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Abstract

Equations for the first and second moments of particle density are closed exactly in the large

Prandtl number limit, using the d-correlated closure whereby the turbulent velocity field is assumed

to rapidly decorrelate in time. Results are summarized from two recent studies that have investigated

the effect of both particle inertia and condensation/evaporation on the viscous–convective subrange.

Analytic expressions for the spectrum of inertial particles are presented which show that clumping

(preferential concentration) does not occur for Stokes number (St) less than about 0.2. Also presented

are analytic expressions for the scalar spectrum of cloud liquid water density derived from a simple

mean-field model of condensation/evaporation. The model reproduces new experimental

observations [J. Geophys. Res. 104 (1999) 6123] of cloud liquid water content (LWC) fluctuations

that exhibit anomalous near-inertial scaling. For the first time, the effect of high Reynolds number

(Rel) velocity field intermittency on preferential concentration is considered in a quantitative

manner. A Rel-dependent effective Stokes number (Steff) is derived that is proportional to the square

root of the flatness factor of the longitudinal velocity derivative. In the atmospheric boundary-layer,

Steff� 2.7 St. These results support Shaw et al.’s [J. Atmos. Sci. 55 (1998) 1965] hypothesis that

velocity field intermittency tends to increase preferential concentration at St < 1. However, in contrast

with Shaw et al., I demonstrate that, in real turbulence, vortex tubes do not statistically affect Steff
and, hence, preferential concentration. D 2001 Elsevier Science B.V. All rights reserved.
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1. Introduction

Recently, both Pinsky and Khain (1997) and Shaw et al. (1998) have considered the

effect of cloud droplet inertia on the droplet size distribution during condensational

growth. Despite the commonality of the phenomena investigated, their conclusions are

remarkably different. Pinsky and Khain (1997) suggest that droplet inertia results in

‘‘inertial drop mixing,’’ whereby two small neighboring volumes of air exchange drops

according to the inertia-induced velocity divergence of the droplets. As a result, two

volumes with greatly differing size distributions at cloud base become homogenized as

the volumes are lifted adiabatically, while two volumes that are identical at the cloud

base will remain homogenized but will be stochastically different at the cloud top.

Results from a more refined model of inertial drop mixing are discussed in detail in

Pinsky et al. (1999).

The Shaw et al. (1998) hypothesis, on the other hand, is distinctly different and

much bolder. In their model of inertial effects, vortex tubes and thus the intermittency

of large Reynolds number (Rel) atmospheric flows plays a central role. Although a

velocity intermittency effect had been hypothesized earlier (Tennekes and Woods,

1973; Cooper and Baumgardner, 1989), in the Shaw model, the geometry of the fine-

scale structure plays a key role for the first time. Shaw et al. (1998) argue that cloud

droplets accumulate in regions of high strain and low vorticity in a turbulent flow

due to inertia—a phenomena known as ‘‘preferential concentration.’’ In contrast to

Pinsky and Khain’s (1997) inertial mixing, they further suggest that a non-uniform

droplet field implies a non-uniform supersaturation field, which leads to a broader

distribution of droplet growth rates. However, a broad distribution of growth rates

will impact the size distribution only if the growth rate renewal time is very long,

O(10 s). Thus, Shaw et al. (1998) make one further assumption: vortex tubes with

lifetimes ss =O(10 s) at large Rel trap droplets in a relatively high supersaturation

environment for an eddy-trapping time sT� ss. Thus, we have the Shaw model of

‘‘inertial drop trapping’’ in contradistinction to Pinsky and Khain’s (1997) inertial

drop mixing.

In a short comment, Grabowski and Vaillancourt (1999) question a number of Shaw

et al.’s (1998) assumptions. In particular, Grabowski and Vaillancourt (1999) suggest

that (i) droplet sedimentation, not considered by Shaw et al. (1998), substantially

decreases sT ; (ii) the volume fraction of vortex tubes is too small to account for an

appreciable vortex trapping mechanism; and (iii) the Stokes number (St)—the ratio

between the particle response time due to its inertia and the Eulerian turbulence time-

scale—is too small for significant preferential concentration to occur. They estimate that

for typical atmospheric conditions and growing droplets (radius r� 15 mm) St� 0.07,

whereas laboratory experiments demonstrate that significant preferential concentration

occurs for St =O(1).
In response to (iii), Shaw et al. (1999) argue that at high Reynolds numbers where

intense vortex tubes are present, the Stokes number range for preferential concentration

increases significantly. Support for this argument comes from direct numerical simulation

(DNS) experiments at fixed St (Reade and Collins, 2000; Wang et al., 2000) that

demonstrate an increase in particle clumping with increasing Reynolds number.
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Adding fuel to this debate, Davis et al. (1999) present horizontal spectra /(kx) of

cloud liquid water content ( ql), measured at an unprecedented resolution of 4 cm during

the first winter Southern Ocean Cloud Experiment (SOCEX I), that exhibit an

anomalously large variance at small-scales. The scalar spectrum from the ensemble-

average of the flight segments is shown in Fig. 1 (5), along with the normal inertial-

convective and viscous–convective regimes (—). What is particularly intriguing about

these new observations is the implication for the scalar dissipation rate v; with the new

scale break, v in the viscous–convective regime is a factor of 20 larger than the inertial–

convective v; suggesting that a source of scalar variance is present on scales of tens of

centimeters. Marshak et al. (1998) suggest that the strong variability shown in Fig. 1 on

scales of 4 cm to 4 m is consistent with Shaw et al.’s (1998) discussion of strong

preferential concentration, while Mazin (1999) proposes that the non-inertial–convective

scaling is caused by the temporal relaxation of the supersaturation to its steady state

value.

In this article, I summarize recent investigations of the effect of both particle inertia

(Jeffery, 2000, 2001b) and condensation/evaporation (Jeffery, 2001a) on the small-scale

variability of cloud droplets, and I present new results on high Rel droplet clumping.

These studies exploit the availability of an exact closure of the advection–diffusion

equation for large particles at small scales discussed in Section 2. In Section 3, I present an

analytic expression for the scalar spectrum of inertial particles valid in the small St regime

Fig. 1. Ensemble-averaged 1D scalar spectrum for cloud ql data measured during the SOCEX field program and

first presented in Marshak et al. (1998). A typical atmospheric value of 0.76 mm is assumed for the Kolmogorov

length g. Also shown is the usual 1D inertial–convective/viscous–convective scaling. The observed spectrum is

a factor of 20 greater than the normal spectrum in the viscous–convective regime.
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(St < 1), and in Section 4, a model of anomalous small-scale variability in condensation

clouds is introduced. In Section 5, I derive new results concerning the effect of velocity

field intermittency on preferential concentration. An effective Stokes number is deter-

mined that is an explicit function of the Taylor microscale Reynolds number of the flow.

The impact of velocity field intermittency on the preferential concentration of atmospheric

cloud droplets is assessed. In Section 6, Shaw et al.’s (1999) hypothesis that vortex tubes

significantly increase the Stokes number range for preferential concentration is examined,

and in Section 7, the effect of velocity field intermittency on sedimentation rates is

discussed. Section 8 is reserved for conclusions.

2. ddd-Correlated closure

Numerical and theoretical studies (Kraichnan, 1968; Jeffery, 2000 and references

therein) have shown that the d-correlated closure is an exact closure for the advection–

diffusion equation in the small-scale, large Prandtl number limit. The d-correlated model

derives its name from the temporal properties of the velocity field which are assumed to

rapidly decorrelate. The key simplification afforded by the d-correlated model is that the

non-Markovian statistics of tracer trajectories arriving at (t, x) from neighboring points

x +Dx and from past times t�Dt become Markovian, Eulerian statistics at (t, x) (Jeffery,

2000). As a result, each of the tracer particles in such a flow undergoes an effective

Brownian motion and the first- and second-order moments of the passive scalar field

(ignoring source terms) obey diffusion equations. The diffusion equation for the second-

order correlation function U(r) assuming an incompressible and homogeneous velocity

field is (Jeffery, 2000)

@U
@t

¼ 2DDU � 2
�
Dmnð0Þ � DmnðrÞ

� @2U
@xm@yn

þ I ; ð1Þ

where I is the contribution from source terms, r = y� x, Dmn(r) = hsum(0)un(r)i with

particle velocity component um and decorrelation time s, and D is the molecular

diffusivity. Note that summation is implied by repeated Roman indices.

Some remarks concerning the magnitude of D are in order. The diffusion of

atmospheric cloud droplets due to Brownian motion is vanishingly small. However, at

scales on the order of the droplet diameter, neighboring droplets can interact without

collision if the ratio of their terminal velocities is in the range 2/3 to 3/2 (Pinsky et al.,

2000). This interaction constitutes an effective Brownian motion with diffusivity

D
 d2sg
� 1, where d is the droplet diameter and sg is the Kolmogorov time (Jeffery,

2000). Thus, for atmospheric cloud droplets where d� 1 mm and sg� 0.1 s, D =O(10 � 11

m2 s� 1) is small but finite.

Using isotropic and homogeneous viscous regime velocity correlation coefficients, Eq.

(1) becomes (Jeffery, 2001a)

@U
@t

¼ 2DDU þ AcA
3

h
2r2dmn � rmrn

i @2U
@rm@rn

þ I ; ð2Þ
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where c
 sg is the average value of the least principal rate of strain. Eq. (2) describes a

Brownian motion with effective diffusivity, Deff
 sgr
2, which can be compared with the

inertial–convective (IC) result, Deff
 e1/3r4/3, first found empirically by Richardson

(1926), where e is the energy dissipation rate. The viscous–convective (VC) regime

particle-pair separation described by Eq. (2) has important implications for the Shaw

model of droplet spectral broadening (see Section 6). Given an initial particle separation

q2(t= 0) = q0
2, where q2 is the mean-square particle separation averaged over the velocity

field statistics, particles separate in the two regimes according to (Jeffery, 2001b):

� VC subrange: q2 = q0
2 exp(c1t/sg)

� IC subrange: q2 = q0
2 + c2et

3

where c1 and c2 are constants of order unity. In the IC subrange, q2 becomes rapidly

independent of the initial separation—particle trajectories have an inherent randomness

analogous to the randomness of Brownian motion. This is not the case in the VC subrange

where q2! 0 as q0
2! 0. However, the potential for a large q2 after a small time t is greater

in the VC regime where the particle separation is exponential.

Eq. (2) may be Fourier transformed to give

@W
@t

¼ �2Dk2W þ AcA
3

k2
@2W
@k2

þ 4k
@W
@k

� �
þ I ; ð3Þ

where W is the spectral density. Eq. (3) with I = 0 was first derived by Kraichnan

(1968) who solved Eq. (3) with k greater than the Batchelor wave number and found

k� 1 scaling. Eqs. (2) and (3) are the starting points for the work presented in Jeffery

(2000, 2001a).

3. Effect of particle inertia

In Jeffery (2000), the effect of particle inertia on the VC subrange is investigated. The

study builds on the work of Elperin et al. (1996) who use the d-correlated model to assess

the effect of particle inertia on spatial statistics and have found a mechanism for

intermittency in particle concentrations. They later present a solution for the correlation

function of inertial particles at small scales (Elperin et al., 1998), i.e. the solution of a

modified Eq. (2) that includes particle inertia. However, the results of Elperin et al. (1996,

1998) were not extended to spectral space and therefore the scales at which preferential

concentration occurs were not ascertained.

The VC solutions presented in Elperin et al. (1998) and Jeffery (2000) were derived

from Eq. (6) in Elperin et al. (1996), which, unfortunately, contains a sign error. This error

was corrected in Jeffery (2001b) who found only superficial changes to the results in

Jeffery (2000). The corrected results are summarized below.

Particles with small but finite inertia have velocity u a v where v is the velocity of the

surrounding fluid. Thus, in the case that v is divergenceless, homogeneous and isotropic, u
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is compressible, homogeneous and isotropic, and Eq. (1) with I = 0 becomes (Jeffery,

2001b).

@U
@t

¼ 2DDU � 2
h
Dmnð0Þ � DmnðrÞ

i @2U
@xm@yn

þ 2hsbðxÞbðyÞiU

� 4hsumðxÞbðyÞi
@U
@ym

; ð4Þ

where b =5�u. Eq. (4) may be Fourier transformed and solved in the small r regime. The

interested reader is referred to Jeffery (2000, 2001b) for further details. Here, only the final

result is presented.

The spectral density W of inertial particles at small scales is (Jeffery, 2001b)

W ¼
C1k

lKlðkBkÞ k � km

C3k
2l

2F1ð1=2� l; �l; 1� l; �Ak�2Þ k < km

8<
: ð5Þ

valid for l < 0 where 2F1 is a hypergeometric function, Kl is a modified Bessel function,

l =� 3/2 + 5r/(1 + 3r), A= 10/11g� 2r/(1 + 3r), g is the Kolmogorov length, C3 =

G(� l)/2(kB/2)
l, km is computed numerically from the intersection of the two functions,

and kB is a diffusive length scale proportional to the Batchelor length. Here r is a

parameter that represents the degree of particle inertia via the compressibility of the

particle’s velocity according to r/(1 + r) = sg
2hb2i. Using a Gaussian expression for hb2i

from Pinsky et al. (1999) and assuming Stokes terminal velocity, Jeffery (2000) derived

(see Section 5)

r
1þ r

¼ s2ghb2i ¼
4

15
St2; ð6Þ

which relates r to the Stokes number of the flow. Eq. (6) is generalized in Section 5 to

incorporate non-Gaussian velocity statistics.

The scalar spectrum E = 4pk2W, computed numerically using Eq. (5) and the inertial–

convective range spectrum, is shown in Fig. 2, along with the change in scalar dissipation

rate vvc(k)/vic. The movement of the scale-break between the VC and IC regimes to smaller

scales and the clumping of inertial particles with increasing St are clearly visible.

Beginning at St� 0.2 a peak at k� 0.1g� 1 indicative of clumping is visible in the

spectrum and becomes more pronounced as r increases. Fig. 2 demonstrates that clumping

begins near St� 0.2 but is not significant until St� 0.3. Although this finding supports the

contention of Grabowski and Vaillancourt (1999) that cloud droplets (St� 0.07 for

e = 10 � 2 m2 s � 3 and radius r� 15 mm) are too small for significant preferential

concentration to occur, we will see in Section 5 that velocity-gradient intermittency

substantially increases hb2i and hence r at fixed St.

It should be emphasized that the criterion St� 0.3 does not reflect the smallest St at

which preferential concentration is statistically detectable. Rather, it is a measure of the

smallest St at which the generation of small-scale covariance due to clumping at some

scale k� 1 becomes comparable in magnitude to the cascade of covariance from k� 1 to
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smaller scales. Thus, for St� 0.3 small-scale generation of covariance dominates the usual

cascade from large to small scales.

4. Effect of condensation and evaporation

In Jeffery (2001a), the study of the effect of condensation/evaporation on the viscous–

convective subrange begins with the following stochastic equation for the cloud liquid

water content ql:

@ql
@t

þ v0 � 5ql ¼ DDql þ
w0

z
ql ð7Þ

where z is the height above cloud base, w is the vertical velocity, a prime denotes mean-

zero fluctuations and D is the molecular diffusivity. Ignoring molecular diffusion and

assuming stationarity and horizontal homogeneity gives hw0ql
0i 
 z, which agrees well

with observational and numerical data. The source term w0ql/z is a mean-field approx-

imation that decouples ql from the vapor and temperature fields. It is consistent with

Lagrangian parcel models of diffusional growth of water drops in clouds where @ql/
@t
 ( ql/a)da/dt
 ql/t
wql/z, and where a is the radius of the drop. The derivation of the

source term is discussed in Jeffery (2001a) in more detail.

In Jeffery (2001a), I propose that the increased small-scale variability shown in Fig. 1 is

caused by the effect of condensation and evaporation on the VC subrange. The

Fig. 2. The scalar spectrum computed at various St using Eqs. (5) and (6), and the corresponding increase in scalar

dissipation rate. Particle clumping manifests as a bump in the spectrum which begins at St� 0.2 but does not

become pronounced until St� 0.3. Parameter values are e = 0.01 and Pr = 1000. Units are arbitrary.
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condensation and evaporation source term of Eq. (7) is stochastic in w0 and ql, whereas for

small scales, rK z, z is treated as a constant parameter. Closure of Eq. (7) using the d-
correlated model is considerably more complicated than the corresponding closure for

inertial particles (Section 3) because fluctuations of ql are non-homogeneous (Aql0A
increases with increasing z) and axisymmetric. As a result, the spectral density is

axisymmetric and complex.

Derivation of the spectral density W proceeds as follows. First, the source term is

neglected and the axisymmetric equivalent of Eq. (3) is derived:

@W
@t

¼ �2Dk2W þ AcA
3

TðWÞ;

TðWÞ ¼ k2
@2W
@k2

þ 4k
@W
@k

þ 2cosh
sinh

@W
@h

þ 2
@2W

@h2
:

The solution can be written as a infinite series of Legendre polynomials in l = cosh:

Wðk; lÞ ¼
X1
j¼0

cjk
�3=2KmðjÞðkBkÞPjðlÞ

where m( j)=[9 + 8 j( j + 1)]1/2/2, and where the Fourier space symmetry relation W
(k) =W*(� k) restricts the cj’s such that for even j, Re{cj}2R + and Im{cj} = 0, whereas

for odd j, Re{cj} = 0. Expansion of the scalar spectrum in terms of Legendre polynomials

Fig. 3. Comparison of the ensemble-averaged 1D ql scalar spectrum measured during SOCEX Davis et al. (1999)

and the present model Eq. (8). A production subrange where v(kx) increases with increasing k (solid line), and

normal VC scaling (dashed line) are also shown.
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was first suggested by Herring (1974) who derived an equation for W in axisymmetric

turbulence using Kraichnan’s direct interaction approximation (DIA).

The next step, described in Section 5 of Jeffery (2001a), is to add the source term. After

some work, the resulting equation for the scalar spectrum is

EðkÞ ¼ v
AcA

k�1
h
1þ kBk

i
expð�kBkÞ �

v
AcA

f
3

k�2
B k�3; ð8Þ

where f is the ‘‘Kolmogorov constant’’ for the non-homogeneous (imaginary) component

of the spectral density. The 1 D horizontal spectrum defined by /ðkxÞ ¼
R1
kx

k�1dkEðkÞ is
shown in Fig. 3 along with the experimental data from Davis et al. (1999). Also shown is a

‘‘production subrange’’ where the scalar dissipation rate increases with increasing k. The

good agreement between the modeled and observed spectra for k� 0.02g� 1 is not

fortuitous—the unknown constant f was chosen to produce a close correspondence

between the two spectra in this region. Fig. 3 reveals that the effect of condensation

and evaporation as modeled by Eq. (7) can explain the anomalous scaling found by Davis

et al. (1999).

5. Relll dependence of St

In response to Grabowski and Vaillancourt’s (1999) contention that the Stokes number

of cloud droplets is too small for significant preferential concentration to occur, Shaw et al.

(1999) argue that the Stokes number range for preferential concentration is significantly

broader in clouds because of the large Reynolds number of atmospheric turbulence. More

specifically, Shaw et al. (1999) point out that the fine-scale structure of large Reynolds

number flow is highly intermittent (Sreenivasan and Antonia, 1997), and they suggest that

small-scale coherent structures, i.e. vortex tubes, may influence the clumping process.

Support for this claim comes from recent DNS experiments (Reade and Collins, 2000;

Wang et al., 2000) that demonstrate an increase in the particle-pair radial distribution

function with increasing Taylor micro-scale Reynolds number, Rel, at fixed St. Inspection

of Eq. (4) reveals that the variance of the particle velocity flux divergence, hb2i, has the
dominant and controlling Rel-dependence in the d-correlated limit. Below, I estimate the

effect of velocity field intermittency on hb2i.
Let vi,j � @vi/@xj be the velocity gradient tensor of the surrounding fluid. Consider the

symmetric strain tensor sij=(vi,j + vj,i)/2 and the vorticity pseudovector xk = Ekijwij where

the vorticity tensor wij = (vi,j� vj,i)/2 and Ekij is the alternating (Levi–Civita) symbol.

Maxey (1987) first derived the relationship between the compressibility, b =5�u, of an
inertial particle’s trajectory and the velocity, v, of the surrounding fluid for St < 1:

b ¼ �k�1vi;jvj;i

¼ �k�1ðs2 � x2=2Þ ð9Þ

where k = g/UT, g is the acceleration of gravity and UT is the magnitude of the particle’s

terminal fall velocity. Note this definition of k differs by a factor of (1� qf /qp)
� 1 from
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the definition used in Pinsky et al. (1999) where qf and qp are the densities of the fluid and

particle, respectively. This discrepancy can be traced back to the neglect of the fluid

pressure in Khain and Pinsky (1995)’s Eq. (1).

Using Eq. (9), the zero–fourth-cumulant (Gaussian) hypothesis and assuming isotropy

and incompressibility, Pinsky et al. (1999) derive

hb2i ¼ 60k�2hv21;1i
2: ð10Þ

The St dependence for a particle falling at Stokes terminal velocity in a large Rel velocity

field where v1,1
2 = sg

� 2/15 is Jeffery (2000)

hb2i ¼ 4

15
s�2
g St2

in agreement with Eq. (6).

The Gaussian approximation used by Pinsky et al. (1999) to derive Eq. (10) is

appropriate for fourth-order moments of the velocity field which are approximately

Gaussian but it is unlikely to be accurate for fourth-order velocity gradients; large flows

are highly intermittent. In fact, the flatness factor F of v1,1 has a strong Rel dependence

and reaches 20–25 in the atmospheric boundary-layer where Rel =O(10
4)(Sreenivasan

and Antonia, 1997, Fig. 6). This suggests that hb2i in the atmosphere may be a factor of 7–

8 larger than the prediction of Eq. (10). On the other hand, hv1,14 i is just one term in the

expansion of hb2i, and therefore, more information is required to determine the Rel-

dependence of hb2i.
Twenty years ago, Siggia (1981) demonstrated that fourth-order velocity derivative

moments can be expressed as a linear combination of four irreducible scalar invariants:

I1 = hs4i, I2 = hs2x2i, I3 = hxisijsjkxki and I4 = hx4i, where s2 = trs2. These four invariants

are functions of familiar dynamical quantities (Pedlosky, 1987): 2ms2 is the kinetic energy
dissipation rate, x2 is the enstrophy and wjsij is the vortex stretching term in the vorticity

equation. Squaring Eq. (9) and substituting for Ia gives

hb2i ¼ k�2ðI1 � I2 þ I4=4Þ: ð11Þ

The Rel-dependence of hb2i follows from knowledge of I1, I2 and I4. Furthermore, even if

these three invariants have a simple power-law dependence on Rel, the resulting Rel-

dependence of hb2i might be quite complex.

Unfortunately, measurement of Ia at large Reynolds numbers typical of the atmospheric

boundary-layer has not yet been made. However, the task at hand simplifies if we assume

that hb2i scales with I1
hv1,14 i. This approximation is justified at low Rel by the recent

analysis of the ratios A� I2/I1 and C� I4/I1 by Zhou and Antonia (2000). Fig. 18 in Zhou

and Antonia (2000) reveals that A and C have no discernible Rel-dependence for

RelV 100. We incorporate the Reynolds number dependence of preferential concentration

into St by defining an effective Stokes number Steff:

Steff ¼ StðF=3Þ1=2; ð12Þ

where F� hv1,14 i/hv1,12 i2 is the longitudinal flatness factor. Deviations of F above the

Gaussian value of 3 are a manifestation of intermittency in the turbulence fine-scale

structure.
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In the atmospheric boundary-layer where F� 22, Steff is around 2.7 St. Shaw et al.

(1999, Table 1) estimate that St� 0.02 for kinetic energy dissipation rate e = 0.01 m2 s� 3

and St� 0.064 for e = 0.1 m2 s� 3 where r� 8 mm. Including the Rel dependence these

numbers become Steff� (0.054, 0.17), respectively. In Section 3, we found that clumping

begins at St� 0.2 but does not become significant until St� 0.3. Thus for r� 8 mm, i.e.

during most of a droplet’s growth, is still too small for significant preferential concen-

tration to occur. On the other hand, for larger drops with r� 15 mm, the Stokes number are

Steff� (0.19, 0.60), respectively. Thus, these large drops, particularly in high e regions of a
cloud, are preferentially concentrated.

The main assumption in the derivation of Eq. (12) is I1
 I2
 I4, which has been

verified for laboratory grid turbulence at Rel� 100. Obviously, this approximation should

also be verified (or modified) from atmospheric data where Rel =O(10
4). Information on

Ia and the 81 components of hb2i is given in Appendix A. Note that Steff, which

incorporates the increase in root-mean-square particle velocity divergence due to velocity

field intermittency, may also be relevant in the parameterization of droplet-pair collision

efficiencies. However, this application of Steff is beyond the scope of the present

investigation.

6. Vortex tubes and Steff

At the heart of the arguments put forth by Shaw et al. (1998, 1999) is the requirement

that the lifetime of a vortex tube increase with increasing Rel. For large Rel atmospheric

flows, Shaw et al. (1998) choose a vortex lifetime ss of 5, 10, or 15 s. This value can be

compared with the eddy turnover time 2psg� 0.26 s. As pointed out by Grabowski and

Vaillancourt (1999), the vortex in the Shaw model has to survive many tens of its turnover

time to generate a strong effect on the cloud spectrum.

Long lifetimes, ss, are required to produce significant differences in the supersaturation

between the droplet-depleted vortex and the droplet-rich environment. Further, the small

number of droplets in the vortex must remain trapped for an eddy-trapping time sT� ss.
Consequently, one would expect a small mean-square particle separation, q2(t), for t = ss in
a vortex dominated field. However, in Section 2, we derived an exponential time-

dependence for q2 in the small-scale VC regime. This exponential time dependence

implies that neighboring droplets rapidly reach inertial–convective regime separations,

O(10g), where Richardson’s law q2
 et3 holds. Moreover, increasing which enhances

preferential concentration also increases q2(ss) and, hence, decreases the supersaturation

decorrelation time. An inverse relation between and the supersaturation decorrelation time

was noted by Vaillancourt et al. (1998) in their numerical simulations (see also

Vaillancourt and Yau, 2000). This behaviour is in contradistinction to the Shaw model

where q2 remains small for particles trapped in a vortex tube.

How can we reconcile the large q2 predicted by the d-correlated model with the large

eddy-trapping times predicted by Shaw et al.’s (1998) vortex model? I believe that any

contradictions are resolved by the following claim:

Vortex tubes are not statistically relevant players in the dynamics of two-point passive

scalar moments and/or pair separation at small-scales and large Rel.
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Here, I present only a sketch of the argument which will be developed further in a

forthcoming publication. Let us return to Eq. (11), which includes the effect of

intermittency on particle clumping. Consider the following question: ‘‘How might the

ratios A� I2/I1 and C� I4/I1 change in a velocity field dominated by cylindrical vortices?’’

Zhou and Antonia’s (2000) experimental measurements indicate that while F increases

from 3 to 4.5 as Rel! 100, A and C remain constant near their Gaussian ratios of 1.43 and

4.76, respectively. The invariant I2 is constrained by the incompressibility/homogeneity

condition hx2i= 2hs2i. Thus, it is reasonable to expect I2 and I1 to scale with Rel such that

A remains constant. On the other hand, there is no reason to expect the ratio C to remain

near its Gaussian value in a velocity field dominated by cylindrical vortices which increase

in intensity and persistence with increasing Rel.

In fact, a maximization of the ratio of the spatially averaged mean-square enstrophy to

mean-square dissipation around a cylindrical vortex tube has been discussed by He et al.

(1998). They find

Cvort � 10:65;

spatially averaged over a single Burgers vortex and independent of the circulation which

can be compared with the Gaussian value Cgauss� 4.76. As a result, the increase in hb2i
due to the presence of a Burgers vortex at fixed I1(Rel) is

1� Aþ Cvort=4

1� Aþ Cgauss=4
� 2:9:

This analysis, albeit approximate, supports Shaw et al.’s (1998) claim that vortex tubes

lead to increased particle clumping. On the other hand, Zhou and Antonia’s (2000)

experimental measurement of C = 5� 1 does not support such a large value of C, albeit at

Rel� 100. More to the point, their data does not indicate an increase in C with increasing

Rel despite the increase in intensity and persistence of vortex tubes in this Rel regime.

This brings us full circle to the comments of Grabowski and Vaillancourt (1999) who

argue that the volume fraction of vortex tubes used by Shaw et al. (1998), 50%, is much

too high. Grabowski and Vaillancourt (1999) suggest that 1% is more realistic. Indeed,

Zhou and Antonia’s (2000) measured value of C = 5� 1 and a strong Rel dependence of I1
is consistent with a relatively small volume fraction of vortex tubes superimposed on a

highly non-Gaussian background velocity-gradient field. Thus, we conclude that it is the

general intermittency of the velocity-gradient field as a whole, and not the presence of

vortex tubes in particular, that could potentially lead to increased preferential concentration

in atmospheric clouds.

7. UT and preferential concentration

Since Maxey and Corrsin (1986) first demonstrated an increase in droplet sedimenta-

tion velocity, UT, resulting from the interaction of droplet inertia and turbulence, there has

been a growing interest in the synergistic effects of inertia, sedimentation and turbulence

on cloud microphysics. In particular, droplet coalescence rates are highly dependent on UT.

Recently, Vaillancourt et al. (1998) found a decrease in a 1-point measure of preferential
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concentration (the clustering index) with increasing UT. In this section, I briefly discuss the

effect of UT on preferential concentration.

Generalizing Maxey (1987)’s Eq. (5.13), we define the ballistic velocity, uT
(p), of the p-

th moment of particle (droplet) number density, n, according to

u
ðpÞ
T ðvÞ ¼

Z
X

n pðxÞvðxÞd 3x

 �
YZ

X
n pðxÞd 3x

 �
Y

ð13Þ

where v is the particle’s velocity, V is a sample volume and h. . .iY represents a

v-dependent ensemble average over the subset of particle trajectories Y(t)2V. Galilean

invariance of np with respect to the still fluid sedimentation rate UT,0 =�UT,0ẑ implies

that uT
(p)(u +UT,0) =UT,0 + uT

(p)(u) where u is the particle’s velocity without sedimenta-

tion, i.e. UT,0 does not modify the statistics of np. Note that the usual ( p = 1) droplet

sedimentation velocity is defined according to UT = uT
(1)(u +UT,0).

We first consider the effect of UT,0 on preferential concentration in the d-correlated
limit. Eq. (13) can easily be further generalized to describe the velocity of multi-point

moments, e.g. the correlation function, U. Alternatively, the 2-point covariance sedimen-

tation rate, uT
(2), in the d-correlated limit is available directly from the advection term in Eq.

(4) for @U/@t:

u
ð2Þ
T ðvÞ ¼ hvi þ 4hsvð0Þ5 � vðrÞi

where r is the separation between the two points. Immediately, we find that uT
(2) (u +

UT,0) =UT,0 + uT
(2)(u) provided that u is homogeneous; the advection of 2-point droplet

number density fluctuations is Galilean invariant in the d-correlated limit with respect to

UT,0. It is easy to show that the diffusion term and source term in Eq. (4) are also

Galilean invariant. How can we reconcile this with the numerical simulations of

Vaillancourt et al. (1998), where the clustering index exhibits a UT,0-dependence? In

fact, there is no inconsistency because the clustering index used by Vaillancourt et al.

(1998) is a 1-point statistic involving clumping at all spatial scales according to

Uð0Þ ¼
R1
0 dkEðkÞ . The d-correlated closure, on the other hand, holds true only in

the small-scale VC regime of E(k). Therefore, the UT,0-dependence of the clustering

index is likely a manifestation of Lagrangian droplet–turbulence sedimentation inter-

actions over scales greater than about 10g.
As noted above, UT plays an important role in many microphysical processes,

particularly droplet coalescence. Maxey (1987, Eq.(5.18)) presents an approximate

expression for UT:

UT ¼ UT;0 �
1

X

Z
X

Z t

0

huðx; tÞbðYðt 0; x; tÞ; t 0Þidt 0d3x; ð14Þ

where Y(t 0; x,t)2V is the position at time t 0 of the particle that arrives at (x,t). Assuming

isotropy and taking the d-correlated limit (t! s, Y! x), we have UT!UT,0 as expected.

This implies that VC subrange trajectories, Y <O(10g), do not contribute to UT. Thus, it is
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the contribution from the relatively long inertial–convective regime particle paths

Y�O(10g) that result in UT >UT,0 observed in numerical simulations (Wang and Maxey,

1993).

In Section 5, the Rel dependence of preferential concentration in the VC subrange was

parameterized as a function of F. Determining the effect of velocity field intermittency on

UT is a much more difficult problem. Wang and Maxey (1993) argue that the presence of

intense and persistent vortical structures will effect UT, which is suggestive of a strong

Rel-dependence. On the other hand, relatively long temporal averaging that is character-

istic of the large Y paths tends to dampen intermittency effects. The determination of the

Rel dependence of UT is surely one of the most challenging unsolved problems in cloud

microphysics.

8. Summary

The small-scale variability of cloud liquid water is investigated using the d-correlated
closure. The spectral density of inertial particles in isotropic, homogeneous turbulence is

derived in the small Stokes number regime (St< 1). In the scale range 13–60g, a peak in

the spectrum is observed when the ratio of the energies in the compressible and the

incompressible components of the particle’s velocity is greater than 0.01 (St >0.2). The

peak is a manifestation of preferential concentration—the accumulation of inertial particles

in regions of high strain and low vorticity.

The effect of condensation and evaporation on the spectral density is also investigated

using a simple mean-field model that reproduces the non-homogeneous vertical structure

of liquid water fluctuations observed in atmospheric clouds. Expressions for the scalar

density are derived and used to reproduce the spectral behaviour of new atmospheric

measurements that exhibit anomalous scaling of cloud liquid water in the near inertial–

convective regime. The model assumes a significant imaginary (non-homogeneous)

component to the spectrum that is indicative of a strong vertical coherence in clouds.

The strongly non-homogeneous (anisotropic) character of the predicted scalar spectrum

is in stark contrast with atmospheric models of inertial–convective regime cloud

inhomogeneity that are used in radiative transfer calculations and that are typically

isotropic.

The debate over the existence of a preferential concentration of cloud droplets at small

scales is fundamentally linked with the fine-scale structure of atmospheric turbulence. At

the heart of the arguments put forth by Shaw et al. (1998, 1999) for a significant clumping

of droplets is an explicit Reynolds number dependence of the relevant small-scale

parameters. In particular, the lifetime of a vortex tube is assumed to increase linearly

with Rel (Shaw et al., 1999, p. 1439). Although this time-scale is paramount for a

Lagrangian analysis of individual droplet interactions with a single vortex tube, the

relevant parameter in the Eulerian analysis of small-scale droplet number density is the

variance of the scalar vi,jvj,i averaged over both the vortex and background fields. This

scalar variance is decomposed into three invariant contributions which, in turn, are explicit

functions of symmetric strain and (antisymmetric) vorticity. Based on the recent exper-

imental results of Zhou and Antonia (2000), an effective Stokes number is derived that is
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proportional to the square root of the flatness of the longitudinal velocity derivative,

thereby explicitly incorporating the intermittency of the velocity field and an Rel-

dependence into the theoretical framework developed using the d-correlated closure.

Using this effective Stokes number and an atmospheric flatness factor of 20–25, it is

determined that intermittency may lead to appreciable clumping for large drops with radii

greater than 15 mm under general atmospheric conditions. This finding supports the

arguments made by Shaw et al. (1998, 1999) that intermittency enhances preferential

concentration at small St.

On the other hand, the Shaw model of droplet spectral broadening is contingent on

the interaction of cloud droplets and vortex tubes. Shaw et al. (1998, 1999) argue that

the eddy-trapping time at large Rel is O(10 s) which is approximately two orders of

magnitude greater than the Kolmogorov time. Their arguments justifying such a large

value are: (i) for a droplet trapped in a cylindrical vortex, the eddy-trapping time is equal

to the vortex lifetime; (ii) vortex tubes are the (statistically) dominant small-scale feature

at large Rel; (iii) vortex lifetimes may increase rapidly with increasing Rel. However,

the suggestion of a statistically dominant role played by cylindrical vortices as Rel
increases is inconsistent with experimental measurements which demonstrate that the

ratio of mean-square enstrophy to mean-square dissipation is independent of Rel and

close to the Gaussian value (Zhou and Antonia, 2000).

A huge increase in the eddy-trapping time resulting from the interaction of inertial

droplets and vortex tubes is an essential component of the Shaw model of droplet spectral

broadening, because spectral broadening does not occur if the droplets rapidly sample a

range of supersaturations. Thus, in the absence of a dominant particle–vortex interaction,

particle inertia could actually lead to spectral narrowing due to increased inertial mixing as

pointed out by Pinsky and Khain (1997), Vaillancourt et al. (1998) and Pinsky et al.

(1999).
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Appendix A. hhhhhhb2iiiiii–Iaaaaaaa Relations

Let Tab,cd= hva,bvb,avc,dvd,ci where summation is not implied by repeated Greek indices.

There are five non-trivial contributions to the 81 term in hb2i if isotropy, homogeneity

and incompressibility are assumed: Taa,aa, Taa,ab, Taa,bc, Tab,ab, Tab,ac. Note that Taa,bb=
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Taa,aa/2. Following the procedure outlined in Siggia (1981), these five terms can be written

in terms of the four invariants Ia:

Taa; aa ¼
4I1

105
;

Taa; ab ¼ I1

105
� I2

70
þ I3

105
;

Taa; bc ¼
I1

105
� I2

210
� 2I3

105
;

Tab; ab ¼ 3I1

140
� 11I2

420
þ I3

35
þ I4

80
;

Tab; ac ¼
I1

140
� I2

84
� I3

70
þ I4

240
:

The reader can easily verify that an enumeration of the contribution of these five terms to

hb2i recovers Eq. (11). It may not always be possible to experimentally measure four of the

above five terms independently. However, note that the relationship

hðvi;jvj;iÞ2i ¼ 15T11;11 þ 180T11;12 � 60T12;12 þ 5hx4
3i

may be particularly useful because it only involves three velocity gradients (v1,1,v1,2,v2,1)

and does not involve v3 or x̂M3� ẑ. This may be advantageous if the measurements are

made in a vertically sheared flow like the surface layer. The interested reader is referred to

Siggia (1981) for further discussion on the experimental determination of Ia.
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