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Effect of condensation and evaporation on the viscous-convective
subrange
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The effect of condensation and evaporation on the viscous-convective subrange is investigated using
a general mean-field approximation that is consistent with the nonhomogeneous vertical structure of
the condensate’s first and second moments and experimental observations of mean vertical flux in
a condensation cloud. Expressions for the scalar density in the Batchelor limit are derived and used
to reproduce the spectral behavior of new atmospheric measurements that exhibit anomalous scaling
of cloud liquid water in the near inertial-convective regime. Good agreement between the model and
data are obtained when axisymmetric Kraichnan transfer of scalar variance is balanced by
axisymmetric production by condensation/evaporation resulting in an isotropic contribution to the
real ~homogeneous! part of the spectrum. The model also assumes a significant imaginary
~nonhomogeneous! component to the spectrum that is indicative of a strong vertical coherence in
condensation clouds. A ‘‘production subrange’’ is predicted in which the scalar dissipation rate
increases with increasing wave number and the usual21 viscous-convective scaling evolves into an
anomalous23 regime. The strongly nonhomogeneous~anisotropic! character of the predicted
scalar spectrum is in stark contrast with atmospheric models of inertial-convective regime cloud
inhomogeneity that are used in radiative transfer calculations and are typically isotropic. ©2001
American Institute of Physics.@DOI: 10.1063/1.1343481#
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I. INTRODUCTION

Recently, Davis et al.1 presented horizontal spectr
f(kx) of cloud liquid water content~LWC! measured at an
unprecedented resolution of 4 cm during the winter South
Ocean Cloud Experiment~SOCEX!. The scalar spectrum
from the ensemble-average of the flight segments show
Fig. 1 (h) exhibits two distinct scaling regimes: Kolmog
orov scaling (2 5

3) is evident at larger scales and viscou
convective like scaling (21) is visible at the smallest scale
Although these spectral scalings are of no surprise, the s
break between the inertial-convective and visco
convective regimes, estimated by Daviset al.1 to occur at
2–5 m (kb'0.002h21, h5Kolmogorov length!, is anoma-
lous. Normal viscous-convective scaling, also shown in
figure ~–!, intersects the inertial-convective subrange atkb

'0.05h21 which corresponds to anr-space transition of
around 10 cm in the atmosphere. Thus the observed s
break occurs at scales one order of magnitude larger than
standard theory predicts. What is particularly intrigui
about these new observations are the implications for
scalar dissipation ratex; with the new scale break,x in the
viscous-convective regime is a factor of 14 larger than
inertial-convectivex, suggesting that a source of scalar va
ance is present on scales of tens of centimeters.

Marshak et al.2 suggests that the strong variabili
shown in Fig. 1 on scales of 4 cm to 4 m isconsistent with
Shaw et al.’s3 discussion of a strong preferenti
concentration—the accumulation of inertial cloud droplets

a!Electronic mail: cjeffery@eos.ubc.ca
7131070-6631/2001/13(3)/713/10/$18.00
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regions of high strain and low vorticity in a turbulent flow
However, a recent analysis of the effect of particle inertia
the viscous-convective subrange by the author4 demonstrates
that increased clumping of particles is associated with
suppression of viscous-convective scaling at near iner
convective scales, i.e., the movement ofkb to smaller scales.
Thus the data of Fig. 1 and the predictions in Ref. 4
clearly at odds. Gerberet al.5 suggests that the enhance
LWC variance at small scales is related to the small-sc
entrainment features generated at cloud boundaries. H
ever, as they admit, the spectral density distribution of
trainment scales and the in-cloud volume affected by entr
ment and mixing are not known. Mazin6 proposes that the
non-inertial-convective scaling is caused by the temporal
laxation of the supersaturation to its steady-state value w
e-folding time,tp . Mazin argues that for updrafts with deco
rrelation time t!tp the time is too short for a significan
amount of phase change to occur and the turbulent laws
an inert scalar apply, whereas fort@tp the supersaturation is
close to its steady value and the cloud LWC behaves like
inert scalar with a vertical mean gradient. For time sca
close totp the 25

3 law is violated. However, two aspects o
Mazin’s hypothesis are questionable. First, the linear
crease of LWC variability with height above cloud ba
demonstrates that a condensation cloud is fundamentally
tinct from an inert scalar with an imposed mean gradient
discussed later, and that this distinction is present ove
wide range of scales. Thus, the scaling for timest@tp is just
as likely to be anomalous as for timest;O(tp). Second, it is
not at all clear whether a change in the Lagrangian spect
of supersaturation at temporal scales ofO(tp) will, in fact,
© 2001 American Institute of Physics
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lead to changes in the Eulerian spatial spectrum.
In this work, I propose that the anomalous scale brea

caused by the effect of condensation and evaporation on
lar variance. Unlike other theories of condensatio
evaporation effects on cloud microphysics, e.g., phase re
ation time6 or buoyancy reversal,7 the model proposed her
does not invoke nonstationary, nonequilibrium, discrete
nonlocal phenomena such as sedimentation, buoyancy
trainment or a noncontinuous droplet field. Rather,
present model is fundamentally a mean-field approxima
that relates the complex process of condensation/evapor
to the mean vertical structure of liquid water in the clou
Thus the present model is akin to Lagrangian parcel mo
where condensation/evaporation is largely dictated by
vertical velocity and the average environmental conditio
inside the parcel. The present model decouples LWC prod
tion from the vapor and temperature fields, therefore, wa
vapor and temperature are represented by only their first
ments through the equilibrium vertical liquid water structu
In fact, it should come as no surprise that anomalo
viscous-convective scaling is observed in clouds if one c
siders that condensation/evaporation is an asymmetric in
nal pumping coupled to a large Reynolds number~Re!, iner-
tial velocity field that exhibits a continuous range of scal
As a result of this coupling, production of LWC will occu
over a wide range of scales.

Conceptually, it is not hard to see how condensat
through lifting can create liquid water variance. Conside
fluctuating~mean zero! varianceQ(x)Q(y) where the verti-
cal velocitiesu3(x) andu3(y) are both positive. As the par
cel risesQ at bothx andy increases through condensatio
and the variance grows. Thus condensation/evapora
coupled to vertical advection leads to a self-excitation
LWC variance; in Sec. III we derive an advection-typ

FIG. 1. Ensemble-averaged 1D scalar spectrum for cloud LWC data m
sured during the SOCEX field program and first presented in Ref. 2
typical atmospheric value of 0.76 mm is assumed for the Kolmogo
lengthh. Also shown is the usual 1D inertial-convective/viscous-convect
scaling calculated usingq55.5 ~Sec. IV! and b53/4 ~Sec. VI!. The ob-
served spectrum is a factor of 14 greater than the normal spectrum in
viscous-convective regime.
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source term for the advection-diffusion equation of the for
source5velocity3]^Q(x)Q(y)&/]x3.

The above example illustrates an important distinct
between homogeneous, isotropic, incompressible mixing
passive scalar in a reacting system~condensation cloud! and
in an inert system with an initially imposed scalar gradie
The density fluctuations in the latter are stationary, ani
tropic and homogeneous—properties that follow imme
ately from the incompressible advection-diffusion equatio
Furthermore, the initial mean scalar gradient is maintain
In contrast, the density fluctuations in the former are stati
ary and anisotropic, but not homogeneous—mean-squ
density fluctuations increase in the direction of increas
mean density. Thus, although the mean density profiles
the two systems may be identical the statistical propertie
the density fluctuations are not.

The present model, although limited to wavenumberk
>kb , predicts that the LWC correlation function has an im
portant nonhomogeneous, vertical contribution from a te
linear in r 3. This general behavior agrees well with aircra
measurements8–10 and numerical simulations11–13 which
demonstrate that both the mean and root-mean-square L
in atmospheric clouds increase linearly with height.

The closure used in this study to evaluate LWC cova
ance is appropriate for the viscous-convective subrange
was used in Ref. 4 to study the effect of particle inertia
spatial covariance. However, the results of this work are
directly applicable to the inertial-convective regime. Ma
shak et al.2 have analyzed the radiative implications of a
extended viscous-convective regime and found that LW
variability at scales less than the photon mean-free p
~20–30 m! introduces an insignificant bias from comple
homogeneity. This is not surprising considering that liqu
water obeys inertial-convective scaling, and therefore m
of the variability is contained in the largest scales. On
other hand, the results of this study, although limited to sm
scales, call into question the important and commonly m
assumption of isotropy in the spatial statistics at large sca
In particular, the important vertical, nonhomogeneous co
ponent to the LWC correlation function predicted by t
present model is, of course, anisotropic. The extent to wh
density fluctuations at larger scales may be considered
cally isotropic may have important implications for radiativ
transfer.

Most radiative transfer calculations to date that incorp
rate LWC inhomogeneities assume isotropic variability. F
example, Barkeret al.14 has developed a modeling techniqu
where the inhomogeneity of the cloud field is calculat
from a 1D time series of the extinction coefficient from a
craft measurements and then extended to three dimens
on the assumption of isotropic variability. His results sugg
that internal homogeneity reduces cloud albedo and abs
tion. The above mentioned study by Marshaket al.2 analyzes
the radiative effects of sub-mean-free path liquid water va
ability using singular and bounded fractal models of LW
that are also isotropic. The importance of including intern
variability in radiative transfer calculations is emphasized
Ref. 15.

Barker14 justifies his assumption of isotropic variabilit
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by commenting that ‘‘Since the corresponding temperat
and liquid water content wave-number spectra followk25/3

closely, it may be safe to assume that the associated tu
lence is approximately isotropic.’’ This statement implies
strong correspondence between local isotropy in the vel
ties and in the scalar field. However, it has recently be
established16–22that the local isotropy central to Kolmogoro
theory does not hold for a passive scalar field with an
posed mean gradient. In fact, a large anisotropy pers
even at very small scales and very high Reynolds numb
and is evident in the skewness of the scalar derivative in
direction of the mean gradient. Pumir17 compares the 1D
spectra in the direction parallel and perpendicular to
mean gradient and finds clear differences. Although b
spectra exhibit a limited inertial-convective subrange, diff
ences persist from the smallest to the largest scales.

The present study suggests that in condensation clo
the dominant anisotropy in the spatial correlations is a ma
festation of the nonhomogeneous vertical density fluct
tions. To the best of my knowledge, the only radiative tra
fer calculations that incorporate vertically nonhomogene
inhomogeneities are those of Hignett and Taylor23 that are
based on Barker’s14 isotropic technique. Hignett an
Taylor23 model nonhomogeneous vertical LWC fluctuatio
by scaling the magnitude of the extinction coefficient w
height above cloud base, and then compare the model
dictions of reflectance and albedo within situ aircraft radio-
metric observations of the same cloud. As in Ref. 14 th
find that internal inhomogeneities lead to a reduction
cloud absorption and an increase in cloud transmittance

The article is organized as follows. The source term r
resenting condensation/evaporation is introduced in Sec
and in Sec. III the resulting equation for the correlation fun
tion in the Batchelor limit is derived. Also in Sec. III
present an approximate analytic form for the correlat
function that illustrates the general anisotropic and non
mogeneous properties of the full solution whose derivat
follows in two parts. In Sec. IV, I derive a general axisym
metric solution for the spectral density without the ne
source term for both the viscous and inertial-convective s
ranges while the contribution from the new source term
determined in Sec. V. In Sec. VI the magnitude of the a
symmetric contributions to the spectral density are de
mined using the new data shown in Fig. 1. Sec. VII is
discussion of the predicted spectra, and Sec. VIII is reser
for conclusions.

II. CONDENSATIONÕEVAPORATION SOURCE TERM

The density of a condensatecc(t,x)PR15@0,̀ ) in an
incompressible velocity field is described by the advecti
diffusion equation,

]cc

]t
1U•¹cc5DcDcc1CE~cc↔cv!, ~1!

where U5V1u is a random velocity field,V5^U& is the
mean velocity,DcPR1 is the molecular diffusion coefficien
and CE is a source term that models condensationcv
→cc) and evaporation (cc→cv) between the condensa
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(cc) and its vapor (cv). Condensation/evaporation occurs
a result of imposed vertical gradients (ẑ[ x̂3[e3) in the tem-
perature, pressure and vapor fields. Without loss of gene
ity we can consider the caseV15V250 because of the Gal
ilean invariance of Eq.~1!. We will assumeV350. In
general, CE is a function ofcc(t,x), cv(t,x) and the mac-
roscopic temperature fieldT(t,x) as well as a host of micro
scopic parameters including the saturation vapor-press
the diffusivity of heat and vapor and the latent heat
evaporation.24 Furthermore, in a closed system CE is nons
tionary because it is coupled throughT(t,x) to irreversible
thermodynamic processes, while, on the other hand, in
open system the spatial structure of CE has a non-tri
dependence on the thermal boundary conditions. To rem
some of this complexity, we consider a simplified model f
CE that is decoupled from bothcv andT and hence station
ary, i.e., thermodynamics are reversible. The model is ba
on the following deterministic equation for the vertical stru
ture of cc :

]cc

]z
5

pcc

z
, ~2!

wherez(x1 ,x2) is the height above cloud base andpPR is a
constant. Equation~2! states thatcc(x1Dz) is related to its
neighboring densitycc(x) through condensation (p.0) or
evaporation (p,0), processes controlled by the vertical d
pendence ofT andcv which are assumed nonstochastic, i.
T(x)5^T(z)&. Thus Eq.~2! is a mean-field approximation
and as such, ignores nonlocal effects including entrainm
of ‘‘non-cloud’’ environmental air at the boundaries of th
system. The resulting vertical structure from~2!, ^cc(z)&
;zp, can be compared to experimental measurements o
system in question to determine the sign and magnitude op.
Using ]/]z5]/]x35u3

21]/]t gives

CE5
pu3

z
cc . ~3!

Note that the dependence]cc /]t;u3cc /z of ~3! is also ex-
hibited by Lagrangian parcel models of diffusional growth
water drops in clouds where]cc /]t;(cc /a)da/dt;cc /t
;wcc /z, a is the radius of the drop, andw is the vertical
velocity of the parcel.24 There are a number of experiment
and numerical studies that report the vertical distribution
LWC inside stratus and stratocumulus clouds.8–13,25–27All
these observations and model predictions show that the m
cloud liquid water increases nearly linearly with height fro
cloud base corresponding top51 in Eq. ~2!, and, therefore,
the advection-diffusion equation for this system is

]cc

]t
1u•¹cc5DcDcc1

u3

z
cc . ~4!

In this work we examine the second-order ensemble m
moments ofcc as described by Eq.~4!.

The ensemble-averaged advection-diffusion equation~1!
with CE given by~3! does not predict̂cc(z)&; the connec-
tion between CE and the mean vertical structure ofcc fol-
lows from deterministic Eq.~2!. However, using Eqs.~1! and
~3! and assuming stationarity and horizontal homogene
AIP copyright, see http://ojps.aip.org/phf/phfcpyrts.html
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we find that the vertical flux of condensate obeys^u3cc&
;zp. Thus with an appropriate choice ofp, the mean-field
source term for condensation and evaporation~3! reproduces
the experimentally observed vertical flux of condensate
the system of interest. Observational13,25,27 and numerical
studies13,28,29 of atmospheric clouds demonstrate that t
mean vertical flux of LWC is approximately linear inz, i.e.,
p51 as above. The vertical dependence of^u3cc& is consis-
tent with the discussion in Sec. I in that density fluctuatio
in a condensation cloud are nonhomogeneous.

III. d-CORRELATED CLOSURE

Motivated by the new experimental data discussed
Sec. I, we consider the small-scale, large Prandtl number~Pr!
behavior of Eq.~4!. It has been shown both numerically30,31

and theoretically~see Ref. 4 and references therein! that the
‘‘correct’’ closure in this so called Batchelor limit is th
d-correlated closure which predicts the well-known visco
convective subrange.32 The d-correlated model derives it
name from the temporal properties of the velocity fie
which are assumed to rapidly decorrelate in time. A rapi
fluctuating velocity field can be derived formally through t
velocity field renormalizationue(t,x)5e21u(e22t,x) where
the molecular diffusivityD is not rescaled (De5D) and
where the long time rescalinge22 is chosen to reproduce th
conventional or normal diffusion̂x2(t)&;t associated with
a mean field regime.33 Under certain general conditions th
random fieldue(t,x) converges to a white noise process
the sense of distributions, i.e.,

lim
e→0

^ue~ t1s,x1r!ue~ t,x!&52td~s!^ue~x1r!ue~x!&, ~5!

wheret is the renewal time andr ! l 0 wherel 0 is the integral
length scale. It follows trivially that the rescaled Euleria
correlation time lime→0tE;e2 is much less than molecula
diffusion time, and, therefore, this renormalization cor
sponds to the large Pr limit.

The key simplification afforded by thed-correlated
model is that the non-Markovian statistics of tracer trajec
ries arriving at (t,x) from neighboring pointsx1Dx and
from past timest2Dt become Markovian, Eulerian statistic
at (t,x).4 As a result, each of the tracer particles in an
compressible flow field undergoes an effective Brown
motion in this limit and the first- and second-order mome
of the passive scalar field~ignoring any source terms! obey
diffusion equations.34,35 The diffusion equation for the
second-order correlation functionF5^Q(x)Q(y)& is4

]F

]t
52Dc¹

2F22@Dmn~0!2Dmn~r!#
]2F

]xm]yn
1I , ~6!

whereQ5cc2^cc&, I is the contribution from any sourc
terms,r5y2x, and Dmn(r)5^tum(0)un(r)&. Note that the
conventional Reynolds stresses^Qun&]^cc&/]xn that nor-
mally coupleQ to mean-gradients in the passive scalar fi
do not contribute in thed-correlated model. Following the
procedure outlined in Ref. 4 and references therein,
source termu3cc /z of ~4! in the rapid decorrelation in time
limit becomes
Downloaded 14 Mar 2001 to 137.82.51.6. Redistribution subject to 
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]F

]yn
, ~7!

which has the form of an advection term. It is illustrative
compare the velocityVCE52@D3n(0)2D3n(r)#z21 with the
velocity VPI54]Dmn(r)/]r n caused by particle inertia@Eq.
~6! in Ref. 4#. Ignoring the anisotropic nature of the forme
the two velocities scale according toVCE;r 2 andVPI;r in
the viscous regime, andVCE;r 2/3 andVPI;r 21/3 in the in-
ertial regime. Thus evaporation/condensation is a sourc
scalar variance that increases with increasingr ~infrared di-
vergence!, whereas the effect of particle inertia is limited
scalesO(h).

The general behavior of Eq.~6! with I given by ~7! is
worthy of some discussion. First, note that the visco
convective scalingF5constant is the trivial solution of~6!
with or without the source termI. Thus a normal viscous
convective subrange is one prediction of the present mo
However, a cloud with a vertical mean-gradient is axisy
metric about thee3 axis, and therefore we can expectF to
contain contributions from odd-order terms inr 3. Further-
more, the experimental data in Ref. 1 suggests that the n
homogeneous vertical component ofF which does not con-
tribute to the horizontal scalar spectrum disrupts norm
viscous-convective scaling. Thus we can assume that t
are other nontrivial contributions toF in the viscous-
convective regime. Second, note that sincer !z, z(x1 ,x2)
can be treated as a constant parameter independent ofr. If we
assume thatF has a termF85c1zr3 with c1.0 which is
consistent with aircraft measurements8–10 and numerical
simulations11–13that show increasing LWC fluctuations wit
increasing height, thenI (F8) becomes

I ~F8!52c1@D33~0!2D33~r!#,

which is a positive source that increases with increasingr.
The general form of the solution of Eq.~6! keeping terms
greater thanz21 and ignoring molecular diffusion then be
comes

F~r ,r 3 ,z!'c01c1zr31c2c1r 3
21c3c1r 2, ~8!

wherec0.0 and the signs ofc2 and c3 have yet to be de-
termined. By definition the horizontal correlation functio
F(r 1 ,r 2) as well as the horizontal viscous-convective sp
tral scaling is independent ofr 3; only the effects of the first
and last terms in Eq.~8! are evident in horizontal measure
ments. It is important to emphasize that Eq.~8! is not the
solution of Eq.~6! but only illustrates the generalr-z or in
Fourier spacek-z scaling that appears later when more ri
orous methods are used. However, the picture that eme
from this analysis is robust—a nonhomogeneous compon
;r 3 of F that is z/r larger than the homogeneous comp
nents changes the normalk1,2

21 horizontal viscous-convective
spectral scaling.
AIP copyright, see http://ojps.aip.org/phf/phfcpyrts.html
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IV. AXISYMMETRIC KRAICHNAN TRANSFER

We begin the derivation of the spectral covariance d
sity functionC(k)5(2p)23*drF(r)exp(2ik•r) by consid-
ering the axisymmetric solutions of~6! without the source
term I.

A. Viscous regime solution

Assuming the velocity field is divergenceless, homog
neous, and isotropic, the equal-time correlation function
be written4,36

^tum~x!un~x1r!&5DTFdmn1
r

2

]F

]r S dmn2
r mr n

r 2 D G ,

~9!

whereDT5u0
2t/3, u0 is the characteristic velocity of turbu

lent fluctuations with relaxation timet, and the function
F(r ) is the longitudinal correlation coefficient. In the visco
regime the following choice of parameters recovers
viscous-convective spectrum:4 t5ugu21/6, F(r )51
2a(r /h)2, and a5h2/(12t2u0

2) where g52(1/q)th
21 is

the average value of the least principal rate of strain, andq is
a universal constant for high Reynolds number flows.37 Re-
cent numerical simulations suggestq'5.5.30,31 Inserting Eq.
~9! into ~6! with viscous-regime correlation coefficients an
I 50 gives

]F

]t
52D¹2F1

ugu
3

@2r 2dmn2r mr n#
]2F

]r m]r n
, ~10!

which was first derived by Kraichnan.32 The Fourier trans-
form of ~10! is easily found by using]/]r j→ ik j , r j

→ i ]/]kj and then converting to axisymmetric variabl
where u[cos21(k•e3 /uku) is the angle between the wav
vectork and the vertical axis:

]C

]t
522Dk2C1

ugu
3

T~C!, ~11!

T~C!5k2
]2C

]k2
14k

]C

]k
1

2cosu

sinu

]C

]u
12

]2C

]u2
. ~12!

The isotropic solution of Eqs.~11! and~12! appeared first in
Ref. 38 and is

C iso~k!5
x

~2p!3/2ugu

l3/2

k3/2
K3/2~lk!,

5
x

4pugu
k23@11lk#exp~2lk!, ~13!

l5~6Dugu21!1/2, ~14!

whereK is a modified Bessel function,x(z);z2 is the non-
homogeneous scalar dissipation rate andl is a diffusive
length scale that is proportional to the Batchelor length.
an isotropic scalar field the corresponding scalar spect
E(k) is defined asE54pk2C. Therefore in the rangek
!l21, E(k)5xugu21k21 which is the usualk21 viscous-
convective scaling.
Downloaded 14 Mar 2001 to 137.82.51.6. Redistribution subject to 
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The general solution of Eqs.~11! and ~12! can be ob-
tained using the method of separation of variables:

C~k,m!5(
j 50

`

cjBj~k!Pj~m!,

05~12m2!
]2Pj

]m2
22m

]Pj

]m
1 j ~ j 11!Pj , ~15!

l2k2Bj5k2
]2Bj

]k2
14k

]Bj

]k
22 j ~ j 11!Bj , ~16!

wherem5cosu andcjPC is an arbitrary constant. Immedi
ately we can identityPj as a Legendre polynomial since E
~15! is the familiar Legendre equation.39 The Fourier space
symmetry relationC(k)5C* (2k) restricts thecj ’s such
that for evenj, Re$cj%PR1 and Im$cj%50, whereas for odd
j, Re$cj%50. Thus the odd terms represent the vertica
nonhomogeneous component of the spectrum, whereas
even terms are homogeneous contributions. Note that f
passive scalar field in homogeneous turbulence with an
posed mean gradient the odd terms are identically zero.40

Equation ~16! for Bj is a Bessel type equation wit
solution39 Bj5k23/2Kn( j )(lk) where n( j )5@918 j ( j
11)#1/2/2. Note that thePj ’s satisfy *21

1 dmPj (m)52d( j )
so that only thej 50 term contributes to the spherically av
eraged spectrum. The expansion of the scalar spectrum
terms of Legendre polynomials was first suggested
Herring41 who derived an equation forC in axisymmetric
turbulence using Kraichnan’s direct interaction approxim
tion ~DIA !. The d-correlated model can be formally recov
ered from DIA in the limit that the Greens’ functio
G(x,tut;y,tut0)—the scalar amplitude at (x,t) arising from a
d-function source att0 located in the fluid element that ar
rives at (y,t)—becomesd3(x2y).32 Thus Eqs.~15! and~16!
can be considered as a special case of the more genera
sults in Ref. 41.

As discussed in Sec. III we are interested in the solut
of the correlation function up to approximately second ord
in r 3 which corresponds to expandingC to j 52. The axi-
symmetric (j 51,2) contribution to the spectral density,Caxi,
can be written

Caxi~k,m!5CR
axi~k,m!1 iC I

axi~k,m!,
~17!

CR
axi~k,m!5

c2x

4pugu
212n

G~n!

l3/2

k3/2
Kn~lk!P2~m!,

C I
axi~k,m!5

zxugu21

3~2p!3/2

zl1/2

k3/2
K5/2~lk!P1~m!, ~18!

such that limk→0CR
axi(k,m)5Cx/(4pg)l3/22nk23/22n

3P2(m) and limk→0C I
axi(k,m)5zx/(4pugu)zl22k24

3P1(m), and wheren5A57/2'3.775. The constantz in
Eq. ~18! is of fundamental importance in what follows an
plays the role of the Kolmogorov constant for the nonhom
geneous~imaginary! component of the spectral density. A
discussed in Sec. III the nonhomogeneous componentC I

axi is
assumed to scale aszk times the homogeneous componen
AIP copyright, see http://ojps.aip.org/phf/phfcpyrts.html
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C iso or CR
axi as illustrated in Eq.~18!. The resultingr-space

scalings are given by Eq.~17!: r andr 2.275 are close to ther
and r 2 scaling estimated in Sec. III.

B. Inertial-convective regime solution

A solution for C in the inertial-convective subranger
.h is facilitated by the fact that the molecular diffusivit
can be ignored in this regime. Evaluating Eq.~6! with ~9!
and velocity correlation coefficientF(r )512a2r 2/3 where
a2 is an arbitrary constant gives

@4r 2dmn2r mr n#
]2F

]r m]r n
50,

which can be Fourier transformed as before:

12C13k2
]2C

]k2
116k

]C

]k
1

4 cosu

sinu

]C

]u
14

]2C

]u2
50.

Expanding the solution in terms of Legendre polynomi
gives

C~k,m!5(
j 50

`

Bj~k!Pj~m!,

053k2
]2Bj

]k2
116k

]Bj

]k
2@4 j ~ j 11!212#Bj ,

with solution Bj5k213/6@cjk
2n( j )1djk

n( j )# where n( j )
5$169112@4 j ( j 11)212#%1/2/6, andcj anddj are arbitrary
constants. In general bothcj anddj are nonzero; however, in
the small k viscous-convective regimek2n( j )@kn( j ), and
therefore without loss of generality we can setdj50. Note
that the scaling of the isotropic (j 50) solutionC iso;k23 is
invariant under a change in the velocity spatial correlation
manifestation of the fact thatF5constant is the trivial solu-
tion of Eq. ~6! independent of the effective diffusivity. In
addition, the scaling of the (j 51) solutionC I

axi;k24 also
remains invariant. The scaling ofCR

axi ( j 52) changes only
slightly from a viscous scaling of'25.275 to an inertial
scaling of2(131A313)/6'25.115. Because of the steep
spectral decay of the axisymmetric contribution,C iso@CR

axi

for k.h21, and therefore, only thek25.115 scaling makes a
significant contribution to the overall spectral density. Usi
the approximationk25.115'k25, CR

axi can be written

CR
axi~k,m!5

c2x

4pugu
l22k25P2~m!, ~19!

which corresponds exactly with ther-space scaling of the
last two terms in Eq.~8!. Equations~18! and~19! are used in
the rest of this work to represent axisymmetric visco
convective scaling.

V. THE AXISYMMETRIC SOURCE I

The contribution of the axisymmetric, real termCR
axi to

the overall spectral density in the absence of
condensation/evaporation sourceI is fundamentally limited
by the restriction Re$C%>0. Using P2(m)5(3m221)/2
and an inertial-convective/viscous-convective boundary ak
Downloaded 14 Mar 2001 to 137.82.51.6. Redistribution subject to 
s

a
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e

5kb this restriction becomesC iso(kb)>CR
axi(kb ,m50,61).

For example, using the spectraC iso5k23, the maximum al-
lowed anisotropy CR

axi5B2(k)P2(m) where B2(k)
52k25kb

2 , and the identities for the 1D horizontal spect
f iso(kx)54p*kx

` kdkC iso(k) and faxi(kx)5p*kx

` kdk(1

23kx
2/k2)B2(k) gives f iso(kx)54pkx

21 and faxi(kx)
528p/15kx

23kb
2 . Thus the maximum possible change in t

horizontal spectrum which occurs at the boundaryk5kb is
only 2

15 or about 13%! The physical interpretation of the
results is straightforward. The solutionCR

axi represents a con
servative transfer or rotation of scalar variance along thee3

axis, and thus in the absence of a source, little rotation
possible before the variance becomes depleted atm50 or
61. The source termI, therefore, plays a crucial role in
balancing this anisotropic conservative spectral transfer.

The equation forC in the viscous regime~10! including
the source term~7! is

]F

]t
52D¹2F1

ugu
3

@2r 2dmn2r mr n#
]2F

]r m]r n

1
ugu
3z

@2r 2d3n2r 3r n#
]F

]r n
.

Fourier transforming as per Eq.~11! produces

]C

]t
522Dk2C1

ugu
3

T~C!2
i ugu
3

P~C!,

P~C!5
cosu

z H k
]2C

]k2
14

]C

]k
1F2cosu

ksinu
2

sinu

kcosuG ]C

]u

1
sinu

cosu

]2C

]u]k
1

2

k

]2C

]u2 J ,

whereT(C) is given by~12!. The equation for the spectra
contributionCsrc from the sourceI is

]Csrc

]t
522Dk2Csrc1

ugu
3

T~Csrc!2
i ugu
3

P~ iC I
axi!. ~20!

Using ~18! the source term becomes

P~ iC I
axi!5 i @Pc~C I

axi!cos2u1Ps~C I
axi!sin2u#,

Pc~C I
axi!5

zx

3~2p!3/2ugu

l5/2

k1/2
K5/2~lk!,

Ps~C I
axi!5

zx

3~2p!3/2ugu

l3/2

k3/2
K7/2~lk!.

Note that for small k, Pc!Ps and Ps(C I
axi)

55zx/(4pugu)l22k25. Therefore the smallk, steady-state
equation analogous to~20! is

T~Csrc!1
5zx

4pugu
l22k25sin2u50. ~21!

Assuming a solution of the formCsrc5(A1Bm2)k25 and
evaluating ~21! gives 22B5210A24B55zx/(4pugu)
3l22 or
AIP copyright, see http://ojps.aip.org/phf/phfcpyrts.html
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Csrc~k,m!52
zx

4pugu
l22k25

1

2
~5m221!.

Not surprisingly, this solution is invariant under the transfo
mation from inertial to viscous velocity correlations~not
shown!. Assuming that the sum of the axisymmetric, re
terms CR

axi ~19! and Csrc is approximately isotropic gives
c255/3z, and the resulting spectral density is

CR
axi1Csrc52

x

4pugu
z

3
l22k25. ~22!

Thus axisymmetric production of scalar variance (Csrc) is
balanced by a conservative axisymmetric transfer of sc
variance (CR

axi) producing a resulting spectral density that
isotropic. An assumption of perfect isotropy is not necess
to prevent the spectral density from becoming negat
However, a small degree of anisotropy inCR

axi1Csrc has
little effect on the results and conclusions in the followi
sections. Combining Eqs.~13! and ~22! gives the resultan
spectral density

C~k,m!5C iso~k!1@CR
axi1Csrc#~k!1 iC I

axi~k,m,z!,

5
x

4pugu
k23@11lk#exp~2lk!

2
x

4pugu
z

3
l22k251 iC I

axi~k,m,z!,

where C I
axi is given by ~18!. The spectrum E(k)

52pk2*21
1 dmC(k,m) is therefore

E~k!5
x

ugu
k21@11lk#exp~2lk!2

x

ugu
z

3
l22k23. ~23!

Comparing Eq.~23! with ~8! we find thatc250 as a result of
the isotropic assumption~above!. The Kolmogorov-like con-
stantz first introduced in Sec. IV A is determined in the ne
section.

VI. DETERMINATION OF z

The only free parameter in the present model is the f
damental constantz defined by Eq.~18!. Like the Kolmog-
orov constant,z should asymptote to a well-defined value
the large Re limit. Since independent information onz is not
yet available in the literature, its value is chosen to b
reproduce the experimental data shown in Fig. 1.

The time-evolution equation for the spherical
integrated scalar covariance spectrumE(k)52pk2

3*21
1 dmC(k,m) may be written as4

]E~k!

]t
52

]x~k!

]k
22Dk2E~k!1F~k!,

where F(k) is the production spectrum of scalar varianc
Solving for x in the steady state for the rangek!l21 gives

x~k!'x02E
k

`

F~j!dj, ~24!

where x052D*0
`k2E(k)dk. Equation ~24! was used by

Mjolsness38 with F50 to derive the constant of proportion
Downloaded 14 Mar 2001 to 137.82.51.6. Redistribution subject to 
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ality, i.e.,x/(4pugu) wherex5x0, in ~13! which agrees well
with numerical simulations.30,31 Phillips42 used~24! whereF
is the spectrum of the conventional Reynolds stress t
^bw&]^b&/]z and b is the buoyancy2gc/^c&, along with
the earlier results of Lumley43 to derive the buoyancy~tem-
perature! spectrum in a stably stratified fluid. Phillips’ der
vation was corrected by Weinstock44 who showed that the
Lumley–Phillips buoyancy subrange theory predicts the te
perature spectrum is proportional tok23 at small
k—consistent with experiments. Recently, I used~24! to de-
rive the magnitude ofE in the viscous-convective subrang
where the productionF is caused by particle inertia.4

The determination ofF in this study is complicated by
the fact that an expression is needed that is accurate in
the viscousk.h21 and inertialk,h21 regimes. The vis-
cous regime formFv follows from Eq.~21!:

Fv~k!52pk2E
0

p

sinu du
5zx

12p
l22k25sin2u

5
10zx

9
l22k23.

The scale break between the viscous and inertial regimeki

is usually taken to be around 0.1h21. Thus fork,ki we can
expect the inertial scalingFi(k);k25/3 where Fi(ki)
5Fv(ki). The resulting expression forx using Eq.~24! is

x~k!55 x02
5zx0

3l2ki
4/3 @k22/32~2/3!ki

22/3#, k<ki ,

x02
5zx0

9l2k2
, k.ki .

~25!

The unknown constantz can be determined from Eq
~25! in principle using the new liquid water data in Ref
One source of uncertainty, however, is the magnitude of
Obukhov–Corrsin constantb in the inertial-convective re-
gime parametrization

Eic~k!5bx ic«
21/3k25/3, ~26!

where« is the energy dissipation rate andx ic5constant is
the inertial-convective range scalar dissipation rate. Since
change inb due to condensation/evaporation is unknown,
assignb its inert passive scalar value of' 3

4. Using the data
in Ref. 1 I estimate thatx ic[x(kb)5x0/14 which gives

z5 39
70 l2ki

4/3@kb
22/32~ 2

3!ki
22/3#21, ~27!

wherekb is the wave number of the scale break between
inertial-convective and viscous-convective regimes. Sub
tuting Eq.~27! into ~23! with the identificationx→x0 gives

E~k!5
x0

ugu
k21@11lk#exp~2lk!

2
13

70

x0

ugu
ki

4/3@kb
22/32~2/3!ki

22/3#21k23. ~28!

The final step in the specification ofE is the determination of
kb . Numerical simulations30,31 of the viscous-convective
AIP copyright, see http://ojps.aip.org/phf/phfcpyrts.html
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subrange withF50 suggest that the scale breakkb occurs,
naturally, at the intersectionEic(kb)5E(kb) which can be
calculated numerically from~26! and ~28!. Using b5 3

4, ki

50.1h21 and recalling from Sec. IV A thatg52(1/q)th
21

where q55.5 produceskb50.04h21. Thus the predicted
scale break between the inertial-convective and visco
convective regimes is at somewhat larger scales than
usual break atkb5(b/q)3/2h21'0.05h21. This extension to
larger scales can be contrasted with the effect of part
inertia which suppresses near-inertial viscous-convec
scaling.4 In the atmosphere whereh;O(1mm), the pre-
dicted r -space scale break occurs around 25 cm which is
order of magnitude smaller than the transition estimated
Daviset al.1 to occur at 2–5 m. This apparent discrepancy
discussed further in the next section. Equations~25!–~28!
complete the determination ofE(k) as a function of the pa
rametersx0 , ugu, l, ki andkb .

VII. SPECTRA AND DISCUSSION

Before embarking on a discussion of the predictions
the present model, it should be emphasized that these pr
tions are highly dependent on the value of the Kolmogor
like parameterz @Eq. ~18!#. In particular, in the limitz→0
normalk21 viscous convective scaling is recovered. Desp
this deficiency, the present model provides an appealing
lytical framework within which the anomalous scaling
cloud LWC can be explained.

In the region (kb50.04h21)<k<0.35h21 the scalar
dissipation rate increases with increasingk according to Eq.
~25!. A typical atmospheric value forh is '1 mm, and
therefore, this ‘‘production subrange’’ corresponds to sca
of about 3 cm up to 30 cm. At smaller scales (r ,3 cm! a
normal viscous-convective subrange exists associated w
constant scalar dissipation ratex0 and at larger scales (r
.30 cm! the cascade of variance from larger to smal
scales dominates the dynamics. In the production subra
the spectral scaling changes from a negatively slopedk21

scaling to a positively slopedk23 scaling@Eq. ~28!#, reflect-
ing the production of scalar variance in the vicinity ofkb .

The scalar spectrum given by Eqs.~25!–~28! is shown in
Fig. 2 along with the change in scalar dissipation r
x(k)/x ic . The increase in the variance beginning atk5kb is
associated with a corresponding increase in the scalar d
pation rate. Outside of the production subrange norm
inertial-convective and viscous-convective behavior is e
dent. The bump in the scalar spectrum in the product
subrange—a reflection of increased variance in t
regime—is superficially similar to the spectral bump caus
by particle inertia~Fig. 5 in Ref. 4!. The location of the
spectral peak atkp'0.033h21 in the present model repre
sents increased variance at scales one order of magn
larger than preferential concentration (kp'0.3h21), a rela-
tionship mirrored by the behavior of the condensatio
evaporation induced velocitŷtu(0)u(r)&/z compared to the
particle inertia induced velocitŷ tu(0)¹•u(r)&. Despite
some similarities between Figs. 2 and 5 in Ref. 4, the phy
of condensation/evaporation and preferential concentratio
distinctly different. Preferential concentration is an accum
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lation or clumping of inertial particles in regions of hig
strain and low vorticity in a turbulent flow and, therefore, b
definition, is a manifestation of a nonuniform particle dist
bution. In contrast, the increased variance exhibited by
present model assumes a uniform particle distribution
allows for variable particle mass due to condensation
evaporation.

The 1D horizontal spectrum defined byf(kx)
5*kx

` k21dkE(k) is shown in Fig. 3 along with the experi

mental data from Ref. 1. The good agreement between
modeled and observed spectra fork'0.04h21 is not

FIG. 2. Plot showing the inertial-convective, production and visco
convective subranges predicted by the present model@Eqs.~25!–~28!#. The
production subrange begins atkb50.04h21 and is associated with increas
ing scalar production and dissipation. The increase inx by a factor of 14
presented at the top of the figure is chosen to reproduce the 1D L
spectrum measured during SOCEX and shown in Fig. 3. Normal iner
convective/viscous-convective scaling is also shown for comparison.
figure is generated using«50.01 m2 s23.

FIG. 3. Comparison of the ensemble-averaged 1D LWC scalar spec
measured during SOCEX2,1 and the present model@Eqs. ~25!–~28!#. The
factor of 14 increase inx(k5kx) in the production subrange is chosen
produce good agreement betweenf(kx) and the data at largekx . The dis-
crepancy in the modeled and observed spectra nearkx50.008h21 may be a
result of the unnaturally sharp transition between the inertial-convective
production regimes shown in Fig. 2 and used in the generation off(kx).
AIP copyright, see http://ojps.aip.org/phf/phfcpyrts.html
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fortuitous—the relationx ic5x0/14 used in Sec. VI to deter
mine the unknown constantz was chosen to produce a clos
correspondence between the two spectra in this region. Fk
in the range 0.002h21,k,0.04h21 the modeled spectrum
falls somewhat below the experimental data. The platea
the modeled spectrum neark5kb is associated with the
sharply defined local minimum exhibited byE in the same
region and shown in Fig. 2. It is very likely that the re
transition between the inertial-convective and production
gimes is much smoother than the prediction of the pres
model which may explain the discrepancy between the
spectra shown in Fig. 3. The plateau in the modeled sp
trum neark5kb may also explain the discrepancy betwe
the 25 cm scale break (kb50.04h21) predicted by the
present model and the break estimated by Daviset al.1 from
experimental data~Fig. 3! to occur at 2–5 m (kb

'0.002h21). Certainly, sincef(kx) is a projection of the
actual 3D spectral densityC(k), an abrupt change in th
scaling ofC ~or E) appears smooth and gradual when p
jected ontokx . Thus, the appearance off(kx) is not neces-
sarily a reliable indicator of the behavior ofE(k). Overall,
the experimental data in Ref. 1 does support the existenc
a production subrange predicted by the present model~25!–
~28!.

The key assumption in the derivation of the producti
subrange is the existence of the imaginary spectral den
C I

axi ~18! that goes aszk24m for small k. BecauseC I
axi

scales with an integer exponent ther-space contribution can
not be calculated without knowledge of a transition from t
k24 scaling to a different~noninteger! scaling regime.
Clearly, more information on the spectral density of liqu
water in clouds from numerical simulations is needed to
certain the validity of the scaling and magnitude ofC I

axi used
in the present model.

VIII. CONCLUSIONS

A mean-field model for the effect of condensation a
evaporation on passive scalar statistics is developed tha
lates the phase change of the condensate to the vertical s
ture of its first and second moments in the cloud. Unlike in
scalar statistics with an initially imposed scalar gradient,
new model predicts nonhomogeneous vertical den
fluctuations—in good agreement with atmosphe
measurements8–10 and numerical simulations11–13 that show
increasing liquid water fluctuations with increasing height
clouds. As a first step towards understanding the effec
condensation/evaporation on passive scalar statistics
equation for the spectral densityC is derived in the viscous
convective regime where an exact closure is available.
derivation proceeds in two parts: the axisymmetric spec
contribution in the Batchelor limit, derived for both viscou
and inertial velocity correlations, is written as an infinite su
of Legendre polynomials ofm as first suggested b
Herring;41 the first-order contribution from condensatio
evaporation is also derived assuming that the imagin
~nonhomogeneous! part of C is significantly large. In the
absence of condensation/evaporation axisymmetric Kra
nan transfer of scalar variance is virtually forbidden beca
Downloaded 14 Mar 2001 to 137.82.51.6. Redistribution subject to 
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of the restriction that the real part ofC be positive. How-
ever, in the presence of condensation/evaporation the po
bility of axisymmetric transfer balancing axisymmetric pr
duction of variance to produce an isotropic, homogene
contributionE(k);k23 exists and is explored.

Under the assumption of spectral balance, an expres
for C is derived that reproduces the spectral behavior of n
experimental data of cloud liquid water density1 which ex-
hibits anomalous viscous-convective scaling. The mode
spectrum has one adjustable constant reflecting the ma
tude of the imaginary~nonhomogeneous! part of the spec-
trum; the value of this constant is chosen judiciously so t
good agreement is obtained between the observed and m
eled horizontal spectra. The present model predicts a pro
tion subrange, 0.04h21<k<0.35h21, where the scalar dis
sipation rate increases with increasingk. Associated with
increased dissipation is a change in the spectral scaling f
the usual negatively slopedk21 viscous-convective scaling
to an anomalous positively slopedk23 regime. The resulting
scalar spectrum in the production subrange has a well
fined bump reflecting increased variance due to condensa
and evaporation, similar to the behavior exhibited in t
spectrum of inertial particles.4 The scale break between th
inertial-convective and production~viscous-convective! sub-
range occurs at 0.04h21—slightly smaller than the usua
transition near 0.05h21 for an inert scalar—although th
break in the 1D horizontal spectrum remains consistent w
data and Daviset al.’s1 somewhat larger-scale estimate. D
spite some uncertainty in the vicinity of the inertia
convective/production subrange transition, the present mo
provides a convenient analytic framework within which t
nonhomogeneous, anisotropic behavior of condensa
cloud spectral scaling may be explored.

The initial success of the mean-field model not wit
standing, a number of important questions remain un
swered. In particular, the predicted anomalous visco
convective scaling is based on the assumption of a ra
large nonhomogeneous contribution toC that is suggestive
of a strong vertical coherence. If this significant nonhom
geneous component exists, it should also be evident in
inertial-convective regime scaling. Efforts are currently u
der way to investigate nonhomogeneous, inertial-convec
regime spatial correlations using the mean-field model.
ture studies should lead to an improved understanding of
presence of intermittency and anisotropy in the statistics
passive condensate which would be of particular relevanc
the atmospheric science community.
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