QUESTIONS FOR THE SCIENCE ADVISORY PANEL

What guidance or direction did the Science Advisory Panel use to craft its recommendation?

What scientific literature has been published on the subject of optimal size of marine reserves for conservation and fisheries management?

Explain the similarities between conserving ecosystem biodiversity and sustaining fisheries.

Is a reduction in fishing effort plus a small reserve network comparable to a large marine reserve?

Can other current management measures (e.g. the cowcod closure) reduce the recommended reserve size?

What species, if any, are unique to the Channel Islands?
Where are they located?
What are the criteria for risk of extinction at the Channel Islands?
How does extinction factor into the recommendation?

TABLES AND FIGURES

Table 4. Estimates of replacement threshold levels for 85 populations of 27 fished species, grouped by geographic location (Mace and Sissenwine 1993).

Table 6. Relationship between marine protected area objectives, size, and design complexity.

Table 7. Representative and unique marine habitats in the Channel Islands region
Table 8. Species of interest in the Channel Islands National Marine Sanctuary
Table 9. Vulnerable, threatened, or endangered marine fish stocks that can be found in the Channel Islands National Marine Sanctuary during at least one stage of their life history.

What guidance or direction did the Science Advisory Panel use to craft its recommendation?

The Science Advisory Panel used the goals and objectives for Ecosystem Biodiversity, Sustainable Harvested Populations and Research to guide their deliberations of reserve location and size in the Channel Islands National Marine Sanctuary. The goals for Ecosystem Biodiversity, Sustainable Harvest Populations and Research were ratified by the MRWG at their June 8, 2000 meeting.

Ecosystem Biodiversity:

To protect representative and unique marine habitats, ecological processes, and populations of interest.

Objectives -

1. To include representative marine habitats, ecological processes, and populations of interest.
2. To identify and protect multiple levels of diversity (e.g. species, habitats, biogeographic provinces, trophic structure).
3. To provide a buffer for species of interest against the impacts of environmental fluctuations.
4. To identify and incorporate representative and unique marine habitats.
5. To set aside areas which provide physical, biological, and chemical functions.
6. To enhance long-term biological productivity.
7. To minimize short-term loss of biological productivity.
8. To develop methods for evaluating ecosystem integrity.

Sustainable Harvested Populations:

To provide a buffer against impacts of environmental fluctuations on commercial and recreationally important species.

Objectives -

1. To facilitate recovery and sustainability of harvested populations.
2. To enhance spillover into non-reserve areas.
3. To establish long-term monitoring programs in, adjacent to, and distant from reserves.
4. To monitor impacts of reserves on commercial and recreational industries.
5. To document changes of catch characteristics of users adjacent to and distant from reserves.
6. To study and evaluate the effects of predators on marine populations in, adjacent to and distant from reserves.
7. To evaluate the effectiveness of reserves as a tool in the context of integrated fishery management.
8. To develop an adaptive management design for reserves as an experimental fishery management tool.
9. To assess the short- and long-term effectiveness of reserves as an experimental fishery management tool.

Research

1. To monitor ecosystem functions and acquire baseline data to assess natural and human impacts between reserve and other areas; and

2. To evaluate the short- and long-term effectiveness of reserves as resource and fishery management tools.

Objectives -

1. To design reserves that will be tractable for monitoring of biological and physical processes.
2. To develop a monitoring and evaluation program that will provide enough information for adaptive management.
3. To establish long-term monitoring of ecological patterns and processes in, adjacent to, and distant from marine reserves.
4. To establish areas for systematic study of nearshore marine species, including (1) larval export, (2) adult migration, (3) relative abundances, (4) size-frequency distributions, and (5) other topics of interest.
5. To evaluate short- and long-term differences between reserve and non-reserve areas.
6. To provide long-term continuity in effort, expertise, and funding during reserve monitoring and evaluation.

What scientific literature has been published on the subject of optimal size of marine reserves for conservation and fisheries management?

The Science Advisory Panel reviewed the scientific literature on marine reserves. In particular, Panel members considered papers that addressed the question of reserve size and location for conservation and fisheries management. The following bibliography contains papers that were considered by members of the Science Advisory Panel.

References

Agardy, T. 2000. Information needs for marine protected areas: scientific and societal. Bulletin of Marine Science 66(3):875-888.

Alcala, A.C. and G.R. Russ. 1990. A direct test of the effects of protective management on abundance and yield of tropical marine resources. Journal du Conseil International pour l'Exploration de la Mer 46:40-47.

Allison, G.W., S.D. Gaines, J. Lubchenco, H.P. Possingham. In press. Taking the long view of marine reserves: Catastrophes and an insurance factor.

Alward, G.L. 1932. The Sea Fisheries of Great Britain and Ireland. Alberta Gait, Grimsby, UK.

Attwood, C.G. and B.A. Bennett. 1994. Variation in dispersal of galjoen (Coracinus capensis) (Teleostei: Coracinidae) from a marine reserve. Canadian Journal of Fisheries and Aquatic Science 51:1247-1257.

Attwood, C.G., and B.A. Bennett. 1995. Modeling the effect of marine reserves on the recreational shore-fishery of the south-western cape, South Africa. South African Journal of Marine Science 16:227-240.

Babcock, R.C., S. Kelley, N.T. Shears, J.W. Walker, and T.J. Willis. 1999. Changes in community structure in temperate marine reserves. Marine Ecology Progress Series 189:125-134.

Ballantine, W.J. 1997. Design principles for systems of "no-take" marine reserves. In The Design and Monitoring of Marine Reserves, Fisheries Centre, University of British Columbia, Canada.

Bell, J.D. 1983. Effects of depth and marine reserve fishing restrictions on the structure of a rocky reef fish assemblage in the north-western Mediterranean Sea. Journal of Applied Ecology 20:357-369.

Bennett, B.A. and C.G. Attwood. 1991. Evidence for recovery of a surf-zone fish assemblage following the establishment of a marine reserve on the south coast of South Africa. Marine Ecology Progress Series 75:173-181.

Biodiversity Unit. 1993. Biodiversity and its value. Department of the Environment, Sport and Territories. Australia. http://kaos.erin.gov.au/life/general_info/op1.html.

Bohnsack, J.A. 1992. Reef resource habitat protection: the forgotten factor. In R.H. Stroud (ed). Stemming the Tide of Coastal Fish Habitat Loss. Marine Recreational Fisheries 14. Pp. 117-129.

Bohnsack, J.A. 1996. Maintenance and recovery of reef fishery productivity. In N.V.C. Polunin and C.M. Roberts (eds). Reef Fisheries. Chapman and Hall. London. Pp. 283-313.

Botsford, L.W., L.E. Morgan, D.R. Lockwood, and J.E. Wilen. In press. Marine reserves and management of the northern California red sea urchin fishery. Calcofi Reports.

Bustamente, R.H., P. Martinez, F. Rivera, R. Bensted-Smith, and L. Vinueza. 1999. A proposal for the initial zoning of the Galapagos Marine Reserve. Charles Darwin Research Station Technical Report. October 1999.

Buxton, C.D. and M.J. Smale. 1989. Abundance and distribution patterns of three temperate marine reef fish (Teleostei: Sparidae) in exploited and unexploited areas off the southern cape coast. Journal of Applied Ecology 26:441-451.

Carr, M.H., J.E. Neigel, S.J. Andelman, J.A. Estes, R.R. Warner, J.L. Largier, and J. Lubchenco. Manuscript. Comparing marine and terrestrial ecosystems: implications for principles of reserves design in marine systems.

Carr, M.H., and D.C. Reed. 1993. Conceptual issues relevant to marine harvest refuges: examples from temperate reef fishes. Canadian Journal of Fisheries and Aquatic Science 50:2019-2028.

Carr, M.H., J.E. Neigel, S.J. Andelman, J.A. Estes, R.R. Warner, J.L. Largier, and J. Lubchenco. In press. Comparing marine and terrestrial ecosystems: implications for principles of reserve design in marine systems. Ecological Applications.

Castilla, J.C. and L.R. Duran. 1985. Human exclusion from the rocky intertidal zone of central Chile: the effects on Concholepas concholepas (Gastropoda). Oikos 45:391399.

Chapman, M.R. and D.L. Kramer. 1999. Gradients in coral reef fish density and size across the Barbados marine reserve boundary: effects of reserve protection and habitat characteristics. Marine Ecology Process Series 181:81-96.

Clark, J.R., B. Causey and J.A. Bohnsack. 1989. Benefits of coral reef protection: Looe Key reef, Florida. $6^{\text {th }}$ Symposium on Coastal and Ocean Management. Charleston, South Carolina.

Daan, N. 1993. Simulation study of the effects of closed areas to all fishing, with particular reference to the North Sea ecosystem. Pages 252-258 in K. Sherman, LM Alexander, and BD Gold (eds). Larger Marine Ecosystems: Stress, Mitigation, and Sustainability. AAAS Press, Washington, DC.

Dahlgren, C.P. and J. Sobel. 2000. Designing a Dry Tortugas Ecological Reserve: How big is big enough?...To do what? Bulletin of Marine Science 66(3):707-719.

Davis, G.E. and J.W. Dodrill. 1980. Marine parks and sanctuaries for spiny lobster fisheries management. Proceedings of the Gulf of Caribbean Fisheries Institute 32:194-207.

Dayton, P.K., M.J. Tegner, P.B. Edwards, and K.L. Riser. 1998. Sliding baselines, ghosts, and reduced expectations in kelp forest communities. Ecological Applications 8:309-322.

Dayton, P.K., S.F. Thrush, M.T. Agardy, R.J. Hofman. 1995. Environmental effects of marine fishing. Aquatic conservation: Marine and Freshwater Ecosystems 5:1-28.

DeMartini, E.E. 1993. Modeling the potential of fishery reserves for managing Pacific coral reef fishes. Fishery Bulletin 91:414-427.

Dugan, J.E. and G.E. Davis. 1993. Applications of marine refugia to coastal fisheries management. Canadian Journal of Fisheries and Aquatic Science 50:2029-2042.

Edgar, G.J. and N.S. Barrett. 1999. Effects of the declaration of marine reserves on Tasmanian reef fishes, invertebrates, and plants. Journal of Experimental Marine Biology and Ecology 242:107-144.

Fisheries Resource Conservation Council. 1994. Conservation Requirements for Atlantic Groundfish. Report to the Minister of Fisheries and Oceans. Ottawa, Canada.

Foran, T., and R.M. Fujita. 1999. Modeling the Biological Impact of No-take Reserve Policy on Pacific Continental Slope Rockfish. Environmental Defense Fund, Oakland, California.

Fujita, R.M. 1998. A review of the performance of some US west coast marine reserves. Environmental Defense Fund, 5655 College Avenue, Suite 304, Oakland, CA 94618. USA.

Goodyear, C.P. 1993. Spawning stock biomass per recruit in fisheries management: foundation and current use. Canadian Special Publications in Fisheries and Aquatic Science 120: 25-34.

Grigg, R.W. 1994. Effects of sewage discharge, fishing pressure, and habitat complexity on coral ecosystems and reef fishes in Hawaii. Marine Ecology Progress Series 103:25-34.

Guenette, S., and T.J. Pitcher. 1999. An age-structured model showing the benefits of marine reserves in controlling overexploitation. Fisheries Research 39:295-303.

Halliday, R.G. 1988. Use of seasonal spawning area closures in the management of haddock fisheries in the Northwest Atlantic. NAFO Scientific Council Studies 12:2735.

Halpern, B. In press. The impact of marine reserves: does size matter? Ecological Applications.

Hannesson, R. 1998. Marine reserves: what would they accomplish? Marine Resource Economics 13:159-170.

Hastings, A., and L. Botsford. 1999. Equivalence in yield from marine reserves and traditional fisheries management. Science 284:1-2.

Holland, D.S. and R.J. Brazee. 1996. Marine reserves for fisheries management. Marine Resource Economics 11:157-171.

Horwood, J. 2000. No-take zones: a management context. In MJ Kaiser and SJ de Groot. The effects of fishing on non-target species and habitats, Biological, conservation and socio-economic issues. Blackwell Science Ltd. Oxford. Pp 302-311.

Jennings, S., E.M. Grandcourt, and N.V.C. Polunin. 1995. The effects of fishing on the diversity, biomass, and trophic structure of Seychelles' reef fish communities. Coral Reefs 14:225-235.

Jennings, S., S.S. Marshall, and N.V.C. Polunin. 1996. Seychelles' marine protected areas: comparative structure and status of reef fish communities. Biological Conservation 75:201-209.

Jennings, S. 1998. Cousin Island, Seychelles: a small, effective, internationallymanaged marine reserve. Coral Reefs 17:190.

Johnson, D.R., N.A. Funicelli, and J.A. Bohnsack. 1999. Effectiveness of an existing estuarine no-take fish sanctuary within the Kennedy space center, Florida. American Journal of Fisheries Management 19:436-453.

Lauck, T., C.W. Clark, M. Mangel, and G.R. Munro. 1998. Implementing the precautionary principle in fisheries management through marine reserves. Ecological Applications 8:S72-S78.

Letourneur, Y. 1996. Reponses des peuplements et populations de poissons aux reserves marines: le cas de l'ile de Mayotte. Ocean Indien occidental. Ecoscience 3:442-450.

Mace, P.M., and M.P. Sissenwine. 1993. How much spawning per recruit is enough? Canadian Special Publication of Fisheries and Aquatic Sciences 120:110-118.

Mace, P.M. 1994. Relationships between common biological reference points used as thresholds and targets of fisheries management strategies. Canadian Journal of Fisheries and Aquatic Sciences 51:110-122.

Magurran, A.E. 1988. Ecological Diversity and Its Measurement. Croom-Helm, London.

Man, A., R. Law, and N.V.C Polunin. 1995. Role of marine reserves in recruitment into reef fisheries: a metapopulation model. Biological Conservation 71:197-204.

Mangel, M. 2000. Trade-offs between fish habitat and fishing mortality and the role of reserves. Bulletin of Marine Science 66(3):663-674.

McClanahan, T.R. 1994. Kenyan coral reef lagoon fish. Effects of fishing, substrate complexity and sea urchins. Coral Reefs 13:231-241.

McClanahan, T.R. and B. Kaunda-Arara. 1996. Fishery recovery in a coral reef marine park and its effects on the adjacent fishery. Conservation Biology 10:1187-1199.

McGarvey, R. and J.H.M. Willison. 1995. Rationale for a marine protected area along the international boundary between U.S. and Canadian waters in the Gulf of Maine. In N.L. Shackell and J.H.M. Willison (eds). Marine Protected Areas and Sustainable Fisheries. Science and Management of Protected Areas Association, Wolfville, Canada. Pp. 74-81.

Murawski, S.A., R. Brown, H.L. Lai, P.J. Rago, and L. Hendrickson. 2000. Large-scale closed areas as fishery-management tool in temperate marine systems: The Georges Bank experience.

Musick, J.A., M.M. Harbin, S.A. Berkeley, G.H. Burgess, A.M. Eklund, L. Findley, R.G. Gilmore, J.T. Golden, D.S. Ha, G.R. Huntsman, J.C. McGovern, S.J. Parker, S.G. Poss, E. Sala, T.W. Schmidt, G.R. Sedberry, H. Weeks, and S.G. Wright. 2000. Marine, Estuarine, and Diadromous Fish Stocks at Risk of Extinction in North America (Exclusive of Pacific Salmonids). Endangered Species 25(11):6-29.

Palsson, W.A. and R.E. Pacunski. 1995. The response of rocky reef fishes to harvest refugia in Puget Sound. Proceedings: Volume 1: Puget Sound Research '95. Puget Sound Water Quality Authority, Olympia, Washington, U.S.A.

Pezzey, J.C.V., C.M. Roberts, and B.T. Urdal. 2000. A simple bioeconomic model of a marine reserve. Ecological Economics 33:77-91.

Piet, G.J., and A.D. Rjinsdorp. 1998. Changes in the demersal fish assemblage in the southeastern North Sea following establishment of the protected areas ("plaice box"). ICES Journal of Marine Science 55:420-429.

Polacheck, T. 1990. Year around closed areas as a management tool. Natural Resource Modeling 4:327-354.

QUESTIONS FOR THE SCIENCE ADVISORY PANEL

Polunin, N.V.C. and C.M. Roberts. 1993. Greater biomass and value of target coral reef fishes in two small Caribbean marine reserves. Marine Ecology Progress Series 100:167-176.

Quinn, J., S.R. Wing and L.W. Botsford. 1993. Harvest refugia in marine invertebrate fisheries: models and applications to the red sea urchin, Strongylocentrotus franciscanus. American Zoologist 33:537-550.

Quinn, J.F. 1997. Considerations for Marine Protected Areas: Sizing and Spacing. California and the World Ocean '97. Taking a Look at California's Ocean Resources: An agenda for the Future. Vol. 1:260.

Rakitin, A. and D.L. Kramer. 1996. Effect of a marine reserve on the distribution of coral reef fishes in Barbados. Marine Ecology Progress Series 131:97-113.

Ramos-Espla, A.A. and S.E. McNeill. 1994. The status of marine conservation in Spain. Ocean and Coastal Management 24:125-138.

Roberts, C.M. and N.V.C. Polunin. 1991. Are marine reserves effective in management of reef fisheries? Review in Fish Biology and Fisheries 1:65-91.

Roberts, C.M. and N.V.C. Polunin. 1993a. Effects of marine reserve protection on northern Red Sea fish populations. Proceedings of the $7^{\text {th }}$ International Coral Reef Symposium, Guam 2:969-977.

Roberts, C.M. and N.V.C. Polunin. 1993b. Marine Reserves: Simple solutions to managing complex fisheries? Ambio 22:363-368.

Roberts, C.M. and N.V.C. Polunin. 1994. Hol Chan: demonstrating that marine reserves can be remarkably effective. Coral Reefs 13:90.

Roberts, C.M. and J.P. Hawkins. 1997. How small can a marine reserve be and still be effective? Coral Reefs 16:150.

Roberts, C.M. and J.P. Hawkins. 2000. Fully-protected marine reserves: a guide. WWF Endangered Seas Campaign. $125024^{\text {th }}$ Street, NW. Washington, DC 20037, USA and Environment Department, University of York, York YO10 5DD, UK.

Roberts, C.M., G. Branch, R.H. Bustamante, J.C. Castilla, J. Dugan, B. Halpern, K.D. Lafferty, H. Leslie, J. Lubchenco, D. McArdle, M. Ruckelshaus, and R. Warner. Application of ecological criteria in selecting marine reserves and developing reserve networks. Unpublished manuscript.

Roughgarden, J. 1998. How to manage fisheries. Ecological Applications S8:160-164.
Roughgarden, J. Manuscript. Models of marine reserves: status relative to the Marine Reserves Working Group goals.

Roughgarden, J. and F. Smith. 1996. Why fisheries collapse and what to do about it. Proceedings of the National Academy of Science, USA. 93:5078-5083.

Rowley, R.J. 1994. Case studies and reviews. Marine reserves in fisheries management. Aquatic Conservation: Marine and Freshwater Ecosystems 4:233-254.

Russ, G.R. and A.C. Alcala. 1996a. Marine reserves: rates and patterns of recovery and decline of large predatory fish. Ecological Applications 6:947-961.

Russ, G.R. and A.C. Alcala. 1996b. Do marine reserves export adult fish biomass? Evidence from Apo Island, Central Philippines. Marine Ecology Progress Series 132:1-9.

Sladek-Nowlis, J.J., and C.M. Roberts. 1997. You can have your fish and eat it too: theoretical approaches to marine reserve design. Proceedings of the $8^{\text {th }}$ International Coral Reef Symposium, Panama 2:1907-1910.

Sladek-Nowlis, J.J., and C.M. Roberts. 1999. Fisheries benefits and optimal design of marine reserves. Fisheries Bulletin US 67:604-616.

Sladek-Nowlis, J.J., and M.M. Yoklavich. 1998. Design criteria for rockfish harvest refugia from models of fish transport. Pages 32-40 in MM Yoklavich (ed). Marine harvest refugia for west coast rockfish: a workshop. NOAA Technical Memorandum NMFS-SWFSC-255, Silver Springs, Maryland.

Sluka, R., M. Chiappone, K.M. Sullivan, and R. Wright. 1997. The benefits of a marine fishery reserve for Nassau grouper (Epinephelus striatus) in the central Bahamas. Proceedings of the $8^{\text {th }}$ International Coral Reef Symposium, Panama 2:1961-1964.

Stockhausen, W.T., R.N. Lipcius and B.M. Hickey. 2000. Factors shaping reserve design. Bulletin of Marine Science 66(3):661-690.

Stoner, A.W. and M. Ray. 1996. Queen conch, Strobus gigas, in fished and unfished locations of the Bahamas: effects of a marine fishery reserve on adults, juveniles, and larval production. Fishery Bulletin 94:551-565.

Sumaila, U.R. 1998. Protected marine reserves as fisheries management tools: a bioeconomic analysis. Chr. Michelsen Institute. Fantoftvegen 38, N-5036 Fantoft, Bergen, Norway.

Trexler, J., and J. Travis. 2000. Can marine protected areas conserve stock attributes? Bulletin of Marine Science.

Turpie, J.K., L.E. Beckley and S.M. Katua. 2000. Biogeography and the selection of priority areas for conservation of South African coastal fishes. Biological Conservation 92:59-72.

Wantiez, L., P. Thollot, and M. Kulbicki. 1997. Effects of marine reserves on coral reef fish communities from five islands in New Caledonia. Coral Reefs 16:215-224.

Watson, M. and R.F.G. Ormond. 1994. Effect of an artisanal fishery on the fish and urchin populations of a Kenyan coral reef. Marine Ecology Progress Series 109:115129.

Watson, M., D. Righton, T. Austin, and R. Ormond. 1996. The effects of fishing on coral reef abundance and diversity. Journal of Marine Biological Association of the United Kingdom 76:229-233.

Yamaski, A. and A. Kuwahara. 1990. Preserved area to effect recovery of overfished Zuwai crab stocks off Kyoto Prefecture. In Proceedings of the International Symposium on King and Tanner Crabs, November 1989, Anchorage, Alaska. Alaska Sea Grant College Program, University of Alaska, Fairbanks, Alaska, U.S.A. Pp. 575-585.

> Explain the similarities between conserving ecosystem biodiversity and sustaining fisheries.

The conservation of ecosystem biodiversity requires the maintenance of ecological roles of all species, including those that are fished, in natural population densities and size structures. Populations of fished species are more vulnerable than other species because their rates of mortality increase proportionally with the fishing effort. If the rate of natural plus fishing mortality exceeds the rate of birth plus immigration, fished populations will decline. As population sizes decrease, the populations become more susceptible to environmental fluctuations, catastrophic events, and demographic stochasticity. Consequently, estimates of the minimum area required sustain fished species are likely to provide the best basis for the size of reserves for conservation of biodiversity. If no-take reserves are designed to sustain the natural populations of fished species, the reserve is likely to protect the necessary habitat for other, non-fished species in the ecosystem. Consequently, estimates of the reserve area required to sustain fished species are likely to provide the best basis for determining the percentage of habitat or stock required for protecting ecosystem biodiversity.

Because species diversity increases with area, and because some species require larger areas to maintain self-sustainability, marine reserves for conservation must be as large as possible within the constraints imposed by fishers and other users. Data from harvested populations indicate that species differ greatly in the degree to which they can be reduced below normal carrying capacity before they are not self-sustainable in the long term. Given the available empirical data, a minimum reserve size of 30% would sustain approximately 80% of the species for which data are currently available. To meet the minimum requirements for all species, the fraction set aside in reserves would need to exceed 70%. If reserves are designed for fisheries enhancement and sustainability, numerous theoretical studies and limited empirical data indicate that protecting approximately 35% of fishing grounds will maximize catches. Thus a reserve area of $30-$ 50% of an area of interest will achieve some measure of protection for both conservation and fisheries goals. Because of the complexity upon which this estimate is based, continued evaluation of reserve effectiveness is absolutely necessary to determine whether alteration (reduction or increase) is appropriate.

Table 4. Estimates of replacement threshold levels for 85 populations of 27 fished species, grouped by geographic location (Mace and Sissenwine 1993).

Common Name	Scientific Name	Replacement Threshold Level (\%)
ICES Stocks (NE Atlantic)		
1. Irish Sea cod	Gadus morhua	3.9
2. Irish Sea whiting	Merlangius merlangus	11.4
3. Irish Sea plaice	Pleuronectes platessa	10.1
4. Irish Sea sole	Solea vulgaris	23.5
5. Celtic Sea cod	Gadus morhua	6.6
6. Celtic Sea whiting	Merlangius merlangus	6.9
7. Celtic Sea plaice	Pleuronectes platessa	5
8. Celtic Sea sole	Solea vulgaris	19.2
9. Blue whiting, southern stock	Merlangius merlangus	7.4
10. NE Arctic cod	Gadus morhua	5.8
11. NE Arctic haddock	Melanogrammus aeglefinus	24.3
12. NE Arctic saithe	Pollachius virens	9.8
13. Redfish in areas IIA and B	Sebastes marinus	18.2
14. Greenland halibut in areas I and II	Reinhardtius hippoglossodes	21.6
15. Icelandic summer herring	Clupea harengus	18.6
16. North Sea sole	Solea vulgaris	12.3
17. North Sea plaice	Pleuronectes platessa	11.2
18. Div VIId sole	Solea vulgaris	11.5
19. Div VIIe sole	Solea vulgaris	25.8
20. Bay of Biscay sole	Solea vulgaris	5.6
21. Div VIIe plaice	Pleuronectes platessa	7.3
22. North Sea cod	Gadus morhua	3.4
23. Div Via cod	Gadus morhua	11
24. Div VIId cod	Gadus morhua	5.3
26. North Sea haddock	Melanogrammus aeglefinus	15.5
27. Div Via haddock	Melanogrammus aeglefinus	18.2
28. North Sea whiting	Merlangius merlangus	50.1
29. Div. VIa whiting	Merlangius merlangus	37.2
30. Div VIId whiting	Merlangius merlangus	42.7
31. North Sea saithe	Pollachius virens	16.7
32. Div. VI saithe	Pollachius virens	24.6
33. Kattegat cod	Gadus morhua	8.2
34. Skagerrak Cod	Gadus morhua	6.1
35. Kattegat plaice	Pleuronectes platessa	8.7
36. North Sea herring	Clupea harengus	10.8
37. Celtic Sea herring	Clupea harengus	27.9
38. Div. VIa north herring	Clupea harengus	16.8
39. Clyde herring	Clupea harengus	23

Table 4. Estimates of replacement threshold levels for 85 populations of 27 fished species, grouped by geographic location.

Common Name	Scientific Name	Replacement Threshold Level (\%)
		23.4
40. Div. VIa south and VIIb,c herring	Clupea harengus	14.6
41. Div. VIIa herring	Clupea harengus	2.5
42. Baltic cod in area 22	Gadus morhua	2.9
43. Baltic cod in area 22 and 24	Gadus morhua	8.8
44. Baltic cod in areas 25-32	Gadus morhua	6.8
45. Western Baltic and Kattegat herring	Clupea harengus	30.4
46. Gulf of Riga and areas 25-29 herring	Clupea harengus	39.5
47. Herring in coastal areas 25-27	Clupea harengus	27.1
48. Herring in the Gulf of riga	Clupea harengus	63.5
49. Herring in areas 30E	Clupea harengus	63.5
50. Herring in area 31E	Clupea harengus	65.4
51. Herring in area 31E	Clupea harengus	17.5
52. Herring in the Gulf of Finland	Clupea harengus	45.8
53. Sprat in areas 26 and 28	Sprattus sprattus	35.7
54. Sprat in areas 22-32	Sprattus sprattus	42.8
55. Mackerel, western stock	Scomer scombrus	8.5
56. Greenland halibut in areas V and XIV	Reinhardtius hippoglossodes	24.9
57. Icelandic saithe	Pollachius virens	21.4
58. Faroe saithe	Pollachius virens	17.2
59. Faroe Plateau cod	Gadus morhua	31.5
60. Faroe haddock	Melanogrammus aeglefinus	51.5
61. Hake, northern stock	Merluccius merluccius	34.1
62. Hake, southern stock	Merluccius merluccius	55.1
63. Megrim in areas VII and VIII	Lepidorhombus whifragonis	55.4
64. Sardine in areas VIIIe and IXa	Sardina pilchardis	22.3
65. Horse mackerel, southern stock	Trachurus trachurus	
		23.7
Northwest Atlantic Stock (Canada)		26
66. Pollock in NAFO areas 4VWX and 5Zc	Theragra chalcogramma	9.5
67. Haddock in NAFO area 4X	Melanogrammus aeglefinus	
68. Herring in NAFO area 4T	Clupea harengus	

Table 4. Estimates of replacement threshold levels for 85 populations of 27 fished species, grouped by geographic location.

Common Name	Scientific Name	Replacement Threshold Level (\%)
Northwest Atlantic Stock (USA)		
69. Georges Bank cod	Gadus morhua	11.9
70. Gulf of Maine cod	Gadus morhua	8.4
71. Georges Bank haddock	Melanogrammus aeglefinus	20.6
72. Silver hake, northern stock	Merluccius bilinearis	30.8
73. Silver hake, southern stock	Merluccius bilinearis	42.4
74. Georges Bank yellowtail flounder	Limanda ferruginea	14.2
75. Southern New England yellowtail flounder	Limanda ferruginea	10.3
76. Summer flounder	Paralichthys dentatus	3.7
77. Gulf of Maine herring	Clupea harengus	14.9
78. NW Atlantic mackerel	Scomer scombrus	40.7
79. Georges Bank scallops	Placopecten magellanicus	2
80. Mid-Atlantic scallops	Placopecten magellanicus	2.9
Atlantic Stocks		
81. North Atlantic swordfish	Xiphias gladius	8.6
82. NW Atlantic swordfish	Xiphias gladius	10.1
Pacific Coast Stocks		
83. Bering Sea walleye pollock	Theragra chalcogramma	43.8
84. Pacific halibut	Hippoglossus sternolepis	24.6
85. Bering sea yellowfin sole	Limanda aspera	20.4

Is a reduction in fishing effort plus a small reserve network comparable to a large marine reserve?

A reduction in fishing effort plus a small reserve network is NOT comparable to a large marine reserve.

First, reduced effort does not translate into reduced catch. As technology improves, catch often increases as effort decreases. This is true particularly for bottom fishing, with technological improvements such as bottom maps and fish finders.

Second, if the rate of removals already exceeds the replacement, a small reduction in fishing effort (e.g. 10\%) may not be sufficient to sustain the fished population of over the long term. The population will continue to decline in fished areas, but at a slower rate than before the reduction in fishing effort.

Third, one of the primary objectives of a reserve is to reestablish stable age structure and allow adult fish to live longer and reach larger sizes than in fished areas. Effort regulations kill either (1) a cross-section of all sizes, or (2) focus on retaining larger, more valuable fish (e.g. minimum size limit). In the present study, fishing reduces the average age of individuals in the population until there are few reproductive adults. Consequently, recruitment limitation can reduce population growth.

Can other current management measures reduce the recommended reserve size for conservation (e.g. the proposed cowcod closure)?

Other current management measures cannot reduce the recommended reserve size of 30$50 \%$ of the Channel Islands National Marine Sanctuary for ecosystem conservation. The proposed cowcod closure provides some protection for groundfish species within a limited depth range (below 120 ft) and areas (south of the Channel Islands, including San Nicolas and Santa Barbara Islands). With the exception of the Anacapa Reserve, closures in the Channel Islands region have been limited to a single or several species, or a single or several gear types. Single (or several) species (or gear type) closures do not meet the Marine Reserves Working Group goal of protecting ecosystem biodiversity. One of the primary objectives for marine reserves is to "protect representative and unique marine habitats, ecological processes, and populations of interest". The Marine Reserves Working Group and the Science Panel have identified 20 representative and unique marine habitats (Table 7) and 119 populations of interest (Table 8). Ecological processes link the species with their habitats and with other species through direct and indirect interactions.

In response to stock status classified as over-fished, the Pacific Fisheries Management Council adopted tentative guidelines for the development of draft rebuilding plans for canary rockfish and cowcod. For canary rockfish, the tentative guidelines include substantially reduced take limits that would be in place for several decades or until the populations are rebuilt. Reduced limits on canary rockfish do not prevent accidental or by-catch of canary rockfish during other fishing efforts. To protect cowcod, found almost exclusively in waters off southern and central California, large area closures in the best cowcod areas will be closed to all groundfish fishing below 120 ft , and retention of cowcod will be restricted in all fisheries in open areas. Fishing will be permitted at depths shallower than the officially recognized cowcod habitat ($>120 \mathrm{ft}$). Consequently, there is little benefit to most rockfish species (including the occasional cowcod) that inhabit kelp beds and to depths of 120 ft . The proposed cowcod closure does not substitute for protection of marine ecosystems in the northern Channel Islands where we have little suitable cowcod habitat, and do not expect to protect significant populations of cowcod.

```
As reserve size is decreased, which goals and objectives are not met?
```

Table 6. Relationship between marine protected area objectives, size, and design complexity.

Objective	Relative Size	Complexity
Conserving biodiversity	Large (or a network)	Simple to complex
Protecting a migratory species	Large (or a network)	Simple to complex
Providing sites for scientific research	Network of small, medium, and large	Simple to complex
Protecting habitat from multiple threats	Medium to large	Complex
Protecting habitat from a single threat	Medium	Simple
Preventing overfishing	Small to medium (or a network)	Simple
Enhancing stocks	Small to medium (or a network)	Simple
Protecting an endangered species	Small to medium	Simple
Promoting marine ecotourism	Small to medium	Simple
Protecting areas of historic or cultural interest	Small	Simple

Modified from Table 2 in Agardy, T. 2000. Information needs for marine protected areas: scientific and societal. Bulletin of Marine Science 66(3):875-888.

Table 7. Representative and unique marine habitats in the Channel Islands region

Habitat Type	Units
1. Rocky coastline	Linear miles
2. Sandy coastline	Linear miles
3. Wave-cut coastline	Linear miles
4. Nearshore sandy habitat $(0-30 \mathrm{~m})$	Square nautical miles
5. Nearshore rocky habitat $(0-30 \mathrm{~m})$	Square nautical miles
6. Sandy shallow continental shelf $(30-100 \mathrm{~m})$	Square nautical miles
7. Rocky shallow continental shelf $(30-100 \mathrm{~m})$	Square nautical miles
8. Sandy deep continental shelf $(100-200 \mathrm{~m})$	Square nautical miles
9. Rocky deep continental shelf $(100-200 \mathrm{~m})$	Square nautical miles
10. Sandy continental slope $(>200 \mathrm{~m})$	Square nautical miles
11. Rocky continental slope $(>200 \mathrm{~m})$	Square nautical miles
12. Emergent nearshore rocks	Number
13. Emergent offshore rocks	Square nautical miles
14. Submerged rocky features and pinnacles	Square nautical miles
15. Submarine canyons	Square nautical miles
16. Kelp forest	Square nautical miles
17. Eelgrass	Square nautical miles
18. Surfgrass	Square nautical miles
19. Bird rookeries	Linear miles
20. Marine mammal haulouts	Linear miles

Table 8. Species of interest in the Channel Islands National Marine Sanctuary

Species

PLANTS

1 Giant Kelp
2 Feather Boa Kelp
3 Elk Kelp
4 Oar Weed
5 Agarum fimbriatum
6 Eisenia arborea
7 Pterygophora californica
8 Scoulder Surfgrass
9 Torrey Surfgrass
10 Eelgrass

INVERTEBRATES

11 California Hydrocoral
12 Hydroid
13 Ostich-Plume Hydroid
14 Ostich-Plume Hydroid
15 Hydroid
16 Hydroid
17 Hydroid
18 Hydroid
19 Hydroid
20 Hydroid
21 Hydroid
22 Red Gorgonian
23 California Golden Gorgonian
24 Brown Gorgonian
25 Colonial Sand Tube Worm
26 Giant Acorn Barnacle
27 Aggregating Anemone
28 Giant Starfish
29 Ochre Starfish
30 California Sea Cucumber
31 Warty Sea Cucumber
32 Red Sea Urchin
33 Purple Sea Urchin
34 Pink Abalone
35 Black Abalone
36 Green Abalone

Scientific Name

Macrocystis pyrifera
Egregia menziesii and laevigata
Pelagophycus porra
Laminaria farlowii
Agarum fimbriatum
Eisenia arborea
Pterygophora californica
Phyllospadix scoulei
Phyllospadix torreyi
Zostera spp.

Allopora californica
Abietinaria spp.
Aglaophenia latirostris
Aglaophenia struthionides
Clytia bakeri
Garveia annulata
Obelia spp.
Sarsia spp.
Sertularella turgida
Sertularia frucata
Tubularia crocea
Lophogorgia chilensis
Muricea californica
Muricea fructicosa
Phragmatopoma californica
Balanus nubilus
Anthopleura elegantisima
Pisaster giganteus
Pisaster ochraceus
Parastichopus californicus
Parastichopus parvamensis
Strongylocentrotus franciscanus
Strongylocentrotus purpuratus
Haliotis corrugata
Haliotis cracherodii
Haliotis fulgens

Table 8. Species of interest in the Channel Islands National Marine Sanctuary

Species

INVERTEBRATES

$$
40
$$

42 California Mussel
43 Rock Scallop
44 Pismo Clam
45 Geoduck Clam
46 Market Squid
47 California Spiny Lobster
48 Red Rock Shrimp
49 Spot Prawn
50 Ridgback Prawn
51 Red Crab
52 Rock Crab
53 Sheep Crab

FISH

54 Leopard Shark
55 Pacific Angel Shark
56 Soupfin Shark
57 Thornback Ray
58 Pacific Herring
59 Pacific Sardine
60 Northern Anchovy
61 Pacific Cod
62 California Grunion
63 California Scorpionfish
64 Pacific Ocean Perch
65 Kelp Rockfish
66 Brown Rockfish
67 Gopher Rockfish
68 Copper Rockfish
69 Greenspotted Rockfish
70 Black and Yellow Rockfish
71 Dark-blotched Rockfish
72 Starry Rockfish
73 Calico Rockfish
74 Widow Rockfish

Scientific Name

Haliotis rufescens
Haliotis sorenseni
Lottia gigantea
Lithopoma undosum
Kelletia kellettii
Mytilus californianus
Hinnites giganteus
Tivela stultorum
Panopea generosa
Loligo opalescens
Panulirus interruptus
Lysmata californica
Pandalus platyceros
Sicyonia ingentis
Cancer productus
Cancer antennarius
Loxorhynchus grandis

Triakis semifasciata
Squatina californica
Galeorhinus galeus
Platyrhinoidis triseriata
Clupea pallasii
Sardinops sagax
Engraulis mordax
Gadus macrocephalus
Leuresthes tenuis
Scorpaena guttata
Sebastes alutus
Sebastes atrovirens
Sebastes auriculatus
Sebastes carnatus
Sebastes caurinus
Sebastes chlorostictus
Sebastes chrysomelas
Sebastes crameri
Sebastes constellatus
Sebastes dallii
Sebastes entromelas

Table 8. Species of interest in the Channel Islands National Marine Sanctuary

Species

FISH

76 Black Rockfish
77 Vermilion Rockfish
78 Blue Rockfish
79 Speckled Rockfish
80 Bocaccio
81 Canary Rockfish
82 Grass Rockfish
83 Yelloweye Rockfish
84 Flag Rockfish
85 Olive Rockfish
86 Treefish
87 Honeycomb Rockfish
88 Shortspine Thornyhead
89 Lingcod
90 Cabezon
91 Giant Seabass
92 Broomtail Grouper
93 Kelp Bass
94 Ocean Whitefish
95 White Seabass
96 Halfmoon
97 Black Surfperch
98 Barred Surfperch
99 Shiner Surfperch
100 Walleye Surfperch
101 Silver Surfperch
102 Rubberlip Surfperch
103 Blacksmith
104 Garibaldi
105 California Sheephead
106 Tidewater Goby
107 California Halibut
108 Starry Flounder
109 CO-Turbot

Scientific Name

Sebastes levis
Sebastes melanops
Sebastes miniatus
Sebastes nystinus
Sebastes ovalis
Sebastes paucispinis
Sebastes pinniger
Sebastes rastrelliger
Sebastes ruberrimus
Sebastes rubrivinctus
Sebastes serranoides
Sebastes serriceps
Sebastes umbrosus
Sebastolobus alascanus
Ophiodon elongatus
Scorpaenichthys marmoratus
Stereolepis gigas
Mycteroperca xenarcha
Paralabrax clathratus
Caulolatilus princeps
Atractoscion nobilis
Medialuna californiensis
Embiotoca jacksoni
Amphistichus argenteus
Cymatogaster aggregata
Hyperprosopon argenteum
Hyperprosopon ellipticum
Rhacochilus toxotes
Chromis punctipinnis
Hypsypops rubicundus
Semicossyphus pulcher
Eucylogobius newberryi
Paralichthys californicus
Platichthys stellatus
Pleuronichthys coenosus

Table 8. Species of interest in the Channel Islands National Marine Sanctuary

Species

BIRDS
110 Ashy Storm Petrel
111 California Brown Pelican
112 Snowy Plover
113 California Least Tern
114 Pigeon Guillemot
115 Xantus' Murrelet
116 Cassin's Auklet

MAMMALS

117 Harbor Seal
118 Northern Fur Seal
119 Southern Sea Otter

Scientific Name

Oceanodroma homochroa Pelecanus occidentalis californicus
Charadrius alexandrinus
Sterna antillarum browni
Cepphus columba
Synthliboramphus hypoleucus
Ptychoramphus aleuticus

Phoca vitulina
Callorhinus ursinus
Enhydra lutris nereis

What species, if any, are unique to the Channel Islands? Where are they located?
Most marine species found in the Channel Islands have the potential to disperse into other regions. For some species (e.g. California spiny lobster), the Channel Islands form the northern limit of their geographical distribution. For other species (e.g. black rockfish) the Channel Islands form the southern limit of their geographical distribution. The marine ecosystem differs fundamentally from the terrestrial system because marine species have greater potential for passive or active dispersal. Many marine species have pelagic dispersal phases. Their eggs or larvae are released into open water where they develop over periods of days to a few months. Some larvae drift passively with currents, while others may be able to influence or control dispersal. Consequently, replenishment of populations may depend on reproduction that occurs in other places. Tundi Agardy (1997) eloquently describes the marine system as "dynamic and without defined boundaries. Living things are suspended in a moving, fluid three dimensions, where even plants-the foundation for large and complex food chains-can move."

The marine ecosystems around the Channel Islands are unique, not in terms of species identities, but in terms of interactions among species. The Channel Islands form the boundary between two vast biogeographical regions, the cold-water Oregonian Province to the north, and the warm-water California Province to the south. Species that range from the Bering Sea to Point Conception (e.g. darkblotched rockfish) overlap in the Channel Islands with species that are found from Point Conception to Baja California (e.g. calico rockfish).

San Miguel Island supports six species of pinnipeds, more than anywhere in the North Pacific. They included the California sea lion (Zalophus californianus), Northern seal lion (Eumetopias jubatus), Northern fur seal (Callorhinus ursinus), Guadalupe fur seal (Artocephalus townsendi), Northern elephant seal (Mirounga angustirostris), and harbor seal (Phoca vitulina). At certain times of the year, the Point Bennett area supports more than 10,000 animals in one of the most outstanding displays of marine mammal life found on the Southern California Islands. California sea otters (Enhydra lutris nereis) were a common around the Channel Islands in the early 19th century but they were exterminated in this region due to excessive hunting.

The ocean itself forms a barrier to dispersal of terrestrial species that inhabit the Channel Islands. Numerous animal and plant species found on the Channel Islands are endemic, in other words, they occur no where else in the world.

There are four endemic species and subspecies of terrestrial mammals which occur on Santa Cruz Island, the Santa Cruz Island fox (Urocyon littoralis santacruzae), the spotted skunk (Spilogale gracilis amphialus), the deer mouse (Peromyscus maniculatus santacruzae), and the western harvest mouse (Reithrodontomys megalotis santacruzae).

QUESTIONS FOR THE SCIENCE ADVISORY PANEL

There is one terrestrial mammal on Santa Barbara Island, the endemic subspecies of deer mouse (Peromyscus maniculatus elusus).

The Island night lizard (Xantusia riversiana) is found only on Santa Barbara, San Nicholas and San Clemente Islands. The Island night lizard was listed as endangered in 1967.

There are 10 birds which are Channel Island subspecies or races, including Allen's hummingbird, western flycatcher, horned lark, Santa Cruz Island jay, Bewick's wren, loggerhead shrike, orange-crowned warbler, house finch, rufous-sided towhee and the Catalina quail (introduced). Anacapa and Santa Barbara Islands support a variety of endangered and vulnerable breeding seabird species, including the two major rookeries of the endangered California brown pelican (Pelecanus occidentalis californicus), and breeding populations of the ashy storm-petrel (Oceanodroma homochroa), black stormpetrel (Oceanodroma melania), Leach's storm-petrel (Oceanodroma leucorhoa), Cassin's auklet (Ptychoramphus aleuticus), and Xantus's murrelet (Synthliboramphus hypoleucus). The endemic Santa Barbara Island song sparrow (Melospiza melodia graminea) is thought to be extinct. In 1959, a fire destroyed much of the bird's habitat and the population of Santa Barbara Island song sparrows survived only eight years after the fire.

There are over 650 different plants on Santa Cruz Island, including both native and introduced species. Forty-two of these plants are endemic to the Channel Islands and 9 are endemic to Santa Cruz Island, in particular. There are four plants restricted to Santa Rosa Island: Live-forever (Dudleya blochmanae insularis), manzanita (Arctostaphylos confertiflora), gilia (Gilia tenuiflora hoffmannii), and a variety of Torrey Pine (Pinus torreyana insularis). Torrey pines are found on the northeast side of Santa Rosa Island at elevations between 200-500 feet. This is the only native stand of Torrey pines on any Channel Island. Another subspecies of Torrey Pine occurs naturally at only one other location, on the southern California coast just south of Del Mar in San Diego County.

Although there are no endemic plant species on San Miguel Island, there is a subspecies of buckwheat (Eriogonum grande dunklei) known only from this island.

There are three plants restricted to Santa Barbara Island, including a shrubby buckwheat (Eriogonum giganteum compactum), a small succulent (Duleya traskiae), and the annual poppy (Platystemon californicus ciliatus).

What are the criteria for risk of extinction of species in the Channel Islands region? How does extinction factor into the Science Panel recommendation?

There is a difference between evolutionary extinction and ecological extinction (or stock collapse).

Evolutionary extinction is the complete loss of a species from its global geographic range.
Ecological extinction or stock collapse is the decline of populations, or species, to levels at which the species no longer play an effective role in the ecosystem, and no longer are economically viable. Ecological extinction or stock collapse is the central operating principle of the Science Panel recommendation.

The collapse of stock depends heavily on stock resilience or intrinsic rate of increase. Musick et al. $(1999,2000)$ developed provisional decline thresholds based on population resistance. If decline, defined as steady decline of populations over the longer of 10 years or 3 generations, reaches a threshold level, populations should be listed as vulnerable and subjected to close scrutiny for further listing (Musick et al. 1999). Musick et al. (1999) estimate that populations with very low productivity (such as herring) are vulnerable when they decline by 70% (which is equal to 0.3 k , where k is the natural carrying capacity in the absence of fishing). Populations with relatively low productivity (such as cod) are vulnerable when they reach 85% decline (or 0.15 k) and populations with intermediate to high levels of productivity (such as scallops) are vulnerable after approximately 95% decline or (0.05 k).

The Pacific Fisheries Management Council (Parrish et al. 2000) identified a number of populations of West coast groundfish that have declined significantly, making some populations vulnerable to collapse. The species considered overfished include the Pacific Ocean perch (Sebastes alutus), cowcod (Sebastes levis), bocaccio (Sebastes paucispinis), canary rockfish (Sebastes pinniger), and lingcod (Ophiodon elongatus). Populations of Pacific Ocean perch exhibited very low productivity (Love et al. in press) and have declined 81-91\% in Washington and Oregon (Ianelli and Zimmerman 1998). Populations of cowcod exhibit very low productivity (Love et al. in press) and have declined in all populations by 91-97\% (Butler et al. 1999). Populations of bocaccio in Washington, Oregon, and California exhibit very low productivity and have declined $96-98 \%$ in all populations. Canary rockfish exhibit very low productivity and populations in Washington, Oregon and California have declined 77-93\% (Stock Assessment Team 1999). Lingcod exhibit low productivity and populations in Washington, Oregon and California have declined 92.5\% (Adams et al. 1999).

Musick et al. (2000) identified 82 marine, estuarine, and diadromous stocks at risk of stock collapse in North America (exclusive of Pacific salmonids). Fourteen of the species with populations at risk in North America occur (or have occurred) in the Channel Islands National Marine Sanctuary during at least one stage of their life history (Table 9).

QUESTIONS FOR THE SCIENCE ADVISORY PANEL

Table 9. Vulnerable, threatened, or endangered marine fish stocks that can be found in the Channel Islands National Marine Sanctuary during at least one stage of their life history. Endangered populations are at high risk of extinction in the wild in the immediate future (years). Threatened populations are not endangered but facing risk of extinction in the near future (decades). Vulnerable populations are not endangered or threatened, but are at possible risk of falling into one of these categories in the near future.

Species	Scientific Name	Populations at Risk	Percent Decline
1. White Shark	$\begin{array}{l}\text { Carcharodon } \\ \text { carcharias }\end{array}$	$\begin{array}{l}\text { Rare in Gulf of } \\ \text { California. }\end{array}$	Low to very low productivity.
2. Big Skate	Dipturus binoculata	$\begin{array}{l}\text { Vulnerable, little data } \\ \text { exist on recent population } \\ \text { trends. }\end{array}$	$\begin{array}{l}\text { Low productivity and stock } \\ \text { collapses and local extirpations } \\ \text { in closely related species suggest } \\ \text { it is at risk (Casey and Meyers } \\ \text { 1998). }\end{array}$
3. Pacific Hake	Merluccius productus	$\begin{array}{l}\text { Vulnerable in Puget } \\ \text { Sound. } \\ \text { Populations in the } \\ \text { CINMS appear to be } \\ \text { stable. }\end{array}$	$\begin{array}{l}\text { Stocks in Puget Sound declined } \\ \text { from 45.1 million lbs in 1983 to } \\ 1.1 \text { million lbs. In 1998 (Palsson } \\ \text { et al. 1997; Wright 1999b). } \\ \text { High predation by pinnipeds } \\ \text { may be preventing recovery } \\ \text { despite stringent fishing } \\ \text { regulations (Schmitt et al. 1996). }\end{array}$
4. Copper Rockfish	Sebastes caurinus	Vulnerable.	$\begin{array}{l}\text { Stocks in Puget Sound exhibited } \\ \text { a long-term decline since the } \\ \text { mid-1980s (Wright 1999b). } \\ \text { Spawner output declined by } \\ \text { >80\% form 1979 to 1992 (WA } \\ \text { DFG 1997). }\end{array}$
6. Widow Rockfish	Sebastes entromelas	Vulnerable.	$\begin{array}{l}\text { Stocks in Washington, Oregon, } \\ \text { and California exhibited 77-89\% } \\ \text { decline (Rogers et al. 2000). }\end{array}$
7. Cowcod		Slack Rockfish	Sebastes melanops
Sebastes levis	Vulnerable.	$\begin{array}{l}\text { Stocks in Washington, Oregon, } \\ \text { and California exhibited 81-82\% } \\ \text { decline (Williams et al. 2000). }\end{array}$	
Rockfish		$\begin{array}{l}\text { Vulnerable. } \\ \text { Considered overfished in } \\ \text { California. }\end{array}$	$\begin{array}{l}\text { Stocks in the US exhibited 91- } \\ 97 \% \text { decline (Butler et al. 1999). }\end{array}$
Sebastes crameri	Vulnerable.	$\begin{array}{l}\text { Stocks in Puget Sound exhibited } \\ \text { a long-term decline (Barker } \\ 1998, ~ C r a w f o r d ~ 1999, ~ W r i g h t ~\end{array}$	
$1999 b$).			

Table 9. Vulnerable, threatened, or endangered marine fish stocks that can be found in the Channel Islands National Marine Sanctuary during at least one stage of their life history.

Species	Scientific Name	Populations at Risk	Percent Decline
9. Bocaccio	Sebastes paucispinis	Vulnerable. Considered overfished in California.	Stocks in Washington, Oregon, and California exhibited 96-98\% decline (McCall et al. 1999).
10. Canary Rockfish	Sebastes pinniger	Vulnerable. Considered overfished in California.	Little information available on the status of this large, uncommon species (Findley, pers. obs.).
11. Yelloweye Rockfish	Sebastes ruberrimus	Vulnerable.	Stocks in Puget Sound exhibited a long-term decline (Wright 1999b); the species has virtually disappeared from recreational catches (Barker 1998).
12. Shortspine Thornyhead	Sebastologus alascanus	Vulnerable. Populations in the CINMS appear stable.	Stocks in Washington, Oregon, and California exhibited 73\% decline (Rogers et al. 2000).
13. Giant Sea Bass	Stereolepis gigas	Vulnerable. Populations exhibited a slight resurgence in the recent past.	Populations in the US are vulnerable; populations in the Gulf of California are threatened (Sala, pers. obs.).
14. Lingcod	Ophiodon elongatus	Vulnerable.	Stocks in Washington, Oregon, and California exhibited 92.5\% decline (Adams et al. 1999).

QUESTIONS FOR THE SCIENCE ADVISORY PANEL

References for Table 9.
Adams, P.B., E.H. Williams, K.R. Silberberg, and T.E. Laidig. 1999. Southern lingcod stock assessment in 1999. In Appendix: status of the Pacific groundfish fishery through 1999 and recommended acceptable biological catches for 2000: stock assessment and fishery evaluation. Pacific Fishery Management Council. Portland, Oregon.

Barker, M. 1998. Consideration for inclusion to state Candidate Species List. Memo to H. Allen dated 18 February. Washington Department of Fish and Wildlife. Marine Resource Divsiion of the Fish Management Program, Olympia.

Butler, J.L., D. Jacobson, J.T. Barnes, H.G. Moser, and R. Collins. 1999. Stock assessment of cowcod. In Appendix: Status of the Pacific groundfish fishery through 1999 and recommended acceptable biological catches for 2000: stock assessment and fishery evaluation. Pacific Fishery Management Council. Portland, Oregon.

Casey, J. and R. Meyers. 1998. Near extinction of a large, widely distributed fish. Science 281:690-692.

Cech, J.J. 1992. White sturgeon. In Leet, W.S., C.M. Dewees, and C.W. Haugen (eds.). California's living marine resources and their utilization. California Sea Grant. Davis, California. Pp 70-71.

Crawford, B. 1999. Letter dated 2 February 1999 to Sam Wright re: endangered Puget Sound fishes. Washington Department of Fish and Wildlife. Olympia, Washington.

Houston, J.J. 1988. Status of the green sturgeon, Acipenser medirostris, in Canada. Canadian Field Naturalist 102(2):286-290.

Ianelli, J.N. and M. Zimmerman. 1998. Status and future prospects for the Pacific Ocean Perch resource in waters off Washington and Oregon as assessed in 1998. In Appendix: status of the Pacific groundfish fishery through 1998 and recommended acceptable biological catches for 1999: stock assessment and fishery evaluation. Pacific Fishery Management Council. Portland, Oregon.

Love, M.S., M. Yoklavich, L. Thorsteinson, and J. Butler. In press. The rockfishes of the northeast Pacific. UC Press and Monterey Bay Aquarium Press. Monterey, California.

McCall, A.D., S. Ralston, D. Pearson, and E. Williams. 1999. Status of bocaccio off California in 1999 and outlook for the next millenium. In Appendix: status of the Pacific groundfish fishery through 1999 and recommended acceptable biological catches for 2000: stock assessment and fishery evaluation. Pacific Fishery Management Council. Portland, Oregon.

Musick, J.A. 1999. Criteria to define extinction risk in marine fishes. Fisheries 24(12):6-14.

Musick, J.A., S. Branstetter, and J.A. Colvocoresses. 1993. Trends in shark abundance from 1974 to 1991 for the Chesapeake Bight region of the U.S. Mid-Atlantic coast. In Branstetter, S. (ed.). Conservation biology of elasmobranchs. NOAA Technical Report NMFS 115:1-18.

Musick, J.A., M.M. Harbin, S.A. Berkeley, G.H. Burgess, A.M. Eklund, L. Findley, R.G. Gilmore, J.T. Golden, D.S. Ha, G.R. Huntsman, J.C. McGovern, S.J. Parker, S.G. Poss, E. Sala, T.W. Schmidt, G.R. Sedberry, H. Weeks, and S.G. Wright. 2000. Marine, Estuarine, and Diadromous Fish Stocks at Risk of Extinction in North America (Exclusive of Pacific Salmonids). Endangered Species 25(11):6-29.

Parrish, R., J. Seger, and M. Yoklavich. 2000. Marine Reserves to Supplement Management of West Coast Groundfish Resources Phase 1: Technical Analysis. Pacific Fisheries Management Council. Portland, Oregon.

Palsson, W.A. 1990. Pacific cod (Gadus macrocephalus) in Puget Sound and adjacent waters. Biology and stock assessment. Washington Department of Fish Technical Report No. 112.

Palsson, W.A., J.C. Hoeman, G.G. Bargmann, and D.E. Day. 1997. Status of Puget Sound bottomfish stocks (1995, revised). Washington Department of Fish and Wildlife. Olympia, Washington.

Rogers, J.B., R.D. Methot, T.L. Builder, and K. Piner. 2000. Status of the darkblotched rockfish (Sebastes crameri) resource in 2000. In Appendix: status of the Pacific groundfish fishery through 2000 and recommended acceptable biological catches for 2001: stock assessment and fishery evaluation. Pacific Fishery Management Council. Portland, Oregon.

Schmitt, C.C., S.J. Jeffries, and P.J. Gearin. 1996. Pinniped predation on marine fish in Puget Sound. In Robichaud, E. (ed.). Puget Sound Research Proceedings: 1995. Puget Sound Water Quality Authority. Bellevue, Washington. Pp. 630-637.

Stock Assessment Team (P. Crone, K. Piner, R. Methot, R. Conser, T. Builder). 1999. Status of the canary rockfish resource off Oregon and Washington in 1999. In Appendix: status of the Pacific groundfish fishery through 1999 and recommended acceptable biological catches for 2000: stock assessment and fishery evaluation. Pacific Fishery Management Council. Portland, Oregon.

