

Analysis of Damping Treatments Applied to the MAP Spacecraft

Scott Gordon Code 542 Goddard Space Flight Center

> Presented at FEMCI Workshop May 18, 2000

Outline

- Background/Problem Description
- Modal Survey
- Damping Treatments
- Analysis Methodology
- Analysis Results
- Comparison with Test Data
- Conclusions

Background

- MAP = Microwave Anisotropy Probe
- MAP Spacecraft Level Acoustic Test
 - Conducted August, 1998
 - Flight spacecraft bus with mass mockups
 - No thermal blanketing or electrical harnessing
 - Instrument mass simulator
 - ETU Solar Arrays
- Acoustic test performed to Delta II 7425-10 protoflight levels (142.9 OASPL)

MAP Acoustic Test Configuration

Problem Description

- High acceleration response measured at thruster locations on top deck
- Acceleration levels exceeded the qualification levels for the thrusters
- Thruster Qual Levels
 - .2 G^2/Hz 20-2000 Hz
 - 20 Grms
- Measured test levels
 - 44 Grms
 - 116 G^2/Hz @ 140 Hz
- Problem addressed by adding damping treatments to spacecraft

May 18, 2000 (SAG)

Spacecraft Configuration

Spacecraft Configuration - Cont.

• MAP Top Deck Configuration

- 5/8" thick aluminum honeycomb panel
- .015" M46J/934 facesheets
- Hexagonal shape
 - 94" across hexagon points
 - 36"central cut-out
- Center supported at hex-hub
- Outer corners supported by truss members

MAP Top Deck with Thruster Brackets

Spacecraft Configuration - Cont.

• Upper Deck Thrusters

- 4 identical 1-lb thrusters mount to MAP upper deck
- 2 thrusters per thruster bracket (upper and lower)
- Each thruster mounts to small bracket which attaches to large bracket
- Large and small brackets built up from T800/EX1515 laminate flat stock
- Mounting faces are .072", remaining faces are .036"

Detail of MAP Upper Deck Thruster Bracket

Modal Survey

- A modal survey was performed to determine mode shapes contributing to high thruster response
- 5 x 5 mesh of single axis accelerometers used on the top deck
- Triaxial accelerometers at each of the mounting bracket locations and at tip of large bracket
- Results were correlated with FEM model

Modal Survey - Cont.

- Test data showed several candidate modes in the 120-200 Hz range which excited high thruster response
- Candidate modes showed a combination of deck deflection and local bracket deformation
- FEM results did not match test data exactly but had sufficient accuracy to capture contributing modes

May 18, 2000 (SAG)

Modal Survey - Cont.

- Acoustic test analytically simulated
- Good correlation with X and Y response
- Z response did not show same degree of correlation
- Not as critical because Z response is significantly lower below 200 Hz
- Conclusion: Model and loading conditions could be used to define damping treatments

May 18, 2000 (SAG)

Damping Treatments - Thruster Brackets

- 3M Scotchdamp ISD-242 applied to thruster brackets
- GSFC Heritage: Scotchdamp used by TRW on EOS-PM spacecraft
- FEM analysis used to determine size and placement of damping treatments
- .004" layer of scotchdamp with Gr/Ep constraint layer
- Constraint layer material and thickness selected to match thruster bracket surface

Damping Treatments - Top Deck

- Lockheed-Martin SMRD strips
 applied to deck edges
- GSFC Heritage: Used on XTE spacecraft
- .4" thick SMRD strip with honeycomb constraint layer
- SMRD strips designed to target deck modes driving thruster response
- Scotchdamp applied to top and bottom surfaces of top deck
- Scotchdamp targeted at higher frequency response (300-500 Hz)

Damping Treatments - Cont.

May 18, 2000 (SAG)

Analysis Methodology

- Methodology outlined in "Finite Element Prediction of Damping in Structures with Constrained Viscoelastic Layers", C.D. Johnson and D.A. Kienholz, AIAA Journal, Vol. 20, No. 9, Sept 1982, pp. 1284-1290
- Approach uses standard NASTRAN elements to model VEM damping treatments
 - Solid elements (HEXA and PENTA) for the VEM Layer
 - Thin shell elements (QUAD4) for the constraint layer
- Equivalent modal damping developed based on % strain energy in VEM for a particular mode
- Equivalent modal damping can then be used in standard NASTRAN dynamic solutions to calculate damped response.

Analysis Procedure

- Add solid elements representing VEM and shell elements representing constraint layer to FEM structural model
- Run normal modes solution and recover %strain energy in the solid elements representing the VEM
- Calculate modal damping associated with the VEM for each mode by applying the following equation

$$\boldsymbol{z}_{v} = .5 * \boldsymbol{h}_{v} * \sqrt{\frac{G_{v}(f)}{G_{vref}}} * \left(\frac{SE_{vem}}{SE_{total}} \right)$$

Where

	ζv	=	Ratio of critical damping due to VEM
	η _v	=	VEM damping loss factor. This quantity is temperature and frequency dependent
	$G_v(f)$	=	Shear modulus of the VEM at the specific frequency of the mode of interest
	G _{vref}	=	VEM shear modulus at the frequency at which the damping treatment is being
			targeted. This is the shear modulus used in NASTRAN for the normal modes analysis
SE _{vem}	/SE _{total}	=	Ratio of strain energy in the VEM to the total strain energy for the specific mode of interest

May 18, 2000 (SAG)

Analysis Procedure - Cont.

Mechanical Systems Analysis Branch/Code 542

Goddard Space Flight Center

- The VEM modal damping (\mathbf{z}_v) is added to the nominal modal damping to get the total damping for that mode
- For the MAP dynamic analysis, nominal modal damping was 1.6% of critical based on spacecraft acoustic test
- The VEM material properties used in the analysis are shown in the table below:

VEM Material Properties used to Calculate Damping					
	Properties @ t=70 F and f=140 Hz				
Description	Damping Loss Factor h v	Shear Modulus G _{vref} (psi)			
3M Scotchdamp ISD-242 (1)	1.0	1050			
Lockheed-Martin SMRD 100F-90C (2)	1.0	4000			

Notes:

- (1) Material data from nomograph supplied by 3M
- (2) Material data from Lockheed-Martin

Analysis Verification*

- Beam coupons with and without scotchdamp were tested to verify methodology
- Analytical predictions showed good correlation with test data

*Data from Steve Hendricks at Swales Aerospace

May 18, 2000 (SAG)

Analysis Results

- Total reduction of 17 dB predicted due to Scotchdamp on bracket and SMRD on deck
- This still does not meet manufacturers thruster qual levels
- Several additional factors
 - Blanketing & harnesses (10dB)
 - Rubber shims at small bracket interface (3-9 dB)
 - Scotchdamp on top deck (3 dB)

Intermediate Acoustic Test

- Acoustic test performed July 1999 to assess effectiveness of damping treatments
- Flight MAP spacecraft bus, most spacecraft electronics, electrical harnesses and blanketing as close to flight as possible, ETU solar arrays, no instrument or simulator

May 18, 2000 (SAG)

Page 19

Damping Prediction - Test vs Analysis

- Analytical prediction within 3 dB of peak test response at 120 Hz
- Overpredicts response above and below target frequency
- Analysis does not account for reduction in input or other factors
- Analysis shows poor correlation with data from spacecraft acoustic test

Damping Predictions - Test vs Analysis

- Several factors may have accounted for poor correlation between analytical predictions and test data
 - NASTRAN model may not have sufficient resolution to accurately predict damping for the complicated mode shapes driving the thruster response
 - Analytical technique for predicting modal damping was not verified for SMRD
 - Low level (-7 dB) acoustic data was scaled to full level. Damping may not be fully effective until higher levels of input
 - Expected acoustic reductions may not be cumulative.
 - Expected acoustic reductions may not be fully effective for localized thruster response.

Conclusion

- Addition of damping treatments successfully reduced acceleration response at thruster mounting locations to acceptable levels
- Methodology used was straightforward to implement and could be used with existing NASTRAN models
- Modal damping technique used to optimize damping treatments as well as predict response
- Technique did not accurately predict peak acceleration response
- Predictions of dynamic response should be verified by testing the structure under representative loading conditions.