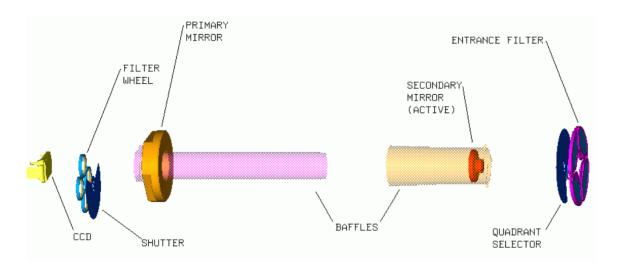
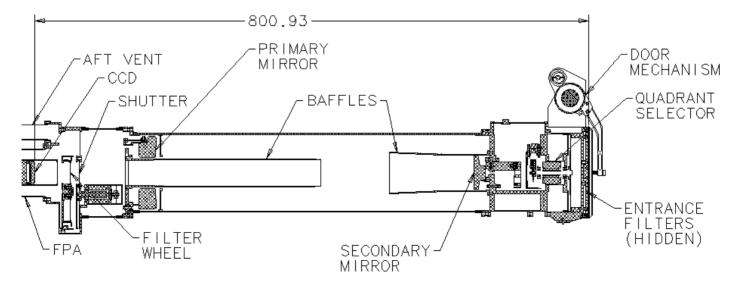
The STEREO-SECCHI Extreme Ultraviolet Imager


J-P. Wülser, J.R. Lemen, T.D. Tarbell, C.J. Wolfson (LMSAL) R.A. Howard, J.D. Moses (NRL) J-P. Delaboudinière (IAS) R. Mercier, M-F. Ravez (IOTA)

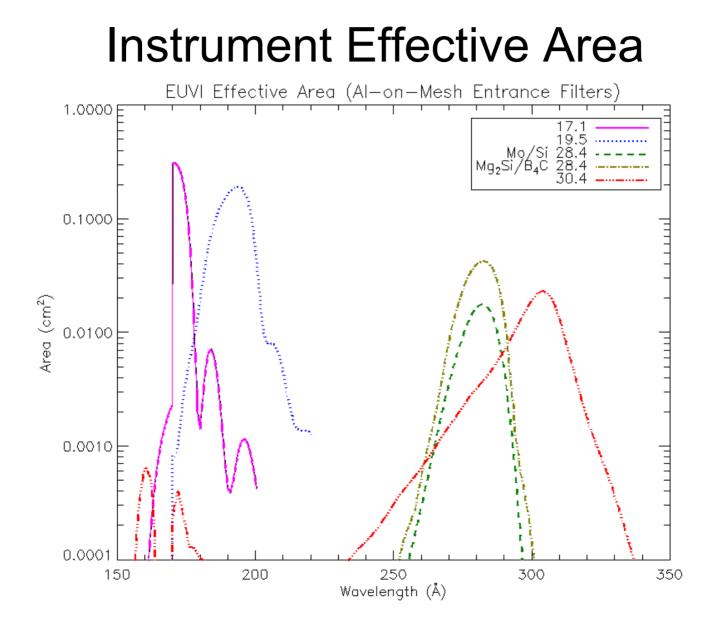

Science Goals

The Extreme Ultraviolet Imager (EUVI) supports the STEREO-SECCHI science goals, including:

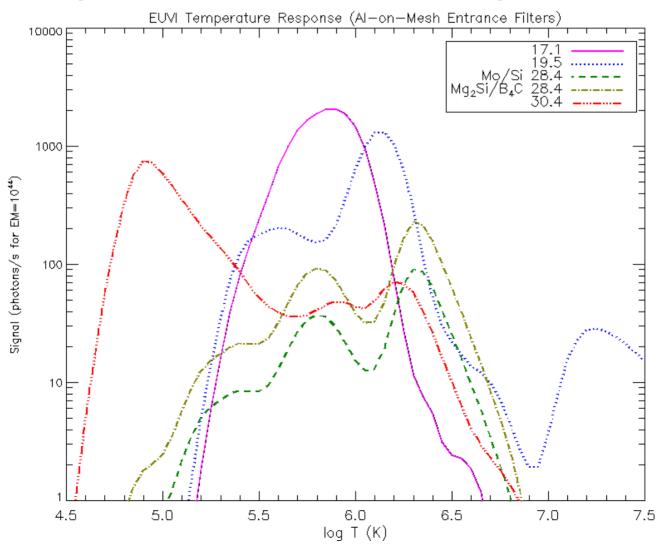
- Initiation of CMEs
 - Interactions of flux systems, reconnection
 - Role of coronal dimming
- Physical evolution of CMEs
 - 3-D structure, CME acceleration
 - Response of the low corona
- 3-D structure of Active Regions

Instrument Cross Section

Main Design Features


- Normal incidence Ritchey-Crétien telescope
- Multilayer coated optics, thin film filters
- Heritage: EIT/TRACE
- 98 mm aperture, 4 spectral channels, one in each optical quadrant
- Fine pointing system with active secondary
- 2k x 2k backside illuminated CCD, 1.6" pixels
- Circular full sun field of view to \pm 1.7 R_{\odot}

Wavelength Selection and Instrument Response


- Wavelength selection: like EIT
 - He II 30.4 nm: chromosphere, erupting prominences
 - Fe IX 17.1 nm: high contrast in coronal loops
 - Fe XII 19.5 nm: "typical" quiet corona
 - Fe XV 28.4 nm: "hotter", 2.5 MK corona
- Response to solar plasma
 - Using Chianti to predict instrument response as a function of plasma temperature
 - Preliminary response functions available as an IDL SolarSoft "genx" file at:

http://secchi.lmsal.com/Science/euvi_response

 File includes response functions for four channels and for both TRACE-like, and EIT-like entrance filters

Response to Solar Temperatures

Predicted Exposure Times

- CHIANTI code and typical DEM for solar features
- Polyimide supported entrance filters and Mo/Si coatings. Other filters or coatings result in shorter exp. times
- Predicted typical exposure times:

Channel	Typical exposure times (5000 phot/pix in ARs)	S/N in areas of quiet sun
17.1 nm	2 sec	18
19.5 nm	2 sec	10
28.4 nm	41 sec*	7
30.4 nm	37 sec**	13

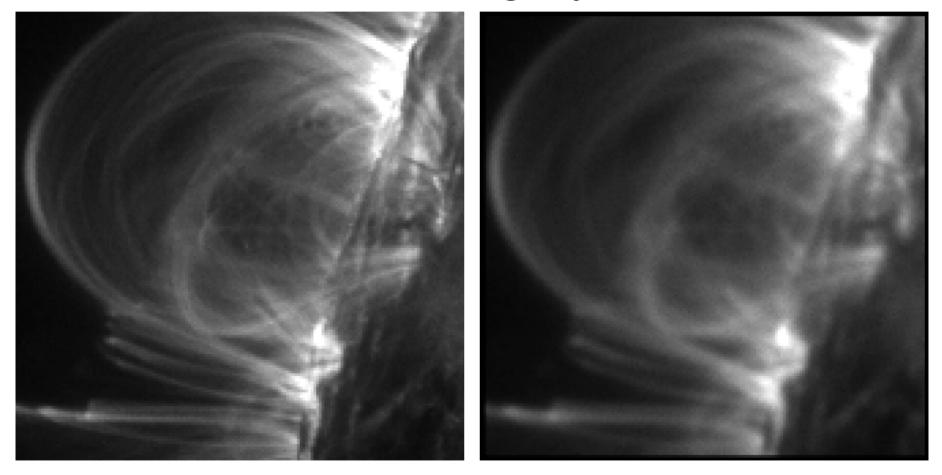
*12 sec for baselined mesh supported filter **Predicted exposure time for 30.4 nm is upper limit

 Typical exposure times chosen to provide 5,000 photons/pixel exposure levels in Active Regions (37-63% of CCD full well, depending on wavelength)

Sensitivity Comparison With TRACE

- Compare EUVI sensitivity with TRACE to assess performance
- Element comparison:
 - Detector: ~ 8 x higher QE than TRACE
 - Aperture: ~ 27 x smaller area than TRACE
 - Pixel area (arcsec²): ~ 10 x larger than TRACE
 - Pixel saturation (phot/pix): 5 x lower than TRACE
 - Aluminum-on-mesh entrance filters
 - TRACE-like multilayer coatings
- Exposure times:
 - 3 x shorter than TRACE for same # photons/pixel
 - Min. exp. time: 60 ms (15 x shorter than TRACE)

Entrance Filters


Baseline: 1500 Å Aluminum on a fine mesh

- TRACE heritage
- Maximizes EUV throughput
- Alternate design: 1500 Å Al + 700 Å Polyimide (PI) on coarse support grid
 - EIT / EIT Calroc heritage
 - Reduced diffraction pattern
 - Lower throughput due to EUV absorption in PI:
 Wavelength 17.1 19.5 28.4 30.4
 Transmission of 700 Å PI 54 % 45 % 20 % 16 %
- Selection after structural model vibration test
- May fly different types of filters in different channels

Fine Pointing System

- The EUVI requires a pointing stability of 1.9" (3σ) or better to match or exceed the resolution of SOHO-EIT
- The spacecraft is only required to meet 3.8" (2σ)
- The EUVI Fine Pointing System bridges the gap between the EUVI pointing requirement and the S/C jitter spec.
- The Fine Pointing System features:
 - Active secondary mirror driven open loop via Guide Telescope signals
 - Improves S/C pointing stability by a factor of 3-5
 - Tilt range covers worst-case 5.7" S/C jitter amplitude
 - Simple digital control
 - No compensation of PZT hysteresis

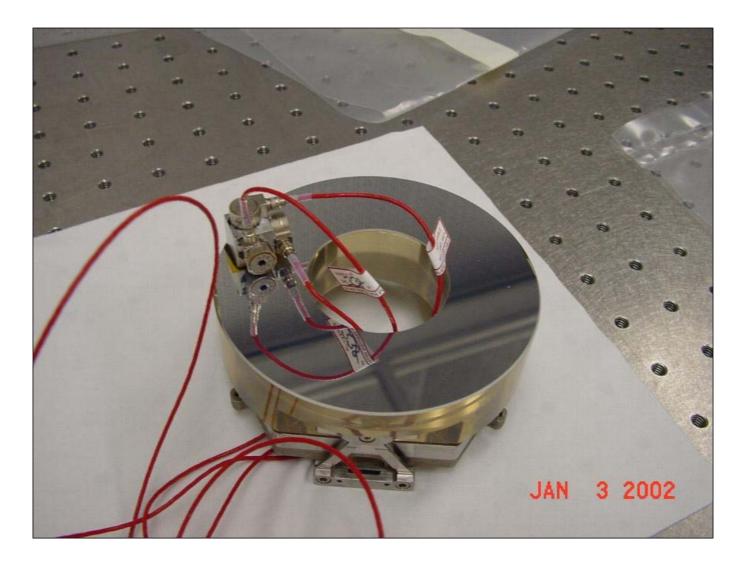
EUVI Images With and Without Fine Pointing System

Sample Observing Sequences

- Synoptic:
 - two 1k x 1k images every 2.5 min.
 - two 2k x 2k images every 30 min.
- Initiation of CMEs:
 - three 1k x 1k images every 60 sec.
- Campaign mode:
 - two 2k x 2k images every 60 sec.
 - Limited time observations, or:
 - Observing into circular "event buffer" (to be "frozen" after detection of a CME)

Development Status

- Detailed design in progress
- Grinding of first mirrors in progress
- Vibration test of structural model on January 16.
 Initial results of test in one axis:
 - Structure, mirror mounts, and fine-mesh supported, TRACElike entrance filters survived
 - Some damage to grid-supported, EIT-like entrance filters
 - Lid of front door vibrated against door rim, most likely causing the observed filter damage
- Upcoming:
 - Conclude structural model vibration test in early April: tightly sealed door lid, thicker Polyimide layer on grid-supported filters
 - Update: all filters survived the April vibration test
 - Life test of quadrant selector mechanism


EUVI Structural Model (SM)

SM with Filter Wheel Mass Model

SM Primary Mirror with Mount

Vibration Test

