Fiber-Optic Sensor System Demonstrator for Proba-2

Roman V. Kruzelecky, Jing Zou, Najeeb Mohammed, Emile Haddad and Wes Jamroz MPB Communications Inc., Email: Roman.Kruzelecky@MPBC.ca

and

Eric Edawards, Francesco Ricci, Joshua Lamorie Xiphos

> Iain McKenzie ESTEC

Darius Nikanpour Canadian Space Agency

- Introduction
- FSD Central Interrogation System
- FSD Fiber-optic Harness
- FSD FBG Sensors
 - **1.** Distributed Temperature
 - 2. Propellant P/T
 - 3. Thruster high-T
- Ground Qualification
- Conclusions

Spacecraft Propulsion Systems

Large number of sensors required:

- Propellant Volume/Pressure
- Propellant Flow
- Propellant leakage detection
- Pipeline temperature distribution
- Thruster temperature
- Valve position status
- Valve temperature
- Propellant tank integrity

The Problem: Current Electronic Sensors

- Sensitive to EMI, ESD and sparking -requires heavy shielding for sensors and signal lines
- Poor signal integrity requires close proximity between sensor and the processing electronics
- Low sensor capacity: typically one sensor per twisted wire pair
- Bulky signal harness (kg/m)
- Complex signal routing and ground-loop problems expensive system integration

MPB Multi-Channel Fiber-Laser Interrogation System

- 1 to 2 pm spectral resolution
- parallel multi-channel output
- interrogate FBG or F-P sensors
- high sensor capacity per lowpower unit (> 250 fiber-optic sensors)

MPB Fiber Sensor Technology

- Single, central tunable Fiber-laser Interrogation System for various sensor types
- Parallel, bidirectional signal distribution to multiple sensor lines
- Serial wavelength-division multiplexing of sensors on single fiber strand
- Preliminary Sensor Types:
- **FBG** Temperature
- P/T sensor
- Valve Position Status
- Hydrazine Gas Leakage
- High T sensor

FSD for Proba 2

- Demonstrate the advantages of a low-power multi-channel network of lightweight fiber-optic sensors for the "in situ" monitoring of space subsystems.
- Selection and adaptation of terrestrial fiber-optic technologies to facilitate operation in space
- Provide new sensors that meet specific requirements for space:
 - P/T sensor for propellant tank
 - High-T sensor for thruster measurements
- Employ a central, remotely positioned interrogation system for the sensor network.
- Incorporate critical redundancy into the FSD system for reliability in space

Fiber Sensor Demonstrator (FSD) for ESA's Proba-2:

Central Interrogation System Distributed FBG sensors

- Introduction
- FSD Central Interrogation System
- FSD Fiber-optic Harness
- FSD FBG Sensors
 - **1.** Distributed Temperature
 - 2. Propellant P/T
 - 3. Thruster high-T
- Ground Qualification
- Conclusions

Monolithic Interrogation System with AI PCB board stiffener Integral Optical Tray

Representative Unit CPU Board

Representative Unit DAQ/EO Board

Interrogation System Optical Tray

- Unit power-on Mode "0" safe state for electro-optic components
- Critical optics and electro-optics positioning for maximum radiation shielding.
- Parallel architecture to provide redundant tunable fiberlaser system - can sustain two critical active component failures.
- Laser diode (LD) pumps biased at 50% of power ratings to maximize lifetime
- Internal monitoring of LD power and temperature with T control.
- Internal fiber-optic component mounting with some vibration/shock damping.
- Internal reference FBG for each external fiber-optic sensor line for independent operation.

Rep. Unit spectral scans of 0.4 nm-spaced reference fixed FP and a FBG test line with internal/external sensor.

Interrogation System: Component/PCB Level Testing

Component	Test Purpose	Test Condition	Equipment	Location
FBG- stabilized Laser Diode Pump	Validate optical power output, bias current set- point, thermal control requirements.	-30 C to +40C	Dry, N2-purged Environmental Control Chamber.	MPBC
Tunable FP Filter	Validate Operation with Temperature	-30 C to+40C	Dry, N2-purged Environmental Control Chamber.	MPBC
Micro/DAQ Protoflight PCBs	Check inrush current, power consumption, operation.	-40 C to +60 C	Vacuum thermal chamber, PCB depowered during pump down/vent.	CSA
Optical tray assembly	Validate component mounting using RTV2943 for vibration damping during operation.	Low-level random sine at 20 C.	CSA shaker	CSA

- Introduction
- FSD Central Interrogation System
- FSD Fiber-optic Harness
- FSD FBG Sensors
 - **1.** Distributed Temperature
 - 2. Propellant P/T
 - 3. Thruster high-T
- Conclusions

FSD Optical Fiber

- Vacuum-compatible, high-temperature Cu-coated silica fiber (Cu melting point of 1080°C).
- Additional Teflon FEP (to 260°C) or polyimide (to 400°C) protective protective coating/sleeve.
- Protected, fusion-spliced internal joints to minimize mechanical optical interconnections.

FSD Fiber-Optic Harness

- 1. Cu-clad, Ge-doped optical fiber with additional TFE coating.
- 2. Additional s.s. flexible sheathing at interface points for mechanical protection based on preliminary mechanical vibration test results.

- Introduction
- FSD Central Interrogation System
- FSD Fiber-optic Harness
- FSD FBG Sensors
 - **1.** Distributed Temperature
 - 2. Propellant P/T
 - 3. Thruster high-T
- Ground Qualification
- Conclusions

MPB Computer-Controlled FBG Fabrication Facility

- Introduction
- FSD Central Interrogation System
- FSD Fiber-optic Harness
- FSD FBG Sensors
 - **1. Distributed Temperature**
 - 2. Propellant P/T
 - 3. Thruster high-T
- Ground Qualification
- Conclusions

Development of methodology to integrate FBG T-sensors with spacecraft:

Maintain Temperature Calibration Selection of Adhesive Repeated Thermal Cycling (-40 to +75 C) Vibration/Shock Dampening

Testing of FSD FBG Temperature Sensors

Ansys simulations of FBG T-sensor Transient Response of 1.6 mm O.D. packaged sensor using Selected Adhesive (Rated to 1400°C) for sensor attachment.

Communications Inc.

- Introduction
- FSD Central Interrogation System
- FSD Fiber-optic Harness
- FSD FBG Sensors
 - **1.** Distributed Temperature
 - 2. Propellant P/T
 - 3. Thruster high-T
- Conclusions

Advanced P/T Sensor and Protective Cabling

P/T FBG Hysteresis obtained for Compression/Release of Sensor Membrane

- Introduction
- FSD Central Interrogation System
- FSD Fiber-optic Harness
- FSD FBG Sensors
 - **1.** Distributed Temperature
 - 2. Propellant P/T
 - 3. Thruster high-T
- Conclusions

FBG Peak Transmission Variation with **High Temperature Annealing**

WDM_hitachi_1545_#3

Change in FBG Center Wavelength with High Temperature Annealing.

WDM_hitachi_1545_#3

- Introduction
- FSD Central Interrogation System
- FSD Fiber-optic Harness
- FSD FBG Sensors
 - **1.** Distributed Temperature
 - 2. Propellant P/T
 - 3. Thruster high-T
- Conclusions

FSD Benefits

Space demonstration of key MPB fiber-optic technologies:

- Tunable Fiber Laser
- Fiber-optic signal harness
- FBG temperature sensor
- High-T sensor
- Fiber-optic pressure sensor
- WDM signal multiplexing

Additional development:

 Compact, low-power (2.0 W) microprocessor and data acquisition system for microsat applications

Preliminary Specifications

Sensor	Description	Range	Wavelength Span	Resolution
MEMS/FBG Temperature	Pipeline temperature of propulsion system	-40 to 70 °C	5 nm per sensor, 4 to 5 per fiber line	0.05 °C
Combined pressure/tem perature	Xe tank pressure	0 to 40 Bar	15 nm	2 mbar
dual FBG/MEMS sensor		-40 to 70 °C	5 nm	0.05 °C
High T FBG/MEMS	Thruster Temperature	-40 to 400 °C	20 nm	0.1 to 0.2 °C

