

Underground Astrophysics with MINOS

Stuart Mufson Indiana University

Caltech, January 4, 2002

I. Muon Astrophysics

A. Cosmic Muons in MACRO and MINOS

- a. Zenith/Azimuth distributions
- b. Right Ascension/Declination distributions
- B. Shadow of the Moon and Sun
- C. Cosmic Muon Sources
- D. Seasonal Modulations
- E. Compton-Getting Effect/Solar Diurnal Modulations
- II. Neutrino Astrophysics

I. Muon Astrophysics

- In a few years (3-5?), the full MINOS detector will record a set of cosmics equal to MACRO's complete data set
- Many analyses can be repeated to optimize MINOS far detector hardware/software
- New physics possible with the MINOS μ^+/μ^- separation capability

A. Cosmic Muons – MACRO Zenith/Azimuth distributions

- a. MACRO operational from 1989-2001
- b. > 60 million muons recorded, $E_{th} \approx 25 \text{ TeV}$
- c. 45-50 million pass cuts (depending on analysis)
- d. Rate ≈ 0.25 Hz
- 2. Muon Distributions
 - a. Azimuth distribution dominated by Gran Sasso overburden
 - b. Zenith angle distribution dominated by (mountain + solid angle) effects

MINOS

A. Cosmic Muons – MINOS

Zenith/Azimuth distributions

- 1. Early MINOS Muon Data
 - a. Runs 1740 + 1779
 - 70 planes (~1 p.e. thresh.?)
 - > $5^{h} 40^{m}$ run length
 - Rebel DeMuxer, Lee fitter
 - → Rate(full det.) ≈ 0.5 Hz
- 2. Muon Distributions
 - a. Distributions consistent with flat overburden
 - b. MINOS: smaller than MACRO but shallower

- 1. MACRO coordinates:
 - longitude = 13° 34' 28" E
 - latitude = 42° 27' 09" N
- 2. Right ascension distribution:
 - no evidence for point sources
- 3. Declination distribution:
 - Maximum response displaced from vertical by mountain overburden
 - MACRO effective latitude: $\lambda_{eff} \approx 30^{\circ}$

- 1. MINOS coordinates:
 - longitude = 92° 14' 29" E
 - latitude = 47° 49' 11" N
- 2. Right ascension distribution:
 - Reflects run time
- 3. Declination distribution:
 - Maximum response ≈ latitude, as expected for flat overburden

- Moon shadow used to estimate the angular resolution and systematic pointing accuracy for the MACRO detector
- Moon/Sun shadow analysis provides information about the solar magnetic field, the Geomagnetic (GMF) and the Interplanetary (IMF) magnetic fields
- Displacement of the sun shadow can be used to establish an upper limit on the antiproton/proton flux
- *Moon/Sun analyses based on single and double muon events recorded by MACRO*

B. Moon Shadow

•Analysis:

- Includes all muons with distance < 10° from Moon</p>
- Likelihood function to establish significance of distribution

$$\lambda = 2\sum \left[N_i^{ex} - N_i^{obs} + N_i^{obs} \ln \left(\frac{N_i^{obs}}{N_i^{ex}} \right) \right]$$

- > $\chi^2/\text{DoF} = 39.7/36$ at position (0°, +0.1°)
- MACRO points accurately and its angular resolution better than 1⁰

B. Moon Shadow:

d a

y

"Day" and "Night" Samples

•Moon sample divided in 2

- "day" sample: moon < 90° from sun
- "night" sample: moon>90° from the sun

•Results:

- Maximum χ^2 for "day" sample at: $\Delta = (-0.25^\circ, 0^\circ)$
- ➤ Maximum χ^2 for "night" sample at: $\Delta = (0^\circ, 0^\circ)$

• Due to different shape of GMF on day/night side of magnetosphere

Consistent with deflection of primaries with E_{pri} > 15 TeV

B. Sun Shadow

 Analysis repeated with events from direction of the sun

Deficit expected to be variable& displaced due to

* Sun's B field

* IMF

* GMF

→ Maximum χ^2 at $\Delta = (-0.25^\circ, 0^\circ)$

* Data too sparse for yearly map

•Displacement of sun shadow symmetric wrt to protons/antiprotons

> > No antiproton shadow \Rightarrow $flux(\overline{p}) / flux(p) \le 0.22$

- The search for cosmic muon sources has been motivated mainly by the report of detections of cosmic muons from Cyg X3 by Soudan 1 and NUSEX
- Unambiguous detection of muons from point sources would have a tremendous impact on particle physics and astrophysics
 - Cosmic muons from Cyg X3 are anomalous charged particles cannot propagate 10 kpc in a straight line through the Galactic magnetic field to Earth
 - Low probability for UHE γ's to produce TeV muons able to reach underground detectors
 - > Cygnets??
- In the end, astounding physics requires convincing evidence

All-Sky survey is the unbiased way to search for sources when a new window opens on the sky
Events binned in

$$(\Delta \alpha = 3^{\circ}, \Delta \sin \delta = 0.04)$$

•In each bin, compute

$$(N^{obs} - N^{ex}) / \sqrt{N^{ex}}$$

•No evidence for point sources

C. Cosmic Muon Sources

Modulated Muon Signals from Cyg X3

•Searches made for modulated signals from sources with claimed detections

- Periodicity searches improve signal-to-noise
- •Cyg X3 historically most often claimed as detection
 - ➤ Largest positive deviation in phase bin 0.8≤Φ≤0.9

* 1.480

→ Limit to modulated flux $\leq 10^{-15}$ cm⁻² s⁻¹

No evidence for modulated signal

•Similar results hold for Her X1

NUMI

C. Cosmic Muon Sources

Flaring Activity from Mrk 421

(a) Daily fluctuations in expected muon rate

$$P = 1 - \sum_{n=0}^{(N^{obs}-1)} \frac{\alpha^n}{(1+\alpha)^{n+N^{ex}+1}} \frac{(n+N^{ex})!}{n!N^{ex}!}$$

where P = probability to observe a burst at least as large as N^{obs}

(b) Progressive accumulation of observed excesses above computed background during MACRO life

$$\Delta = (N^{obs} - N^{ex}) / \sqrt{N^{ex}}$$

(c) Cumulative frequency dist. for $-\log P$. For Poissonian process, slope = -1

No evidence for bursting behavior!

Cosmic Muon Sources

Flaring Activity from Mrk 501

No evidence for bursting behavior!

D. Seasonal Modulations

•Known effect with an amplitude of a few percent

- Density variations at first interaction:
 - When cold, density high and pions fractionally more likely to interact than decay
 - * When warm, the opposite occurs

•Expected relation:

•An observer moving with velocity \mathbf{v} relative to the rest frame of a cosmic ray plasma will detect a deviation from the average c.r. rate

- Compton-Getting Effect
- Events binned in sidereal time; deviations plotted relative to the mean
- Deviation maximum when observer moving parallel to velocity vector

→ Results:

- > Amplitude = 0.081%
- Maximum deviation when moving in direction of Galactic rotation

•Events binned in solar diurnal time (local solar time) ; events plotted relative to the mean

- Modulation expected due to processes responsible for seasonal modulations
- → Results:
 - > Amlitude = 0.088%
 - > Phase max. = 17.8^{h}

•Compton-Getting effect from Earth's orbital motion has a phase max at 6am local time

