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Inertial and resistive end corrections for the Greenspan acoustic viscometer were computed using a
boundary-integral-equation technique for determination of the acoustic field. Viscous effects were
estimated using a boundary-layer approximation. The results apply to a circular duct coupling two
concentric chambers and to ducts terminated by infinite plane baffles. The effects of rounding the
sharp edge at the duct end were investigated and found to be described by simple scaling relations.
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INTRODUCTION

The Greenspan acoustic viscometer~Fig. 1! consists of a
cylindrical duct coupling two chambers whose volumes
large compared with the volume of the duct. Gilliset al.1,2

have shown that the Greenspan viscometer is an accurate
convenient device for measuring the viscosity of gases
full theory of the viscometer requires modeling the inert
and viscous effects of the convergent/divergent flow at
duct ends. These effects are investigated numerically in
paper. The present results are required if the uncertaint
viscosity measurements is to be reduced from approxima
1% to the order of 0.1%.

The theory of the Greenspan viscometer is based on
linear equations introduced by Kirchhoff to describe t
coupled temperature, pressure, and velocity fields in gas3

In particular, the exact solutions of Kirchhoff are used
calculate the flow impedance of the viscometer duct.
infinitely long ducts and the range of parameters in typi
applications, the calculations of the duct impedance can
regarded as exact. End corrections are, however, impo
for the ducts of convenient experimental designs.

In this work the acoustic fieldF and eigenvaluek are
calculated for model shapes in the approximation of ri
boundaries and negligible dissipation. From these solutio
it is possible to determine the inertial end correction witho
further approximation, and to determine the first-order co
ficient of viscous end effects.

A boundary-integral-equation~BIE! formalism was used
in the calculations. For axisymmetric shapes like t
Greenspan viscometer, the boundary value problem for
acoustic field can be expressed as a one-dimensional int
equation whose solution yields both the eigenvaluek and the
eigenfunction, or velocity potential,F. This integral equa-
tion has been solved for Greenspan viscometers with a w
variety of dimensions. Analysis of the numerical resu
yielded values of the inertial and resistive end correctio
Among the advantages of the BIE technique is the ex
representation of surfaces generated by rotating curve
arbitrary shape. Thus it has been possible to alter the res
tor cross-section by replacing sharp corners with chamfe
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corners, and to evaluate the effects of chamfering on
inertial and resistive end corrections. Experimen
determinations2 of the inertial and resistive end effects are
good agreement with the calculations reported here.

The paper is organized as follows. The next section
review of the acoustic model of the Greenspan viscome
with emphasis on defining the parameters which need to
evaluated numerically. Some supporting material is in A
pendix A. Duct-end effects are discussed in Sec II. Sec
III is a summary of the numerical approach, with furth
detail in Appendix B. The remainder of the paper is a p
sentation and discussion of the numerical results.

I. GREENSPAN VISCOMETERS

Martin Greenspan suggested the use of a dou
Helmholtz resonator for measuring the viscosity of gases
1953.4 Recent experimental work1,2 demonstrated that suc
resonators, now called Greenspan viscometers, are cap
of measuring the viscosity of gases with an uncertainty l
than 1%. Figure 1 shows the viscometer shape and defi
some dimensions used throughout this paper. A cylindr
coordinate system concentric with the duct and chamb
with the origin at the center of the resonator, will also
assumed, unless noted otherwise.

The Greenspan viscometer has a low frequency mod
which the gas in the duct oscillates between the two cha
bers. For this mode, the contours in Fig. 2 show that
acoustic velocity within the duct is nearly constant. A zer
order approximation to the~circular! oscillation frequency
can be obtained by assuming that gas in the duct has a
stant velocity, and that the main effect of the chambers
pure compliance. This leads to

v0
25

2c2Ad

LdVc
, ~1!

wherec is the speed of sound,Ad is the cross-sectional are
of the duct,Ld is the length of the duct, andVc is the volume
of a single chamber. For practical viscometers, the produc
the corresponding propagation parameterk05v0 /c and a
typical resonator dimension is small compared with unity
73(1)/73/10/$15.00 © 1999 Acoustical Society of America
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Practical acoustic viscometers must be described by
acoustic model which includes viscous and thermal diss
tion. The model is defined most succinctly by an equival
circuit of acoustic elements.1 The duct element is a
T-equivalent circuit which represents the Kirchho
equations.3 The duct ends and the chambers are represe
by series combinations of orifice impedancesZend and cham-
ber impedancesZV . Each of these lumped-circuit compo
nents is defined as the ratio of an acoustic pressure differ
divided by a volume velocity. The chamber impedances
be modeled with accurate analytic approximations which
clude the effects of the thermal boundary layers at the ch
ber walls. The acoustic velocity field in the chambers is n
ligibly small except for the region within a few duct radii o
the duct end. The inertial and dissipative effects of the
locity field within the chamber are thus localized and a
most conveniently included in the orifice impedance.

The Kirchhoff equations provide an essentially exact
scription of the coupled pressure, temperature, and vorti
fields in ducts of infinite length. At the Helmholtz resonan
of the viscometer, the flow in the duct is nearly uniform wi
a pressure node atz50. This point is also a node for th
acoustic temperature. The full theory shows that tempera
oscillations in the duct are so weak that dissipation in
duct is almost entirely due to viscous effects.~The full model
accounts for the small thermal losses in the chambers.1!

Near the ends of the duct the Kirchhoff equations fail
represent the field accurately. The full solution in the d
could in principle be represented as the sum of the contr
tions from a single propagating mode and an infinite num
of evanescent modes. The latter decay within a few duct r

FIG. 1. Cross-section of Greenspan viscometer. The shaded portion
metal; the gas under test fills the open areas of the resonator. The tran
ers and fill duct are omitted.

FIG. 2. The acoustic field near a duct end, for radial coordinater>0 and
axial coordinatez along the axis of symmetry of the viscometer. The da
rectangle represents a half-cross-section of the end of a duct wall bet
radii r d andr d8 . The field is shown as contours of uniformly spaced veloc
potential~or pressure!, as calculated in this work.
74 J. Acoust. Soc. Am., Vol. 106, No. 1, July 1999
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of the ends. The viscous and inertial effects of the evanes
waves, and the viscous and inertial effects of localized fie
in the chambers near the orifices, are included in the ori
impedance. An approximate theory of the end effects is
veloped in the next section.

II. DUCT-END EFFECTS

The acoustic fields near acoustic orifices in thin pla
and at the ends of ducts have been widely investigated5–25

The inertial effects are commonly expressed in terms o
lumped impedanceivrd I /Ad . Here r is the gas density,
ivr/Ad is the inertance per unit length for nondissipati
acoustic flow in a duct, andd I is the inertial end correction
Rayleigh5 gives the exact valued I5pr d/4 for an orifice in
an infinitesimally thin plate, and obtained an approxima
valued I'0.82r d for a duct end with an infinite plane baffle
The latter estimate was improved by Daniell,6 and recently
recalculated by Norris and Sheng,24 who obtained
0.821 59r d . Rayleigh’s expression for the exact flow velo
ity in the infinitesimally thin orificeuz}1/A12r 2/r d

2 has a
singularity of orders21/2 at the orifice edge, wheres is the
distance from the edge. The tangential velocity on the p
has a similar singularity.10 The weaker singular behavio
near the corner of an baffled end,s21/3, was built into the
trial solutions used by Daniell. Unbaffled duct ends we
investigated by Levine and Schwinger.9 In the limit of an
infinitesimally thin duct wall, the velocity near the end of th
duct has a singularity of orders21/2, and the inertial end
correction is approximately 0.61r d . As the thickness of the
duct wall is increased from very small to large values, t
inertial end correction varies uniformly between the lim
for thin ducts and infinitely baffled ducts.20,25

Viscous forces associated with the divergences in
tangential flow near a duct end are the sources of additio
contributions to the orifice impedance, which can be e
mated~in the linear regime! using ideas that were apparent
first applied to orifices by Nielsen.10,16 The flow is repre-
sented by a superposition of acoustic and vorticity wa
which together satisfy a nonslip boundary condition on so
boundaries. The vorticity waves are confined to a layer n
the solid boundaries of approximate thicknessdv
5A2h/rv, whereh is the viscosity. When the viscous pen
etration lengthdv is small compared with other dimension
and the surface curvature is large compared withdv , the
transverse flow velocity near a boundary is approximatel

ut~j!'ua,t@12e2(11 i )j/dv#, ~2!

wherej is the distance from the duct wall, andua,t is the
transverse acoustic velocity near the wall. The correspond
force per unit area of boundary surface is

h
]ut

]j U
j50

5
h

dv
~11 i !ua,t5

1

2
rvdv~11 i !ua,t . ~3!

Nielsen estimated the orifice resistance by integrating
corresponding rate of dissipation per unit area,1

4rvdvua,t
2 .

In his application to an orifice in a thin plate, the diverge
integral had to be cut off at distance of orderdv from the
orifice edge. For duct ends, the weaker divergence in

are
uc-

en
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tangential flow velocity leads to a convergent integral, sim
lar to the treatment of step-discontinuities in an infinite pla
duct by Morse and Ingard.26

Panton and Miller22 correlated the work of Thurston,11

Ingard,16 Thurstonet al.,17 and Ingard and Ising19 on the im-
pedance of orifices in thin plates. They found that the orifi
inertance was constant below a mean orifice flow velocity
about 0.3dvv, and that the orifice resistance was const
below a mean orifice flow velocity of about 2dvv. These
results support the existence of a low-velocity linear regim
where the Greenspan viscometer is intended to operate.
nonlinearity thresholds for thin plates and baffled duct e
may differ considerably, however, because the singular
havior of the tangential velocity in the limit of zero viscosi
is different for the two cases.

The combined inertial and viscous contributions to t
orifice impedance can be conveniently expressed

Zend5
rv

Ad
@ id I1~ i 11!dR#, ~4!

where the two components associated with the visc
boundary layer are represented by a the orifice resista
parameterdR . This parameter can be determined by calc
lating the additional dissipation near the duct end.26

The total, time-averaged, rate of energy loss due to
viscous boundary layer in an axisymmetric resonator is

P5
p

2
rvdvE ua,t

2 r ds, ~5!

where ds is the element of arc length in the longitudin
cross-section of the viscometer. A portionP0 of this loss will
be included in the Kirchhoff equations representing the du
The acoustic velocity in the duct, in the limit of smalldv /r d ,
is uz5uz0 coskz, wherek5v/c, so that

P05
p

2
rvdvr duz0

2 E
0

Ld/2

cos2 kz dz. ~6!

The total power loss

P5P01 1
2~rvdR /Ad!U2 ~7!

exceedsP0 because of the localized additional losses n
the duct end. HereU5Aduz0 cos(kLd /2) is the volume flow
out of the duct. Equation~7! can be used to determinedR

once the total power loss has been determined numerica
The inertial lengthd I can be obtained most convenient

and with high accuracy by using the resonance condition

k tan~kLd/2!1k2d I2Ad /Vc50, ~8!

derived from the equivalent-circuit model of the viscomete1

together with numerically determined values of the re
nance parameterk. An alternative procedure, described late
is more directly related to the definition of inertance, but
less convenient because it requires calculation of the flow
the orifice at the duct end. The two methods yield equival
results.
75 J. Acoust. Soc. Am., Vol. 106, No. 1, July 1999
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III. NUMERICAL APPROACH

In the limit of small dissipation, the acoustic pressu
within the resonator is proportional to the velocity potent
F, a solution of the boundary value problem

~¹21k2!F~r!50, rPC,
~9!

]F

]n
50, rPS,

i.e., the Helmholtz equation in the resonatorC subject to a
Neumann boundary condition on the resonator surfaceS. An
equivalent form of the same boundary value problem is
integral equation

F~r8!V~r8!52E
S
F~r!n–“G~r8,r!dS, ~10!

where r and r8 are both onS, V(r8) is the internal solid
angle subtended bySat r8, and the fundamental solution, o
Green’s function, is

G~r8,r!5
eikR

R
, R5ur2r8u. ~11!

Solutions of this integral equation yield both the eigenf
quencyv5ck and the velocity potentialF on the surface of
the resonator. The numerical procedure described below
ables the determination of smooth approximate values of
tangential velocityua,t5F8 on the resonator boundary, a
required for accurate calculations ofdR .

The cross-sectional area of a Greenspan viscome
which is both axisymmetric and has mirror symmetry w
respect to thez50, plane can be represented by parame
equationsr (t) andz(t), both symmetric int, with the mid-
plane att50. The velocity potential on the surface can
written as a function of the parametert. In Appendix B it is
shown thatF(t) is the solution of a one-dimensional integr
equation

2V~ t8!F~ t8!5E gn~ t8,t !F~ t !h~ t !r ~ t !dt, ~12!

whereds, the element of arc length in the cross-section,
equal toh(t)dt, andgn(t8,t), is a kernel with a logarithmic
singularity att5t8.

An approximate solution of the integral equation~12!
can be formulated as a series of Hermite cubic polynomi
each defined on a portion of the boundary. The solutions
interest have odd symmetryF(t)52F(2t). It suffices to
define the geometry forz>0 and to use this symmetry in
formulating a solution. It is convenient to divide the reson
tor cross-section, or generator, forz>0, into N elements,
with the j th element corresponding toj 21<t< j . The ele-
ments could be chosen to have arbitrary shapes. Howe
shapes with sharp and rounded corners can be represe
with only two types of elements: straight lines and circu
arcs. The resonator shape is treated exactly within these
straints.

The velocity potentialF(t) is approximated as a serie
of cubic Hermite polynomials so that, by construction, bo
F(t) and the tangential derivativeF85dF/ds are continu-
75James B. Mehl: Greenspan acoustic viscometer
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ous at the nodes dividing the elements.~The latter condition
cannot be applied at reentrant corners, as explained bel!
The coefficients in the polynomial representation are
eigenfunctionF j and its tangential derivativeF j8 at nodes
j 50,1,. . . ,N. There are thus 2(N11) unknown coefficients
in the representation of the eigenfunction and its derivativ
By requiring that the approximate solution satisfy the in
gral equation~12! at each of the nodes,N11 linear equa-
tions are obtained. Additional linear equations can be
tained by requiring that the second derivativesF9 be
continuous at most of the internal nodes. This condition m
be modified at corners, as described below. Two additio
conditions areF(0)50 ~at the plane of mirror symmetry!
andF850 for nodes on the axis~unless there is a cusp in th
chamber cross-section!. With appropriate conditions at eac
internal node, a total ofN11 additional linear equations i
obtained. The solution to this set has the form

F j85(
l 50

N

D jl F l . ~13!

The tangential derivatives can now be eliminated from
N11 equations which approximate Eq.~12!; this set can
now be expressed

(
j 50

N

Ai j ~k!F j50, ~14!

where the matrix elementsAi j (k) are obtained by numerica
integration over the elements of appropriate products of
basis functions and the kernel of the integral equation,
subsequent elimination theF j8 terms through Eq.~13!.

Approximate values of the eigenvaluekare obtained by
requiring the determinant of matrixAi j (k) to vanish. Oncek
is determined,F j can be determined from Eq.~14!, andF j8
from Eq.~13!. Smoother value ofF j andF j8 can be obtained
by solving Eq.~14! by inverse iteration.27

A. Corners

Near corners the eigenfunctions will have a tw
dimensional character whose limiting behavior is restric
by the boundary conditions. Consider a~temporary! cylindri-
cal coordinate system with polar coordinates (z,r,f). As-
sume that thez axis corresponds to a corner and that t
boundaries are atf50 andfc , i.e., fc is the interior angle
at the corner. Solutions of the Helmholtz equation expan
about the corner have the form

F5(
l

@al cos~m lf!1bl sin~m lf!#Jm l
~kr!. ~15!

The Neumann boundary condition,]F/]f50 at f50 and
f5fc , requires that allbl50 and thatm lfc be a multiple
of p. Accordingly, the lowest nonzero Bessel-function ind
is m15p/fc . For a 1

2p internal corner this ism152; for a
3
2p reentrant corner it ism15 2

3. The leading term in the
expansion of the Bessel function is (kr)m1. Accordingly, at
1
2p internal corners the eigenfunctionF will have a vanish-
ing tangential derivative as the corner is approached. Th
76 J. Acoust. Soc. Am., Vol. 106, No. 1, July 1999
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the supplementary condition used instead of continuity ofF9
at corner nodes with interior angle12p.

For a 3
2p reentrant corner at nodel c the eigenfunction

will have a limiting behavior of the form, withs2sc the arc
length from the corner andC a constant,

F5F l c
6Cus2scu2/3, ~16!

which has a singular tangential derivative. An improved a
proximation toF(t) was obtained by using, on the elemen
adjacent to3

2p reentrant corners, suitably defined basis fun
tions with this limiting behavior. Because the continuity co
dition on F8 cannot be imposed at a reentrant corner,
alternative linear equation was required. This was obtai
by use of Eq.~15! through orderus2scu2 to relate values of
F j for j 5 l c and l c61 and values ofF j8 for j 5 l c61. ~The
approximations toF on the singular elements adjacent
corner nodes do not involve the parameterF l c

8 , which was

left undefined for singular elements.!

B. Shapes investigated

Numerical calculations were carried out for many var
tions of the geometry shown in Fig. 1. Five series of calc
lations were carried out for viscometers with the duct en
flush with the chamber walls (Li50). For each series the
duct radius was varied from 0.02r c to 0.5r c . The series
differ in the ratio of the lengthsr c , Lc , andLd . For series C
these lengths were in the ratio 1:2:2. The effects of halv
and doubling the duct length were checked with series
~1:2:1! and D ~1:2:4!. The effects of halving and doubling
the chamber lengths were checked with series A~1:1:2! and
E ~1:4:2!. The duct-end effects were found to depend m
strongly on the ratior d /r c and only weakly on the othe
dimensions. The effects of rounding the orifice edges w
investigated mainly with the series C shapes, but chec
with series A.

For the viscometers withLiÞ0, as used in recent exper
ments, the duct extends into the chambers a distanceLi ~the
insertion length!. The dependence of the orifice paramete
on this length was investigated for a shape typical of
shapes used in recent experiments.2 The effects of duct-wall
thickness were also calculated.

C. Grid generation

Uniform spacing of the nodes does not yield optimu
approximations of the eigenfunctions. Instead, the node s
ingshj were scaled to provide greater detail in regions wh
the eigenfunction was varying most rapidly, i.e., near re
trant corners. The numerical code was constructed so th
maximum node spacinghmax was used for surfaces whereF
is weakly varying. The spacing was uniformly graded dow
to a minimum node spacinghmin at reentrant corners, a
shown in Fig. 3. The figure shows two singular elements
lengthhmin at the sharp corner, with neighboring normal e
ements of the same length, next-nearest neighboring
ments graded up one step, etc. Various grading scales
tested. Typically the ratio of the lengths of adjacent eleme
was chosen to be between 1.05 and 1.1. The maximum
minimum node spacings were typicallyhmax5r c/40 and
76James B. Mehl: Greenspan acoustic viscometer
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hmin5r c/4000 orr c/400. The number of elementsN varied
from 216 to 404, depending on the series and onhmin . The
results reported in this paper have been calculated with m
grid configurations and do not depend significantly on
details of the grids used.

The effects of chamfering reentrant corners was inve
gated by replacing the singular elements and adjac
straight elements by circular-arc elements; the node spa
on the circular-arc elements was alwayshmin , with hj graded
upward in the straight elements adjacent to the circular
elements.

IV. NUMERICAL RESULTS

Figure 4 shows the cross-section of a viscometer and
numerically computed values ofF j and uF j8u. As expected,
the eigenfunction is nearly constant within the chamber,
has a nearly linear dependence within the duct. The beha
near the duct orifice is more visible in the plot ofuF8u,
which clearly shows the singular behavior. The singular
havior near the orifice edge is shown more clearly in Fig
~The use of nonsingular basis functions in the elements
jacent to the reentrant corner yielded numerical values ofF j

andF j8 nearly identical to those plotted here.!
Equation~10!, with V(r8)54p at internal pointsr8, can

be used to calculate internal values of the velocity poten
from the boundary values. Figure 2 shows some typical
sults near an orifice of a duct extending into a chamber.

FIG. 3. Node positions near sharp and chamfered corners.

FIG. 4. Top: Outline of viscometer cross-section, withLc5r c5Ld/2 and
r d5r c/10. Center and bottom: plots ofF j and uF j8u at 321 nodes along the
viscometer boundary, as a function of arc length along the boundary f
reference point A to reference point E. The computed eigenvalue for
case isk50.002 451 50/r d .
77 J. Acoust. Soc. Am., Vol. 106, No. 1, July 1999
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flow pattern is typical; within the chamber the acoustic v
locity drops rapidly over a distance of orderr d .

A. Eigenvalues and inertial end corrections

For each shape investigated, the eigenvaluek was cal-
culated with at least two grid configurations. The resu
typically agreed to within a few parts in 108. A convenient
method of summarizing the results is to use the numer
value ofk and the viscometer dimensions, together with t
equivalent-circuit model in the limit of no dissipation, and
calculate the inertial end correctiond I . Somewhat greate
consistency of the results can be obtained by the separa
d I5d I81d I9 , where most of the effects of chamber length a
included in the termd I9 .

In Appendix A it is shown that a cylindrical chambe
with a concentric circular orifice in which the normal flui
velocity isuz(r ) has an input impedance equal to the sum

Zin8 5
rc2

ivV

kLc

tankLc
~17!

and

Zin9 5
4ikrc

pr d
(
n51

`
AnJ1~z0nr d /r c!

@z0nJ0~z0n!#2
Fn~k!. ~18!

Herez0n is thenth root of dJ0(z)/dz50. The other quanti-
ties are

An5E
0

r d
ũz~r !J0~z0nr /r c!r dr , ~19!

whereũz(r ) is uz(r ) divided by its value averaged over th
orifice, and

Fn~k!5
coth@~z0nLc /r c!A12~krc /z0n!2#

A12~krc /z0n!2
'1. ~20!

The first contribution, Eq.~17!, is the zero-dissipation inpu
impedance of the chamber modified for its finite leng
through the factor

m
is

FIG. 5. The tangential derivativeF8 at nodes in the duct~triangles! and
chamber~open circles! near the orifice, as functions of the distance from t
orifice edge in units of the duct radiusr d , showing the expected divergen
behavior. Viscometer dimensions arer c5Lc5Ld/2, r d5r c/10.
77James B. Mehl: Greenspan acoustic viscometer
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kLc /tan~kLc!512 1
3~kLc!

21O~kLc!
4. ~21!

Equation~17! is thus approximately

Zin8 '
rc2

ivV
1

ivrLc

3pr c
2

. ~22!

The second term has the frequency/phase signature o
inertial term; the corresponding contribution tod I is

d I95 1
3~r d /r c!

2Lc . ~23!

Similarly, the larger contribution tod I from Eq. ~18! is

d I854r d(
n51

`
AnJ1~z0nr d /r c!

@z0nJ0~z0n!#2
Fn~k!. ~24!

The inertial end correctionsd I8 were calculated for each
resonator geometry using the numerical values ofk and a
modified form of Eq. ~8!, in which Vc was replaced by
Vc tan(kLc)/(kLc), so that the effects of finite chamber siz
expressed in Eq.~17! are accounted for. Average results f
the five series of viscometers are shown in Fig. 6. The res
for the individual series differ from the average by a ma
mum of 0.001 atr d /r c50.5, and by a much smaller amou
in range of typical applicationsr d /r c<0.1. Thus separation
of thed9 term accounts for nearly all dependence on visco
eter dimensions other than the ratior d /r c . A linear fit to the
data in the ranger d /r c<0.1 yielded

d I8/r d50.821 5921.1020r d /r c . ~25!

The correctness of this result is supported by the agreem
to five decimal places, of the constant term with the rec
calculation of Norris and Sheng.24

The decrease with increasing duct radius is due to
change in coupling to the chamber modes in Eq.~24!.
Ingard16 used a similar expression with a piston~constant!
approximation touz in the orifice, for which

An52J1~z0nr d /r c!/~z0nr d /r c!.

The dotted line in Fig. 6 was calculated using this expr
sion. It clearly overestimates the end correction. A be

FIG. 6. Inertial end correctionsd I8 calculated from numerical eigenvalu
k.The solid line was calculated for a model flow field in the orifice. T
dotted line is Ingard’s result for uniform flow in the orifice.
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result is obtained by using an approximation to the act
flow

ũz5A1BX1CX21/3, ~26!

with X512(r /r d)2. The coefficients in this expression we
obtained by calculating internal values ofF for a series A
viscometer withr d /r c50.05. The results~similar to those in
Fig. 2! were numerically differentiated to obtainuz in the
plane of the orifice. Equation~26! was fit to the results to
obtain the coefficientsA50.24960.002, B50.03260.002,
and C50.49060.001. With these coefficients, theAn were
computed using Eqs.~19! and ~26!, andd I8/r d50.7666 was
obtained by summing Eq.~24!, in excellent agreement with
the value 0.7665 obtained from the numerical eigenvalue
the model. Under the assumption that Eq.~26! with these
coefficients is a reasonable approximation toũz for the other
values ofr d , Eq. ~24! was then used to calculated I8/r d as a
function ofr d /r c . The results, shown as the solid line in Fi
6, show that this approximation gives an excellent accoun
the orifice inertance.

The inertial end correction has also been calculated
viscometers with a finite insertion lengthLi.0. Unfortu-
nately the insertion of the duct end distorts the resona
shape so that the contributiond I9 can no longer be calculate
in a simple way. Instead, the full inertial end correction mu
be calculated for each resonator geometry, using the num
cal eigenvalues and an equivalent circuit with the input i
pedances of the chambers equal torc2/ ivVc . Results as a
function of Li /Lc are shown in Fig. 7 for a typical viscom
eter. The inertial end correction decreases initially asLi in-
creases from zero, reaches a minimum, and then incre
again as the interaction with the back wall of the cham
increases. When the duct end is near the center of the r
nator it most closely approximates an unbaffled end, w
maximum distance to the chamber walls. The minimu
value exceeds the value of Levine and Schwinger9 for an
unbaffled duct of zero thickness because the finite thickn
of the duct acts as a partial baffle. The dependence on
thickness is shown in Fig. 8. For each value of the fractio
duct thickness (r d82r d)/r d , the end correctiond I was found
to be a linear function ofr d /r c , and consistent with the tren
in Fig. 6. The data were extrapolated to zero duct thickn
to obtain the top curve in Fig. 8, which appears to smoot
approach the Levine–Schwinger value of 0.61 for zero fr
tional duct thickness.

FIG. 7. Inertial end correction as a function of insertion lengthLi , for a
viscometer withLc5r c5Ld/2, r d /r c50.05, andr d8/r c50.075.
78James B. Mehl: Greenspan acoustic viscometer
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B. Acoustic flow in the duct

The resonance frequencies of Greenspan viscometer
typically much lower than the cutoff frequencies for high
modes of a duct. Accordingly, near the center of the duct,
eigenvector is expected to be well approximated by a m
tiple of sinkz, and the tangential derivative by a multiple
coskz. Insight into the divergent flow near the orifice can
gained by looking at the difference betweenF8 in the duct
and the best approximationA coskz. This differenceDF8
5F82A coskz is plotted in Fig. 9. The constantA was de-
termined by a fit toF8 for z,Ld/4. The figure shows tha
the difference is smooth over five orders of magnitude. T
divergent behavior of the tangential derivative near the
fice is evident. The complete solution in the duct can
expressed as the sum of the propagating mode and an in
number of evanescent modes, the latter approximately
portional to exp(2z0nDz/rd), whereDz is the distance from
the orifice edge. The line in Fig. 9, which is proportional
the n51 evanescent wave, is clearly a good approximat
to the plotted data in an intermediate range away from

FIG. 8. Inertial end correction as a function of fractional duct thickn
(r d82r d)/r d , for r d /r c equal to 0.1,h, 0.075,* , 0.05,3, and extrapolated
to zero,1. The single solid circled represents the result of Levine an
Schwinger in the limit of zero duct thickness. The other resonator dim
sions wereLc52r c , Ld55r c/2, andLi5r c/2.

FIG. 9. DifferenceDF85F82A coskzbetween the tangential derivative o
the velocity potential in the duct andA coskz, plotted as a function of the
distanceDz from the orifice edge, for a viscometer withLc5r c5Ld/2 and
r d /r c50.1. The constantA was determined by a fit toF8 well within the
duct. The differences near the orifice can be expressed in terms of an in
sum of evanescent waves. The decay constant for the most-slowly dec
evanescent wave is shown as a solid line.
79 J. Acoust. Soc. Am., Vol. 106, No. 1, July 1999
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orifice but above the digital noise farther into the duct. Th
agreement provides further support for the correctness of
numerical calculations.

C. Orifice resistance

For each set of numerical calculations, the ratiodR /dv
was calculated using Eqs.~5!–~7!. The integral forP was
calculated from the cubic representation ofF8 on each ele-
ment and the numerically determined values ofF j andF j8 .
The results are shown in Fig. 10 for the five series of re
nators with duct ends flush with the chamber wall. For sm
duct radii, the orifice resistance parameter approaches 0
60.001 for all series. The contribution from outside the du
approaches 0.499, and the contribution from inside the d
approaches 0.410.

The orifice resistance parameter was calculated a
function of insertion length for one case. The results
shown in Fig. 11. As the duct insertion increases from ze
the orifice resistance begins increasing rapidly, reaches a
teau, and then rises further as the duct end nears the
wall of the chamber. The initial increase is a trend toward
unbaffled duct end. When the duct is flush with the cham
wall the local field approximates that near an infinite baffl
where there is a single integrable singularity in the square
the tangential velocity. When the duct extends into the cha
ber there is a second singularity of the same order at
outer corner of the duct end. The numerical coefficient of
outer singularity increases as the duct wall thickness
creases. When the duct gets very thin, the combination
singularities approximates the stronger singularity of an

s

-

ite
ing

FIG. 10. Orifice resistance parameter as a function of duct radius, for
Greenspan viscometers withL150; Series A,3; B, d; C, s; D, 1; E, L.

FIG. 11. Orifice resistance parameter as a function of insertion lengthLi ,
for a viscometer withLc5r c5Ld/2, r d /r c50.05, andr d8/r c50.075.
79James B. Mehl: Greenspan acoustic viscometer
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finitesimally thin duct, so that the orifice resistance increa
with decreasing duct thickness, as shown in Fig. 12.

D. Rounded corners

The effects of rounding sharp reentrant corners on
inertial and resistive end corrections have been investiga
The sharp orifice edge was replaced by a quarter-circular
of radius r chf . Orifice inertance and resistance paramet
were calculated as a function ofr chf for a large variety of
conditions. The resistive end corrections were found to sc
according to

dR~r chf!5dR~0!@12 1
3~r chf /r d!1/3#. ~27!

The inertial end correction was only weakly dependent
chamfering, as expressed by the scaling law

d I~r chf!5d I~0!@1230.3~r chf /r c!
4/3#. ~28!

The occurrence of the chamber radius in the latter sugg
that the effect is associated with the slope in Fig. 6 rat
than the intercept.

The decreases of bothdR and d I by rounding of the
sharp corners is qualitatively consistent with the trend
served in Thurston’s measurements of the effects of se
beveling and rounding on the impedance of orifices in t
plates.18 A more quantitative test was made during the d
velopment of the Greenspan viscometer.2 The ends of a duc
were chamfered slightly, so thatr chf /r d'0.07. The corre-
sponding decrease indR predicted by Eq.~27! is 14%, which
was confirmed experimentally within about 4%. The p
dicted and observed changes ind I were less than 1%.

V. CONCLUDING REMARKS

The boundary-integral-equation formalism describ
here has been shown to be a useful technique for calcula
the acoustic field within Greenspan viscometers, includ
the singular effects near reentrant corners. The resul
acoustic solutions were used together with a boundary-la
approximation for the vorticity mode to determine the ine
tial and resistive components of the lumped acoustic imp
ances associated with the duct ends. Limiting cases of
results were shown to agree with known results for baffl
and unbaffled duct ends. The reduction of the acoustic re
tance at duct ends was found to follow a power law. In futu
applications, the results can be applied to the design of d

FIG. 12. Orifice resistance parameter as a function of relative duct thick
(r d82r d)/r d , for a resonator withLc52r c , Ld55r c/2, andLi5r c/2. Cal-
culations were made forr d /r c equal to 0.1, 0.075, and 0.05. The depe
dence ofdR /dv on r d /r c was negligible.
80 J. Acoust. Soc. Am., Vol. 106, No. 1, July 1999
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ends with rounded edges to minimize the maximum tang
tial velocity, a possible source of nonlinear effects.
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APPENDIX A

An expression for the acoustic input impedance o
circular orifice in one end of a cylindrical chamber is deriv
in this section. The cylinder has rigid walls atr 5r c , z50,
andz5Lc . The orifice is atz50, r<r d . The normal com-
ponent of the acoustic velocity in the plane of the orifice
uz(r ). The acoustic pressure in the chamber can be
pressed using Green’s theorem

p~r 8!52p ivrE
0

r d
uz~r !G~r ,r 8!r dr . ~A1!

The Green’s function is

G~r,r8!5(
nl

e lFnl~r ,z!Fnl~r 8,z8!

pr c
2Lc@J0~z0n!#2~knl

2 2k2!
, ~A2!

where e l522d l0 is the Neumann symbol, the eigenfun
tions are

Fnl5J0~z0nr /r c!cos~ lpz/Lc!, ~A3!

the eigenvalues are

knl
2 5~z0n /r c!

21~ lp/Lc!
2, ~A4!

Jm(z) is a Bessel function, andz0n the nth root of J08(z)
52J1(z)50. The specific acoustic input impedance of t
orifice is the ratio of the mean pressure in the orifice^p& to
the volume velocitŷ uz&Ad . The mean pressure can be o
tained by averaging

p~r ,z!5
2ivr^uz&r d

2

r c
2Lc

(
nl

e lAn

@J0~z0n!#2

3
J0~z0nr /r c!

~z0n /r c!
21~ lp/Lc!2k2

, ~A5!

where

An5E
0

r d
ũz~r 8!J0~z0nr 8/r c!r dr ~A6!

andũz is uz /^uz&. Note thatA05 1
2, so that then50 sum can

be split off. The input impedance of the chamber is

Zin5
^p&

rc^uz&
5

ivr

Ad

r d
2Lc

p2r c
2
S~ ikLc /p!

1
ivr

Ad

4ir dLc

p2r c
(
n51

`
AnJ1~z0nr d /r c!

z0n@J0~z0n!#2
S~an!,

~A7!

where

ss
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S~a!5(
l 50

`
e l

l 21a2
5~p/a!coth~ap!,

an5z0nLchn~pr c!hn ,

hn5A12~krc /z0n!2'1.

The input impedance is the sum of two terms equivalen
Eqs.~17! and ~18!.

APPENDIX B

Consider the integral equation~10! for axisymmetric
problems with source pointsr(t)5(r ,z,f) and field points
r(t8)5(r 8,z8,0). The distanceR5ur(t)2r(t8)u is

R~ t8,t,f!5Ar 21r 8222rr 8 cosf1~z2z8!2. ~B1!

The area element isdS5r df h dt, where

h~ t !5ds/dt5A~dr/dt!21~dz/dt!2.

For solutions independent off, Eq. ~10! can be integrated
over f to obtain Eq.~12!, where the kernel is

gn~ t8,t !5n~ t !•E
0

2p

“R
d

dRS exp~ ikR!

R Ddf. ~B2!

The basis set for approximate solutions of Eq.~12! can
be defined as follows. The parametert is scaled so that the
j th element corresponded toj 21<t< j . The local coordi-
nate on elementj is t j5t2 j 11. The functionsHm

j (t j ) are
defined to vanish fort j,0 andt j.1, and to equalHm(t j )
on elementj , where

H1~t!5123t212t3, H2~t!5t~12t!2,
~B3!

H3~t!53t222t3, H4~t!52t2~12t!.

The linear combination

C~ t !5(
j 51

N

@F j 21H1
j ~t j !1hjF j 218 H2

j ~t j !1F jH3
j ~t j !

1hjF j8H4
j ~t j !# ~B4!

interpolatesF and its derivativeF8 with respect to arc
length at all nodes. This form was used to approximate
solution F(t). For the linear and circular elements used
this work the derivativeC8 is continuous at all nodes. A
noted in the main text, a series expansion of Eq.~15! through
order us2sCu2 was used instead of Eq.~B4! on elements
adjacent to a reentrant corner. The form of the expans
insured continuity ofC at the reentrant corners, but not
the derivatives. The form of the expansion was chosen
matchF andF8 at the adjacent nodes.

A numerical approximation to the integral equation~12!
was obtained by using Eq.~B4! to approximateF, and re-
quiring that the approximate form hold at theN11 nodest i8 .
This yielded a set ofN11 linear equations of the form

2V iF i5(
j 50

N

@Bi j F j1Ci j F j8#, ~B5!
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with suitably definedBi j andCi j determined by integrations
of the kernel over the elements. Continuity ofC9 at all non-
reentrant internal nodes requires

6~F j 212F j !/hj
212~F j 218 12F j8!/hj

526~F j2F j 11!/hj 11
2 22~2F j81F j 118 !/hj 11 . ~B6!

An alternative condition for reentrant corners was obtain
by using the values ofC9 from the series expansion ofC on
the singular elements, and matching these to values on
adjacent nodes. As explained in the main text, these eq
tions were supplemented by conditions on the first and
elements to permit a solution in the form of Eq.~13!, which
was then used to eliminate the derivatives from Eq.~B5! to
obtain Eq.~14!.

The matrix elements were calculated using the Qu
pack adaptive numerical quadrature routineqnda .28 Special
care was taken with the weakly singular integrals which
curred when the range of integration included the collocat
point t j8 . The singularities were of the logarithmic form, an
were handled using identities similar to

E
0

1

f ~ t !log t dt52 f ~0!1E
0

1

@ f ~ t !2 f ~0!# log t dt.

This procedure separated out the singular contribution
permitted the use of a non-singular quadrature routine for
remaining integration. The error limits for the adaptiv
quadrature were set as low as feasible for IEEE double
cision computations. No effort was made to optimize t
speed of calculation by relaxing the error limits. Sufficie
checks were made to insure that the accuracy of the qua
ture did not influence the accuracy of the results.
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