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A Technique for Deducing
In-Plane Modulus and Coefficient
of Thermal Expansion
of a Supported Thin Film
A technique for determining the in-plane modulus and the coefficient of thermal expa
(CTE) of supported thin films has been developed. The modulus and CTE are calc
by solving two coupled equations that relate the curvature of film samples deposite
two different substrates to the thermal and mechanical properties of the constituen
contrast with the conventional method used to calculate modulus and CTE, whic
volves differentiation of the thermal stress in the film, this new technique does not re
the differentiation of the thermal stress, and can also provide the temperature-depen
of the in-plane CTE and elastic modulus of supported thin films. The data redu
scheme used for deducing CTE and elastic modulus is direct and reliable.
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Introduction
The in-plane elastic modulus and coefficient of thermal exp

sion ~CTE! for a thin film residing on a substrate are important
many applications. One question arises as to whether the phy
and mechanical properties of supported thin films in applicati
can be significantly different from the properties of chemica
identical bulk materials. There have been many methods de
oped to measure these properties of thin films for the purpos
understanding the relation between the microstructure and be
ior of material in the bulk and material in thin films coated on
substrate. There are many test methods available to probe
elastic modulus and/or CTE of supported thin films. The ba
concept among them is that these properties can be deduced
the response of a film/substrate system perturbed either mec
cally, thermally, acoustically, or optically through the correspon
ing governing equations@e.g.,@1–5##.

Retajczyk and Sinha@6# proposed the two-substrate conce
and developed a method for deducing CTE and elastic modulu
supported thin films. Their method is to measure the curvatur
a function of temperature for identical films on two different su
strate materials~two coated bimaterial circular plates!, and the
in-plane stress of the film is calculated from the curvature thro
Stoney’s equation@7#. The slope of the curve of stress as a fun
tion of temperature is simply related to two unknowns, namely
bimodulus and in-plane CTE of the film, through an algebr
equation. Accordingly, these two unknowns are calculated fr
two coupled algebraic equations created using the two diffe
substrates. In this method~referred to as the stress approach!, the
elastic modulus and CTE were assumed to be constant ove
temperature range of interest in order to solve the coupled a
braic equations. This assumption that the properties are inde
dent of temperature often might not be the case, especially
organic films. Many versions of the characterization method
thin film elastic modulus and in-plane CTE have been develo
based on this two-substrate concept with the stress appr
@e.g.,@8–11##.

In this study, we developed a new approach~referred to as the
strain approach! for deducing the elastic modulus and CTE
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supported thin films. We also employ two substrates, similar to
method of Retajczyk and Sinha@6#, in order to generate two
coupled equations with two unknowns. As with Retajczyk a
Sinha, the modulus and CTE are deduced from the tempera
induced curvature of two coated bimaterial circular plates; ho
ever, in this approach, the modulus and CTE can be tempera
dependent. The method for obtaining the modulus and CTE
modification of the classic flexural solution for a laminated pla
The film properties are derived from the direct relationship amo
the changes in curvature as a function of temperature, the
match in the thermal expansion strain, and the known proper
of the substrates. The strain approach presented here doe
require the differentiation of thermal stress of the film. In th
paper, the accuracy of the solution was also examined by fi
element analysis. In addition, uncertainty analyses were
formed to assess the sensitivity of the solution to the uncertain
of experimental variables.

Theoretical Aspects of the Technique
Figure 1 shows the cross-sectional bending of a bimaterial

cular plate built up of a thin film and a substrate, due to a cha
in temperature. A perfect bond is assumed between the film
the substrate. If the edges of the uniformly heated bimaterial p
are entirely free~no constraints!, the plate will deform to a spheri-
cal shape when its temperature~T! differs from a reference tem
perature (To) at which the plate is stress-free~flat!. The above
argument holds if the deflections of the plate are small in co
parison with the thickness of the bimaterial plate and the mater
are homogenous and isotropic. Thus, the bending curvat
(1/R), at temperatureT, can be inferred from a classic solution fo
a bimaterial plate@12,13# as follows:

1

R
5

6~«s2« f !~hs1hf !
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The subscriptf represents the film ands represents the substrate
Ēi5Ei /12n i ( i 5s, f ) is the bimodulus of material.Ei is the
Young’s modulus.n i is the Poisson’s ratio.a i is CTE. « i andhi
are stress-free thermal expansion strain and the thickness o
layers, respectively. R, the radius of the curvature at the temp
ture T, is determined experimentally. Although we assumed
reference temperature (To) as the temperature at which the bim
terial plate is stress free,To can be chosen at any temperatu
where experimental data are available, and 1/R in Eq. ~1! should
be changed to an incremental form (D1/R).

For two different bimaterial plates~using the same film materia
but different substrate materials! with changes in curvature unde
an identical temperature history, in principle one can set up t
coupled equations in form of Eq.~1! using theK expressed in Eq.
~2!. Thus,Ēf can be obtained by solving a quadratic equation, a
« f could be also derived afterward. However, in practice, the
efficient of the quadratic order term in the equation might end
ger the stability of the solution in the case of a thin and soft fil
Instead, ifĒs /Ēf(hs /hf)@1 andhf /hs,1, thenK in Eq. ~2! can
be approximated asK* :

K.K* [
Ēs

Ēf

S hs

hf
D (4)

This approximation is valid for many organic film application
since the film thickness is typically much smaller than that of t
substrate, and the film stiffness is generally less than or com
rable to that of the substrate. Then, for two different coated pla
one can rewrite Eq.~1!, substitutingK* from Eq. ~4!, and get

Ri5
1

6~«si
2« f !

Ēsi

Ēf

hsi

3

hf i
~hf i

1hsi
!
[Sih̄i (5)

with

Si5
1

6~«si
2« f !

Ēsi

Ēf

(6)

and

h̄i5
hsi

3

hf i
~hf i

1hsi
!

(7)

The index,i, ranges from 1 to 2, which corresponds to the tw
different bimaterial systems.Si depends only on material proper
ties and is a constant at any given temperature, whileh̄i is only a
function of the geometry used in the experiments and is refer
to as the effective thickness of a bimaterial plate. Therefore,
each bimaterial plate at temperatureT, there is a linear relation-
ship between these two physically measured variables, the cu
ture R and the effective thicknessh̄.

Fig. 1 A schematic of the cross-sectional bending of a bima-
terial circular plate due to change in temperature
Journal of Engineering Materials and Technology
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By solving two simultaneous equations of the form of Eq.~6!,
the stress-free strain (« f) and bimodulus (Ēf) of a supported film
at temperatureT can be obtained from the following two
formulas:

« f5
Ēs2

S1«s1
2Ēs1

S2«s2

Ēs2
S12Ēs1

S2

(8)

Ēf5
Ēs2

S12Ēs1
S2

6S1S2~«s2
2«s1

!
(9)

whereSi are determined through Eq.~5!. By carrying out in situ
curvature-temperature measurements on the film deposited on
different substrates subject to a thermal cycle, the temperat
dependent« f and Ēf of a supported film can be deduced from
series of solutions to Eqs.~8! and ~9!. Also, Eqs.~8! and ~9! can
simply accommodate the effect of temperature dependence o
substrate modulus~if any!. Once the temperature-dependent« f is
determined, the CTE of film (a f) can be obtained from the tem
perature derivative of« f as:

a f5
d« f

dT
(10)

Theoretically, one measurement ofRi and h̄i is needed at a
given temperature for each bimaterial plate in order to obtain
correspondingSi , and then the bimodulus as well as in-plan
CTE can be determined through Eqs.~8!–~10!. However, by using
several specimens with different combinations of film and s
strate thicknesses for each bimaterial plate, one can get addit
measurements of curvatureR with various h̄ for each bimaterial
plate and average these results~in the same way! to reduce the
uncertainty inSi . The uncertainty inSi is readily related to the
uncertainties of the calculated quantities~a f andĒf!. This uncer-
tainty issue will be addressed later.

The stress approach of Retajczyk and Sinha@6# gives the esti-
mates of average values for the modulus and CTE over the t
perature range studied. The assumption of temperat
independence of the modulus and CTE often might not be v
for polymers. One may argue that by using small temperat
increments, a series of two coupled equations can be set up
one can subsequently obtain the temperature-dependent e
modulus and CTE by solving them. However, the insensitivity
stress differentiation to a small temperature range may affect
stability of the solution for the two algebraic equations created
the stress approach. Furthermore, from a statistical point of v
the uncertainty in the stress-temperature slope approach~differen-
tiating step! can significantly affect the accuracy of solutions f
the elastic modulus and CTE, since the scatter of curvature
with temperature usually is larger than the uncertainty of a sin
measurement of the curvature.

In the strain approach proposed in this work, the film propert
are derived from the direct relationship among the changes
curvature as a function of temperature, the mismatch thermal
pansion strain, and the known properties of the substrates.
technique presented here does not invoke the differentiating
thermal stress of a film and can provide the temperatu
dependent in-plane modulus and CTE of a supported thin film
any temperature of interest. The temperature-dependent subs
properties~if any! can also be incorporated into the solution. F
nally, although, Eq.~10! involves the differentiation of strain with
respect to temperature to obtain the CTE of film, this different
tion will not affect the solution accuracy of the two algebra
equations in the form of Eqs.~8! and ~9!. However, in the stress
APRIL 2002, Vol. 124 Õ 275
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approach, the accuracy of stress differentiation can significa
affect the solutions for both the elastic modulus and CTE of
film.

If the known properties of the substrates and the expected p
erties of film are not temperature dependent, then the ther
strain « i in Eq. ~3! can be replaced in Eqs.~8! and ~9! by a i(T
2To). Consequently, the CTE and bimodulus of a supported fi
can be obtained directly from the following two formulas:

a f5
Ēs2

S1as1
2Ēs1

S2as2

Ēs2
S12Ēs1

S2

(11)

Ēf5
Ēs2

S12Ēs1
S2

6S1S2~as2
2as1

!~T2To!
(12)

So far, the aforementioned derivation has demonstrated tha
a f andĒf of films are calculated from formulas usingSi obtained
from two constituent measurements~Ri and h̄i!. The uncertainty
in Si is a function of the uncertainties inRi andh̄i . The number of
specimens used and method of averaging the data will also a
the uncertainty inSi ~see@14#, for example!. Our concern in this
study is not with the details of the experiment used to obtainSi
and the uncertainty inSi , but instead we are interested in how th
uncertainty inSi propagates through the calculation ofa f andĒf
in this approach. In some cases, because of the selection o
film/substrate systems, the calculations could produce large e
in the final results. For illustration purposes we consider the C
and elastic modulus are not temperature dependent, and that
uncertainties are negligible compared to the uncertainties inSi
~denoteddSi!. Thus, the value for the relative uncertainty of th
calculated elastic modulus and CTE~da f /a f anddĒf /Ēf! can be
formulated based on Eqs.~11! and ~12! as:

da f

a f
5U S 12

as1

a f
D S 12

as2

a f
D

S asi

a f
2

as2

a f
D UAS dS1

S1
D 2

1S dS2

S2
D 2

[Ma

dS2

S2

(13)

and

dĒf

Ēf

5

AS as1

a f
21D 2S dS1

S1
D 2

1S as2

a f
21D 2S dS2

S2
D 2

Uas1

a f
2

as2

a f
U [Me

dS2

S2

(14)

where

Ma5U S 12
as1

a f
D S 12

as2

a f
D

S as1

a f
2

as2

a f
D UAb211 (15)

and

Me5

AS as1

a f
21D 2

b21S as2

a f
21D 2

Uas1

a f
2

as2

a f
U (16)

with b[S dS1

S1
D Y S dS2

S2
D (17)

Ma is the relative uncertainty propagation factor for CTE.Me is
the relative uncertainty propagation factor for the elastic modu
276 Õ Vol. 124, APRIL 2002
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Also, one notices that if the indexes, 1 and 2, in Eqs.~8!–~17! are
interchanged, the uncertainty results still remain unchanged.
is expected since there is no preference in the sequence for se
ing the substrate. Thus, once the relative uncertainties,dS1 /S1
anddS2 /S2 , are determined from the measurements, anda f and
Ēf of the film are obtained, the relative uncertainty ofa f and Ēf
can be readily obtained from Eqs.~13! and ~14!.

Results and Discussion
The Abaqus finite element program@15# was employed to vali-

date the solution presented in Eq.~1! based on the specime
shown in Fig. 1. The elastic modulus and CTE of film and su
strate were assumed to be temperature independent. Eight-
axially-symmetric elements and thermal stress analysis were u
The thickness of the substrate was 10mm. The film thickness was
set as a variable in the finite element analysis, ranging from
mm to 100mm for various combinations of film/substrate stiffne
ratios. In order to minimize shear deformation, the aspect ratio
the plate was kept around 60. The aspect ratio of the finite
ments were kept less than 10. Convergence of the finite elem
solutions, particularly the displacement at the center of the pl
was assessed by employing more refined meshes. The appli
range of Eq.~1! was evaluated by comparing the curvature resu
of Eq. ~1! with that of the finite element analysis~FEA!.

The variation of the normalized radius of curvature (R* ) as a
function of the film deformability is shown in Fig. 2 as depende
on the film/substrate stiffness ratio. The lines in the figure rep
sent the normalized curvature based on Eq.~1! with K expressed
in Eq. ~2! while the symbols are the results of FEA. One can s
from Fig. 2, that Eq.~1! does account for the change in curvatu
of a coated plate at a fixed temperature over the range of thick
and stiffness ratios considered in this study. A noteworthy feat
of the results in Fig. 2 is the sensitivity of the change in curvat
to the presence of the film. As shown in the figure, for realis
specimen dimensions in thin film applications (hf /hs,1), the
change in curvature is extremely sensitive to the film/subst
modulus ratios of interest over a range of 4 decades.

Figure 3 presents the dependence of the ratioK* /K on the
ratios of the film to substrate stiffness and of the film to substr
thickness. From the results of FEA, the applicability of replaci
K with K* in Eq. ~1! can be assessed by the deviation of t
K* /K curve fromK* /K51. Accordingly, the appropriateness o
the two formulas in Eqs.~6! and ~7! for deducing the elastic
modulus and CTE can be evaluated. For example, ifhf /hs
<0.001, the expression in Eqs.~6! and ~7! can be valid for any
range of stiffness ratio considered in this study.

Fig. 2 The variation of the normalized radius of curvature as
function of the film deformability and film Õsubstrate stiffness
ratio. The lines represent the curvature based on Eq. „1… while
the symbols are the results of FEA.
Transactions of the ASME
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Both Eqs.~15! and~16! show that whenas1
'as2

, the value of
Ma andMe becomes singular. This implies that the solutions f
a f and Ēf in Eqs.~11! and ~12! will be unstable and sensitive to
any imperfection in the measurements. This is the basic rea
that why the two substrates need to be two different materials w
a gross difference in CTE. The intensity of the singularity forMe
or Ma depends on the value ofas1

/a f and as2
/a f . Figure 4

indicates ranges ofMa and Me for certain combinations of
as1

/a f and as2
/a f corresponding tob51, where it is assumed

that the relative uncertainties ofS1 andS2 for the two bimaterial
plates are the same. For example, when the CTE of the film
larger than that of both substrates~i.e., as1

/a f,1 and as2
/a f

,1!, the uncertainty propagation factor for the CTE is smal
than that of elastic modulus (Ma,Me). In other words, the cal-

Fig. 3 The dependence of the K * ÕK on the ratios of the film to
substrate stiffness and of the film to substrate thickness

Fig. 4 Ranges of the relative uncertainty propagation factor
for CTE „Ma… and the elastic modulus „Me… for certain combi-
nations of film Õsubstrate
Journal of Engineering Materials and Technology
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culated elastic modulus is more sensitive to imperfection in
measurements than the calculated CTE. One can also see
Fig. 4 that as long as one of the substrates has a larger CTE
the film and the other substrate has a smaller CTE than the fi
the magnitude ofMa is less than& and the magnitude ofMe is
less than 1. Such a combination of bimaterial plates will enha
the solution accuracy for the calculated elastic modulus and C
Although the above discussion is based on the assumption
b51, our analysis shows that the general information provided
Fig. 4 is applicable forb other than one. Thus, this uncertain
analysis can provide a guidance for optimal selection of fil
substrate combinations for deducing the desired thin film modu
and CTE. Finally, in a separate study, preliminary testing with
polymeric film deposited on two different inorganic substrates
shown the feasibility of this technique in deducing th
temperature-dependent, in-plane CTE and modulus of the film

Conclusions
A simple and direct method has been developed for deduc

the in-plane elastic modulus and CTE of a supported thin fi
The modulus and CTE are calculated by solving two coup
equations that relate the thermally induced curvature of fi
samples deposited on two different substrates with the thermal
mechanical properties of the constituents. This strain appro
does not require a temperature differentiation to calculate
modulus and in-plane CTE, and can provide the temperat
dependence of these properties for a supported thin film at
temperature of interest. The sensitivity analysis for the propo
solution method provides a guideline for choosing the appropr
substrate pair to improve the accuracy in the calculated ela
modulus and CTE.
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