
| 3 | 26.7 | . 673 | . 777 | 242 | 7 | 2.20 | 6.61 | 19 | 1.34 | 6.68 |
|  | 21.2 | 849 | . 979 | 192 | 7 | 1.96 | 5.88 | 19 | 1.19 | 5.95 |
| 5 | 16.8 | 1.07 | 1.23 | 152 | 7 | 1.75 | 5.24 | 19 | 1.06 | 5.28 |
| 6 | 13.3 | 1.35 | 1.55 | 121 | 6 | 1.36 | 4.67 | 19 | 0.944 | 4.72 |
| 7 | 10.5 | 1.70 | 1.96 | 95.7 | 7 | 1.39 | 4.16 | 19 | . 841 | 4.20 |
| 8 | 8.37 | 2.14 | 2.48 | 75.9 | 7 | 1.23 | 3.70 | 19 | . 749 | 3.76 |

Note 1. - The fundnmental resistivity used in calculating the rable is the International Annealed Copper Standard, viz, 0.15328 ohm-g/m ${ }^{2}$ at $\boldsymbol{\Omega}{ }^{\circ} \mathrm{C}$.
The temperature coefficient is given in table 3 . The density is $8.84 \mathrm{~g} / \mathrm{cm}^{2}$ at $70^{\circ} \mathrm{C}$.
Note ?. The values given for "Ohms per kilometer" and "Kilograms per kilometer" are 2 to 5 percent greater than for a solid rod of cross section equal to the total cross section of the wires of the stranded conductor. See p. 12.

Standard annealed copper

| Giren values st at $20^{\circ} \mathrm{C}$ in | To obtain values in- |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Ohm E/m' | Ohm 1b/mile ${ }^{\text {a }}$ | Ohm mm²/m | Microhm-cm | Microhm-in. | Ohm-cir mil/t | \% conduc- |
| Ohm g/m: | multiply by | $\begin{gathered} \text { multiply by } \\ 5709.8 \end{gathered}$ | $\begin{aligned} & \text { multiply by } \\ & 0.11248 \end{aligned}$ | $\begin{gathered} \text { multiply by } \\ 11.248 \end{gathered}$ | $\begin{gathered} \text { multiply by } \\ \mathbf{4 . 4 2 8 4} \end{gathered}$ | multiply by 67.660 | divide into 15.328 |
| Ohm lb/mi2--- | 0.00017514 |  | . 000019700 | 0.0019700 | 0.0007756 | 0.011850 | 87520 |
| Ohm mm²m....- | 8.8900 | 50763 |  | 100 | 39.371 | 601.53 | 1.7241 |
| Microhm-cm...-- | 0.088900 | 507.63 | 0.010000 |  | 0.39371 | 6.0153 | 172.41 |
| Microhm-in. | $\begin{gathered} .2258 \\ .014780 \end{gathered}$ | $\begin{array}{r} 1289.4 \\ 84.389 \end{array}$ | $\begin{aligned} & .025400 \\ & .0016624 \end{aligned}$ | $\begin{aligned} & 2.5400 \\ & 0.16624 \end{aligned}$ | ---065-751-- | 15.279 | $\begin{gathered} 67.879 \\ 1037.1 \end{gathered}$ |
| Fconductivuty.. | divide into 15.328 <br> 15.328 | divide into <br> 87520 | $\begin{aligned} & \text { divide into } \\ & 1.7241 \end{aligned}$ | $\begin{aligned} & \text { divide into } \\ & \mathbf{1 7 2 . 4 1} \end{aligned}$ | divide into 67.879 | $\begin{aligned} & \text { divide into } \\ & 1037.1 \end{aligned}$ |  |

## PART III. APPENDIXES

## 1. Expression of Resistivity

In the experimental work that led to the formulation of his law, Ohm found that the resistance, $R$, of a uniform conductor is directly proportional to its length, $l$, and inversely proportional to its cross-sectional area, s. These experimental facts may be written in the form of an equation as

$$
\begin{equation*}
R=\rho \frac{l}{s}, \tag{12}
\end{equation*}
$$

where $\rho$ is a constant of proportionality whose value depends upon the material of the conductor and upon the units used in measuring $l$ and $s$. This constant of proportionality is called resistivity.

The above equation, which defines resistivity may be written

$$
\begin{equation*}
\rho=R \frac{s}{l} . \tag{13}
\end{equation*}
$$

No name has been assigned to the unit of resistivity, and consequently the unit is specified by stating the units used in measuring $R, s$, and I. This has resulted in the use of a large number of units for resistivity, as R, s, and $l$ may each be expressed in more than one unit or subunit. From the above equation for $\rho$, it is seen that the value of $p$ is numerically equal to that of R for a conductor having unit length and unit cross-sectional area. A cube is such a conductor, and this has led to the rather common expressions for the unit of resistivity "ohms per inch cube" or "microhms per centimeter cube". These expressions are undesirable, because they imply that resistivity is the ratio of resistance to volume. It is logically better to say "ohms times square inches per inch", "microhms times square centimeters per centimeter".

The above expression for resistivity involves the cross-sectional area of the conductor, which is often difficult to measure to a sufficient accuracy. It is therefore convenient to express the area in terms of other quantities that are more easily measured. For a uniform conductor, the cross-sectional area, $\mathbf{s}$, equals the ratio of volume to length, $V / l$, and from the definition of density, $D, V=M / D$ where $M$ is the mass, hence

$$
\begin{equation*}
s=\frac{V}{l}=\frac{M}{l} \cdot \frac{1}{D} \tag{14}
\end{equation*}
$$

and equation (13) may be written

$$
\begin{equation*}
\rho=\frac{R}{l} \cdot \frac{M}{l} \cdot \frac{1}{D} \tag{15}
\end{equation*}
$$

For most commercial purposes the density of copper may be assumed, and the measurement of resistivity requires only determinations of resistance per unit length and mass per unit length, determinations which usually may be readily made. In fact, since $D$ is nearly constant it is customary to specify the quality of copper wires for use as electrical conductors merely by specifying the product of $R / l$ and $M / l$. This product is called "mass resistivity" and is usually designated by the symbol $\delta$. When mass resistivity is divided by density the ordinary resistivity, "volume resistivity", is obtained; i. e., $\rho=\delta / D$.

For either volume or mass resistivity the unit is specified by stating the units used in measuring the several quantities involved. These expressions should, if possible, be given in such a way as to show how the quantities enter into the expression for resistivity, and as a result the units are apt to be rather involved. In the first edition of this Handbook the author shortened the units somewhat by
adopting expressions which in effect merely listed the component units, without showing how they entered into the expression for resistivity. While these expressions have been copied in other tables, they have not been universally accepted. In this edition, therefore, expressions have been used that more nearly meet the requirement of showing the relation between the component units. These are as follows:

While some of these expressions may be misinterpreted, they are all exact dimensionally and are of reasonable lengths. From the point of view of clarity the units for mass resistivity should be (ohm/meter) (grams/meter) and (ohm $/ \mathrm{mile}$ ) $\quad \times$ (pounds/mile). Moreover, the expressions microhm-cm and microhm-inch should be microhm $-\mathrm{cm}^{2} / \mathrm{cm}$ and microhminch ${ }^{2} /$ inch, but the expressions listed have been chosen because of their brevity, or because they are already in current use.

## 2. Calculation of the 'Resistivity-Temperature Constant"

The temperature coefficient of resistance, as measured between potential terminals rigidly attached to the wire, expresses the change of resistance for a constant mass. The change of resistivity per degree involves a change of dimensions as well as this change of resistance, and hence the coefficient of expansion, $\gamma$, of copper must be considered as well as the temperature coefficient of resistance, $a$. The "mass resistivity" 6 , depends on the mass M , the resistance $R$, and the length I , as follows:

$$
\begin{aligned}
& \delta=M R / l^{a} \\
& \delta_{t}=\frac{M R_{20}\left[1+\alpha_{20}(\mathrm{t}-20)\right]}{\mathrm{I}_{20}^{\prime}\left[1+\gamma\left(\mathrm{t}-201^{\prime}\right.\right.}
\end{aligned}
$$

$=\delta_{\text {yon }}\left(1+\left[\alpha_{20}-2 \gamma\right][t-20]\right.$, (since $\gamma$ is very small).
For 100 percent concluctivity, using ohm-gram,' meter ${ }^{2}$

$$
\begin{array}{rl}
\delta_{t} & = \\
=0.153 & 28 \\
& {\left[\begin{array}{ll}
t-20
\end{array}\right)}
\end{array} \quad\left(1+\left[\begin{array}{lll}
0.003 & 930-0.000 & 034
\end{array}\right]\right.
$$

This "resistivity-temperature constant," 0.000 597,. is independent of the temperature of reference. It also holds for copper samples of all conductivities (in the range investigated), since, if we let the subscripts $\boldsymbol{x}$ and n denote
samples of unknown and of standard conductivity, respectively,


Similarly the calculation may be made for the "volume resistivity" $\rho$, which involves the cross section s :

$$
\begin{aligned}
& \rho=\frac{\mathrm{Rs}}{1} \\
& \rho_{t}=\frac{\left.R_{20} s_{20} \mathrm{AV}+\alpha_{20}[t-20]\right)\left(1+2_{\gamma}[t-20]\right)}{l_{30}(1+\gamma[\mathrm{t}-20])} \\
&=\rho_{: 0}\left(1+\left[\alpha_{20}+\gamma\right] \quad[t-20]\right), \quad(\text { since } \gamma \text { is very } \\
& \text { small). }
\end{aligned}
$$

For 100 percent conductivity, using microhmcms,

$$
\begin{aligned}
\rho_{\mathrm{t}} & =1.7241 \\
& {[t-20])\left(1+\left[\begin{array}{lll}
0.003 & 930+0.000 & 017
\end{array}\right]\right.} \\
& =1.7241+0.00681(t-20)
\end{aligned}
$$

This "resistivity-temperature constant," 0.006 81, similarly holds for any temperature of reference and any conductivity.

This effect of thermal expansion in the expression of the temperature coefficient is treated on pp. 93 to 96 of Bulletin of the Bureau of Standards, Vol. 7, No. 1, in the paper on "The Temperature Coefficient of Resistance of Copper." Thus, the explanation given herewith is contained in the two formulas:

$$
\begin{align*}
& \alpha \delta=\alpha_{R}-2 \gamma  \tag{16}\\
& a_{\rho}=\alpha_{R}+\gamma \tag{17}
\end{align*}
$$

The relations of these temperature coefficients to that obtained when the measurements are made between knife edges are given in formulas (38), (39), and (40) of the same paper. Although the effect of thermal expansion is small, it was considered desirable to take account of it, since these constants will be used in reducing the results of resistivity measurements from one temperature to another, and troublesome inconsistencies would otherwise arise. It must be carefully noted that the constants here given are different from those in the paper just referred to, owing to the different value of resistivity, and consequently of temperature coefficient, taken as corresponding to 100 percent conductivity.

Attention is called to the great convenience of the "resistivity-temperature constant" in computing the temperature coefficient, $\alpha_{t}$, at any temperature $t$ for any sample of copper whose resistivity is known at the temperature $t$.
Thus, $\alpha_{t}=\frac{0.000597}{\mathrm{st}}$. The $a$ thus obtained,
however, is the $\alpha \delta$ of formula (16) above, viz, the "temperature coefficient of mass resistivity." To obtain the more frequently used "constant mass temperature coefficient of resistance" (that obtained by resistance measurements between potential terminals rigidly attached to the wire), we have

$$
\begin{aligned}
\alpha_{t} & =\frac{0.000597+0.000005}{\text { ohm-gram } / \text { meter }^{2} \text { at } t^{\circ} \mathrm{C}} \\
\text { also, } \alpha_{t} & =\frac{0.00681-0.00003}{\text { microhm-cm at } t^{\circ} \mathrm{C}} \\
\text { also, } \alpha_{t} & =\frac{3.41+0.03}{\text { ohm-pound } / \mathrm{mile}^{2}} \\
\text { also, } \alpha_{\mathrm{t}} & =\frac{0.00268-0.00001}{\text { microhm-inch at } t^{\prime \prime} \mathrm{C}} \\
\text { also, } a_{t} & =\frac{0.0409-0.0002}{\text { ohm-circular mil/ft }}
\end{aligned}
$$

These formulas furnish a very convenient connection between the "resistivity-temperature constant" and the temperature coefficient of resistance.

## 3. Density of Copper

As stated in appendix 1, the quantities measured in the usual engineering or commercial tests of resistivity of copper are resistance, mass, and length. The constant of the material which is actually measured is therefore the mass resistivity. When it is desired to calculate the resistance of a wire from its dimensions, it is necessary to know the density in addition to the mass resistivity. The density of copper is usually considered to vary so little from sample to sample that the volume resistivity can be calculated for a sample by the use of a standard value for the density. The density is the connecting link between mass resistivity and volume resistivity, the former being proportional to the product of the latter into the density. It is the purpose of this appendix to present some data on the density of copper used for conductors, obtained at the Bureau in connection with the investigations of the temperature coefficient and the conductivity of copper. The average value from all the data is the figure which has been most frequently used in the past as a standard value, viz, $8.89 \mathrm{~g} / \mathrm{cm}^{3}$ ( at $20^{\circ} \mathrm{C}$ ). The same value was adopted by the International Electrotechnical Commission in 1913 as a standard density. The data may be conveniently divided into three parts.

First, the density has been determined on a number of the wire samples submitted to the Bureau for ordinary conductivity tests by various companies. During the 3 years, 19081910, the density of 36 such samples was determined. These samples had been submitted by 7 companies, as follows: 3 smelters,

3 electrolytic refiners, and 1 user of copper, who bought his material from various copper companies. The number of samples and the mean density, for each of these companies, is shown in the following tables:

| Number of samples | Density |
| :---: | :---: |
| 8 | 8.882 |
| 2 | 8.892 |
| 3 | 8.869 |
| 3 | 8.895 |
| 4 | 8.918 |
| 12 | 8.872 |
| 4 | 8.878 |
| Mean .----------. 8.887 |  |

All of the 36 samples were of conductivity greater than 97.5 percent, except one of the samples in the fourth group, for which the conductivity was 94.6 percent and the density was 8.887.

The second group of data is that obtained from the wires which were included in the investigations of the temperature coefficient and resistivity of copper. Inasmuch as the "mass resistivity" was considered the important quantity rather than the "volume resistivity," it was not necessary in the investigation to determine the density. However, measurements were made on a few samples from three of the companies whose copper was included in the investigation, and data were obtained by George L. Heath, of the Calumet \& Hecla Smelting Works, on 18 samples of copper, a number of which were included in the Bureau's investigation. The results, for the four companies, are summarized in the following table:

| Number of <br> samples | Density |
| :---: | :---: |
| 3 | 8.880 |
| 1 | 8.895 |
| 1 | 8.900 |
| 18 | 8.899 |
| Mean .-----.-. 8.393 |  |

All of these samples were of conductivity greater than 95 percent.

The third group of data is that obtained at the Phpsikalisch-Technische Reichsanstalt, of Germany, by Prof. Lindeck, ${ }^{20}$ and given in the appendix of the paper on "The temperature coefficient of resistance of copper." These results are for copper samples submitted for test at the Reichsanstalt during the 5 years,

[^11]1905-1909. The mean value of the density for the 48 samples is

### 8.890.

Some of these samples were of low conductivity, down to one-third of the conductivity of pure copper. Taking only the 34 samples of conductivity greater than 94 percent, the mean value of the density is

### 8.881.

The final average value may be computed from the three groups of data in the following way, for example:

| NBS tests | $\begin{aligned} & 8.887 \\ & 8.893 \\ & 8.890 \end{aligned}$ |
| :---: | :---: |
| NBS investigation |  |
| Reichsanstalt -..... |  |
| Final average | 8.890 |

Or, if we use the Reichsanstalt value for only the samples whose conductivity exceeded 94 percent, we have:

| NBS tests |  |
| :---: | :---: |
|  |  |
|  |  |
| Final av | 8.887 |

Or, if we consider the Calumet \& Hecla measurements and the other measurements of the second group as independent means, and again use the Reichsanstalt value for only the samples whose conductivity exceeded 94 percent, we have:

|  |  |
| :---: | :---: |
|  |  |
|  |  |
| Reichsanstalt |  |
| Final average | 8.800 |

For any reasonable method of calculating the final average, we find that, to three figures, the value at $20^{\circ} \mathrm{C}$ is

## $8.89 \mathrm{~g} / \mathrm{cm}^{3}$.

In justification of the assumption made in engineering practice that the variations of the density of particular samples of copper from the standard mean value do not exceed the limits of commercial accuracy, the data on the samples discussed in the foregoing show that the density is usually between 8.87 and 8.91 , that in a few cases it varies as far as 8.85 and 8.93, and that in extreme cases it can vary to 8.83 and 8.94 . We are here referring to copper of conductivity greater than 94 percent.

The question sometimes arises whether there is any difference in the density of annealed and of hard-drawn copper. That there is no appreciable difference was shown by experiments made by Mr. Heath on the 18 wires mentioned above, which were of 80 mils and 104 mils diameter (No. 10 and No. 12 AWG). The mean density of 8 annealed samples was 8.899. The mean density of 10 hard-drawn samples from the same coils was 8.898 . After these hard-drawn samples were annealed their
mean density was 8.900 . The very small differences between these three means are too small to be considered significant. The densities of all the 18 samples varied from 8.878 to 8.916.

Finally, it is desired to point out that confusion sometimes arises over the different ways of specifying density and "specific gravity." For instance, this has led to a criticism of the value, 8.89 for density, as being too low a figure. The critic, however, had in mind the "specific gravity referred to water at $20^{\circ} \mathrm{C}$." Density, defined as the number of grams per cubic centimeter, is identically equal to "specific gravity referred to water at its maximum density." A "specific gravity referred to water at $20^{\circ} \mathrm{C}^{\prime \prime}$ of 8.91 is equal to a density, or "specific gravity referred to water at its maximum density," of 8.8946. It is apparent that the term "specific gravity" is not definite unless it be stated to what temperature of water it is referred. Since varying interpretations cannot be given the term density, this is the preferable term. Of course, since a metal expands as its temperature rises, its density decreases. Thus, if the density of copper is 8.89 at $20^{\circ} \mathrm{C}$, it is 8.90 at $0^{\circ} \mathrm{C}$. Consequently, when we state either a density or a specific gravity, the temperature of the substance whose density we are giving should be specified.

To sum up this discussion, the density of copper has been found to be $8.89 \mathrm{~g} / \mathrm{cm}^{3}$ at $20^{\circ} \mathrm{C}$.

## 4. Calculation of the Resistance and Mass Per Unit Length of Concentric-Lay Stranded Conductors

In the first place, it is proposed to show that the percent increase of resistance of a con-centric-lay stranded conductor, with all the wires perfectly insulated from one another, over the resistance of the "equivalent solid rod" is exactly equal to the percent decrease of resistance of such a conductor in which each wire makes perfect contact with a neighboring wire at all points of its surface. That is, if
$R_{s}=$ resistance of a solid wire or rod of the same length and of cross section equal to the total cross section of the stranded conductor (taking the cross section of each wire perpendicular to the axis of the wire),
$R_{1}=$ resistance of a stranded conductor with the individual wires perfectly insulated from one another.
$R_{2}=$ resistance of a hypothetical stranded conductor with the wires distorted into such shape that they make contact throughout their length (the layers all being twisted in the same direction), it will be shown that

$$
R s=\frac{R_{1}+R_{2}}{2}
$$

Now, $\boldsymbol{R}_{1}>\boldsymbol{R}_{g}$, because, on account of the stranding, the path of the current is longer than it would be if parallel to the axis of the stranded conductor. Also, $\boldsymbol{R}_{2}<\boldsymbol{R}_{8}$, because the path of the current is in this case parrallel to the axis of the conductor, which path has a greater cross section than the sum of the cross sections of each wire taken perpendicular to the axis of the wire

$$
\therefore R_{1}>R_{8}>R_{2} .
$$

In showing that $R$, is just halfway between $R_{1}$ and R,, we use the symbols:
$\rho=$ volume resistivity,
$l=$ length along axis; or length of "equivalent solid rod",
$s=$ total cross section of the wires of the conductor, taken perpendicular to axis of wire; or cross section of "equivalent solid rod",
$\Delta l=$ increase of length of wire due to twisting,
$\Delta s=$ increase of cross section perpendicular to axis of stranded conductor due to twisting.
We have:

$$
\begin{align*}
& R_{k}=\frac{\rho l}{s}  \tag{18}\\
& R_{1}=\frac{\rho(l+\Delta l)}{s},  \tag{19}\\
& R_{2}=\frac{\rho l}{s+\Delta s} . \tag{20}
\end{align*}
$$

The following diagram shows a side view of one wire of the stranded conductor. In the diagram only one dimension of the cross section, s , is shown; the dimension perpendicular to this is unchanged by the twisting, and hence $\mathcal{s}$ is proportional to the dimension shown.


Figure 1. A side view of one wire of the stranded conductor.

By similar triangles,

$$
\frac{s+\Delta s}{s}=\frac{l+\Delta l}{l}
$$

$$
\begin{equation*}
\because R_{2}=\frac{\rho l}{s\left(1+\frac{\Delta l}{l}\right)}=\frac{\rho l}{s}\left(1-\frac{\Delta l}{l}\right) \tag{22}
\end{equation*}
$$

since $\frac{\Delta l}{l}$ is small.
From (19),

$$
\begin{align*}
& R_{1}=\frac{\rho l}{s}\left(1+\frac{\Delta l}{l}\right)  \tag{23}\\
& \therefore R_{1}+R_{2}=\frac{2 \rho l}{s} \tag{24}
\end{align*}
$$

From (18) and (24),

$$
R_{s}=\frac{R_{1}+R_{2}}{2}
$$

The resistance of an actual stranded conductor must be between $R_{1}$ and $R_{2}$, if the stranding operations do not change the resistivity. ${ }^{21}$ Although the case represented by $R_{2}$ is highly hypothetical, still the effect of contact between the wires is not zero. This is shown by the fact that the resistance of stranded conductors increases with age, which may be considered to be due to contamination of the wire surfaces. Hence the resistance is somewhat less than $\boldsymbol{R}_{1}$. Manufacturers agree however, that it is much nearer $R_{1}$ than $R_{s}$, and it is ordinarily taken as equal to $R_{1}$. By eq (18) and (23),

$$
\frac{R_{3}-R_{s}}{R_{s}}=\frac{\Delta l}{l}
$$

The resistance of a stranded conductor is therefore taken to be greater than $R_{s}$ by a fractional amount equal to $\Delta l / l$. Also, the mass of a stranded conductor is greater than the mass of the "equivalent solid rod" by a fractional amount exactly equal to $\Delta l / l$. This is readily seen, and may be considered to be due either to increase of length or to increase of cross section. There is no appreciable change of density in stranding. The increment of resistance and of mass is taken to be 2 percent in calculating the tables of this Handbook for conductors up to $2,000,000$ circular mils in area. This involves the assumption of a definite value for the "lay ratio." The method of computing this fraction from the lay ratio of the concentric-lay stranded conductor is given

[^12]herewith. Let
$d=$ diameter of the helical path of one wire.
$L=$ length along axis of conductor for one complete revolution of this wire about axis, i. e., "length of lay."
$n=\frac{\boldsymbol{L}}{\mathrm{d}}=$ number of times the diameter d is con-
tained in the length $L$, i. e., the "lay ratio." The lay ratio is sometimes expressed as $1 / n$ or " 1 in $n$ "; thus we may speak of a lay ratio of $1 / 20$, or 1 in 20 , although it is usual to say "a lay ratio of 20 ."

Consider a wire of length $(L+\Delta L)$, developed in a plane containing the axis of the stranded conductor, of length L. The developed wire and the axis make with each other the angle 6 , in figure 2. The third side of the triangle equals in length the circumference of the helical path of the wire.


Figure 2. The developed wire artd the axis make tre angle $e$.

$$
\begin{gathered}
\tan \theta=\frac{\pi d}{L}=\frac{\pi}{n} \\
\frac{L+\Delta L}{L}=\sec \theta=\sqrt{1+\tan ^{2} \theta} \\
=\sqrt{1+\frac{\pi^{2}}{n^{2}}} \\
=1+\frac{1}{2}\left(\frac{\pi^{2}}{n^{2}}\right)-\frac{1}{8}\left(\frac{\pi^{2}}{n^{2}}\right) 2+\ldots
\end{gathered}
$$

All terms of higher order than the first are negligible for the purpose in hand; hence the correction factor to obtain resistance or mass per unit length of a stranded conductor from that of the "equivalent solid rod" is

$$
\left(1+\frac{\Delta l}{l}\right)=\left(1+\frac{\Delta L}{L}\right)=1+\frac{1}{2}\left(\frac{\pi^{2}}{n^{2}}\right)
$$

This correction factor must be computed separately for each layer of strands when the lay ratio is different for different layers of the conductor. If L is the same for each layer of the conductor, the lay ratio varies because of the change of $d$. It should not be forgotten that usually the central wire is untwisted.

The lay ratio corresponding to a correction of 2 percent is calculated thus:

$$
\begin{aligned}
1+2 \% & =1+\frac{1}{2}\left(\frac{9.87}{n^{2}}\right), \\
n & =15.7 .
\end{aligned}
$$

This means that for sizes up to and including $2,000,000$ circular mils the values given in tables 17 and 18 for resistance and mass per unit length correspond to stranded conductors having a lay ratio of 15.7 . If the lay ratio is known and is different from 15.7, resistance or mass may be calculated by multiplying these values in tables 17 and 18 by

$$
1+\left(\frac{493}{n^{2}}-2\right) \%
$$

For example, if the lay ratio is 12 , resistance. or mass may be obtained by adding 1.4 percent to the values in the tables. If the lay ratio is. 30 , resistance or mass may be obtained by subtracting 1.5 percent from the values in the. tables.

Manufacturers have found it practicable to produce concentric-lay stranded conductors of sizes up to $2,000,000$ circular mils for which the weight and resistance per unit length do not. exceed that of an equivalent solid rod by more than 2 percent. However, for still larger sizes this is not considered feasible, and the allowable increase rises about 1 percent for each additional million circular mils of area.

## 5. Publication 28 of International Electrotechnical Commission, ''International Standard of Resistance for Copper"

## Preface to First Edition

The electrical industry has repeatedly felt the need of a resistance standard for copper. Until quite recently there has been a lack of uniformity in the values adopted in the different countries as the standard for annealed copper, arising in the main from the varying interpretation of Matthiessen's original work for the British Association Electrical Standards Committee in 1864 on which ultimately the various values were based. Although the differences have not been very great they have been sufficiently large to prevent the various national tables for copper wires being entirely comparable.

The idea of adopting an international standard for copper was first suggested at the Chicago Congress of 1893, but the proposal unfortunately fell to the ground. During 1911, however, on the initiative of the American Institute of Electrical Engineers, the Bureau of Standards, of Washington, undertook certain
experimental work, the results of which are published in the Bulletin of the Bureau for 1911, Volume 7, No. 1. On the conclusion of this experimental work the international aspect of the matter was considered by the various national laboratories.

The National Committee of the United States of America also brought the subject to the notice of the I. E. C. and in May, 1912, certain definite propositions, base on the experiments carried out by the different national laboratories, were considered by a special committee of the I. E. C. then sitting in Paris. These propositions were subsequently circulated to the various national committees of the I. E. C., and at Zurich, in January, 1913, they were agreed to in principle; Dr. R. T. Glazebrook, C. B. (Director of the National Physical Laboratory of London), and Prof. Paul Janet (Director of the Laboratoire Central d'Electricité of Paris) kindly undertaking to prepare the final wording of the different clauses in consultation with the Bureau of Standards, of Washington, and the Physikalisch-Technische Reichsanstalt, of Berlin.

At the plenary meeting of the I. E. C. held in Berlin in September, 1913, at which 24 nations were represented, the final recommendations, which were presented in person by Prof. Dr. E. Warburg (President of the Physikalisch-Technische Reichsanstalt of Berlin) were ratified as given in this report.

London, March, 1914.

## Preface to Second Edition

The purpose of this edition is not to change in any way the substance of the original recommendations but only to re-state them in a manner which renders them free from ambiguity or the possibility of misconetruction.

The recommendations as given in this report have been approved by the Directors of the National Laboratories of London, Paris and Washington. Through the good offices of the President of the Swiss Committee this revised report has been reviewed by Prof. Dr. E. Warburg.

LONDON, March, 1925.

## INTERNATIONAL ELECTROTECHNICAL COMMISSION

## International Standard of Resistance for Copper

Definitions :
(a) A metal being taken in the form of a wire of any length and of uniform section, the volume resistivity of this metal is the product of its resistance and its section divided by its length.
(b) The mass resistivity of this metal is the
product of its resistance per unit length and its mass per unit length.
(c) The volume resistivity, $p$; mass resistivity, $\delta$; and density, d, are interrelated by the formula: $\delta=\rho d$.
Units adopted :
For this publication, where not otherwise specified, the gramme shall be taken as the unit of mass, the metre as the unit of length, the square millimetre as the unit of area, and the cubic centimeter as the unit of volume. Hence the unit of volume resistivity here used is the ohm square millimetre per metre ( $\frac{\text { ohm mm }}{\mathrm{m}} \mathrm{m}$ ) and the unit of mass resistivity is the ohm gramme per metre per metre ( $\frac{\mathrm{ohm} \mathrm{g}}{\mathrm{m}^{2}}$ ).

## I. STANDARD ANNEALED COPPER

The following shall be taken as normal values for standard annealed copper:
(1) At a temperature of $20^{\circ} \mathrm{C}$ the volume resistivity of standard annealed copper is $1 / 58=0.017241 \ldots$ ohm square millimetre per metre
$\left(\frac{\mathrm{ohm} \mathrm{mm}}{} \mathrm{m}^{2}\right)$.
(2) At a temperature of $20^{\circ} \mathrm{C}$ the density of standard annealed copper is 8.89 grammes per cubic centimetre $\left(\frac{\mathrm{g}}{\mathrm{cm}^{3}}\right)$.
(3) At a temperature of $20^{\circ} \mathrm{C}$ the coefficient of linear expansion of standard annealed copper is 0.000017 per degree Centigrade.
(4) At a temperature of $20^{\circ} \mathrm{C}$, the coefficient of variation of the resistance with temperature of standard annealed copper, measured between two potential points rigidly fixed to the wire, the metal being allowed to expand freely, is:
$0.00393=\frac{1}{254.45}$ per degree Centigrade.
(5) As a consequence, it follows from (1) and (2) that at a temperature of 20 " C the mass resistivity of standard annealed copper is $1 / 58 \times 8.89=0.15328 \ldots$ ohm gramme per metre per metre.

## II. COMMERCIAL COPPER

(1) The conductivity of commercial annealed copper shall be expressed as a percentage, at $20^{\circ} \mathrm{C}$, of that of standard annealed copper and given to approximately 0.1 percent.
(2) The conductivity of commercial annealed copper is to be calculated on the following assumptions:
(a) The temperature at which measurements are to be made shall not differ from $20^{\circ} \mathrm{C}$ by more than $\pm 10^{\circ} \mathrm{C}$.
(b) The volume resistivity of commercial copper increases by 0.000068 ohm square millimetre per metre per degree Centigrade.
(c) The mass resistivity of commercial copper increases by 0.00060 ohm gramme per metre per metre per degree Centigrade.
(d) The density of commercial annealed copper at a temperature of $20^{\circ} \mathrm{C}$ is 8.89 grammes per cubic centimetre.

This value of the density shall be employed in calculating the percentage conductivity of commercial annealed copper.
From these assumptions it follows that, if at a temperature of $t^{\circ} \mathrm{C}, \mathrm{R}$ is the resistance,. in ohms, of a wire " $l$ " metres in length weighing " $m$ " grammes, the volume resistivity of the same copper is:

$$
\text { at } t^{\circ} \mathrm{C} \frac{\mathrm{Rm}}{l^{2} \times 8.89}
$$

ohm square millimetre per metre, and
at $20^{\circ} \mathrm{C}_{\overline{l^{2}} \times 8.89} \frac{\mathrm{Rm}}{} \quad 0.000068(20-\mathrm{t})$ ohm square
The percentage conductivity of this copper is therefore:

$$
100 \times \frac{1 / 58}{\frac{R m}{l^{2} \times 8.89}+0.000068(20-t)}
$$

And, similarly, the mass resistivity of a wire of the same copper is: att ${ }^{\circ} \mathrm{C} \frac{\mathrm{Rm}}{l^{2}}$ ohm gramme per metre per metre, and at $20^{\circ} \mathrm{C} \frac{\mathrm{Rm}}{l^{2}},+0.00060 \quad(20-\mathrm{t}) \quad$ ohm
gramme per metre per metre.
The percentage conductivity is therefore :

$$
100 \times \frac{0.15328}{\frac{R m}{l^{2}}+0.00060(20-t)}
$$

Note I. The standard values given above under (I) are the mean values resulting from a large number of tests. Amongst various specimens of copper of standard conductivity the density may differ from the standard by 0.5 percent, plus or minus, and the temperature coefficient of resistance may differ from the standard by 1 percent, plus or minus; but within the limits indicated in (II) these differences will not affect the values of the resistance so long as the calculations are only carried to four significant figures.

Note II. The constants at $0^{\circ} \mathrm{C}$ of standard annealed copper deduced from the values given above for $20^{\circ} \mathrm{C}$ are the following:


Coefficient of linear expansion per degree Centigrade
_0.000017
Volume resistivity at $0{ }^{\circ} \mathrm{C}$------1.588, microhm centimetres.
Coefficient at $0{ }^{\circ} \mathrm{C}$ of variation of volume resistivity 0.00428 , per degree Centigrade.
Coefficient at $0^{\circ} \mathrm{C}$ of variation of resistance (at constant mass and free expansion) measured between two potential points
 $=0.00426_{\text {s }}$ per degree Centigrade.

Note III. EXPLANATION OF TEMPERATURE COEFFICIENTS.

1. Coefficient of variation of resistance at constant mass and free expansion with the temperature.

If R , and $R_{2}$ are the resistances measured at the temperatures t , and $t_{2}$ of a uniform wire, between two potential points rigidly fixed to the wire when the current flows parallel to the axis of the wire, the coefficient of variation of resistance at constant mass and free expansion for the temperature $t,, \alpha_{1}$ is defined by the formula:

$$
R_{z}=R_{1}\left[1+\alpha_{1}\left(t_{2}-t_{1}\right) I\right.
$$

2. Coefficient of variation of the volume resistivity with the temperature.

If $\rho$ represents the volume resistivity of the wire, i. e., if the resistance R of the wire is equal to $\rho \frac{l}{s}$ ( $l=$ length of wire, $s=$ section $)$ and if, for the temperature $t$, the coefficient of variation of volume resistivity with the temperature is represented by $\beta_{1}$, the same notation being used as before, the following is obtained:

$$
\rho_{2}=\rho_{1}\left[1+\beta_{1}\left(t_{2}-t_{1}\right)\right] .
$$

If $\%$ represents the coefficient of linear expansion of the metal, the following is approximately correct:

$$
\beta_{1}=\alpha_{1}+\gamma .
$$

3. Coefficient of variation of the mass resistivity with the temperature.

If $\delta$ represents the mass resistivity, i. e., if the resistance R of the wire is equal to $\delta \frac{l^{2}}{m}, l$ being its length and $m$ its mass, and if the coefficient of the variation of the mass resistivity with the temperature for the temperature $t$ is represented by $\beta_{1}^{\prime}$, the following is obtained:

$$
\delta_{2}=\delta_{1}\left[1+\beta_{1}^{\prime}\left(t_{2}-t_{1}\right)\right]
$$

giving the approximate formula:

$$
\beta_{1}^{\prime}=\alpha_{1}-2 \gamma
$$


[^0]:    ${ }^{1}$ Standardization 22, 86 (1951).

[^1]:    2 The expression ohm-gram/meter ${ }^{2}$ is a shortened expression for the
     area. See appendix 1 .
    ${ }^{3}$ This name is used to indicate either the international resistivity in particular, or the whole set of values including temperature coefficient and density.

[^2]:    ${ }^{4}$ Matthiessen and Vogt, Phil. Trans. 154, 167 (1864).

[^3]:    5 J . H. Dellinger, The temperature coefficient of resistance of copper. Bul. BS 7, No. 1 (1910).
    ${ }^{\circ}{ }^{\circ} \mathrm{E}$ F. Northrup, Resistlyity of copper in the temperature range $20^{\circ} \mathrm{C}$ to $1450{ }^{\circ} \mathrm{C}$, J. Franklin Inst. 177 , 1 (1914).

[^4]:    ₹ Bul. BS. 7, 104 (1910).
    ${ }^{8}$ Trans. Am. Inst. Mining Met. Engrs. 143, 272, (1941)

[^5]:    ${ }^{20}$ In other words. 0.000597 ohm is the difference in resistance of two samples of the same copper. one at $t{ }^{\circ} \mathrm{C}$ and the other at $(t+1)^{\circ} \mathrm{C}$. and each weighing 1 gram, but each having the length of exactly 1 meter at the specificd temperature.

[^6]:    ${ }^{4}$ Resistance at the stated temperatures of a wire whose length is 1,000 feet at 20 " C .

[^7]:    ${ }^{15}$ Length at $20^{\circ} \mathrm{C}$ of a wire whose resistance is $I$ ohm at the stated temperaturee.

[^8]:    ${ }^{46}$ Resistance at the stated temperatures of a wire whose length is 1 km at $20^{\circ} \mathrm{C}$.

[^9]:    ${ }^{11}$ Length at $20^{\circ} \mathrm{C}$ of a wire whose resistance is 1 ohm at the stated temperature.

[^10]:    ${ }^{18}$ Resistance at the stated temperature of a mire whose length is $\mathbf{1 , 0 0 0}$ feet at the loner temperature.

[^11]:    ${ }_{20}$ Bul. BS i, pp. 97-101 (1910).

[^12]:    ${ }^{21}$ Practically, stranding of wires produces cold work which may be expected to be reflected in increased resistivity.

