Status of the US National Inertial Fusion Program

Presentation to the Fusion Energy Sciences Advisory Committee Meeting

by: Dr. Allan A. Hauer Director, Office of Inertial Confinement Fusion

March 1, 2006

- The first ignition experiment on the National Ignition Facility in 2010
- Pulsed Power fusion experiments with the goal of high yield
- High energy density experiments related to the "Fast Ignition" concept for ICF

- The next 10 years will offer major new opportunities for inertial fusion and high energy density physics
 - NIF 81% complete, first ignition experiments planned for 2010
 - Ignition confidence increasing (direct and indirect drive)
 - Strong progress in pulsed power fusion- fuel and symmetry conditions
 - Petawatt lasers open new programmatic and scientific opportunities
 - Important new scientific capabilities coming in FY2007- OMEGA EP, refurbished Z, Z-Beamlet PW
- High energy density physics is recognized as an important and emerging scientific field
 - NAS, OSTP reports
 - Interagency working group
- University activities continue to play an important role
 - Recent SSAA solicitation- awards nearly complete
 - User group for high energy density physics (HEDSUP)

The National Ignition Facility is 85 % complete

NIF-1201-04097_MOD2.eps

NIF concentrates 1.8 Mega Joules of energy into a mm³ size target through the use of advanced laser technology

A tangible demonstration of progress is the insertion rate of modular units - LRUs

NIF has executed over 400 experiments

Hydrodynamic experiment: (FY 2004)

- Challenges our 2- and 3-D code capabilities
- Demonstrates our ability to do complex experiments on NIF
- Uses sophisticated target, diagnostic, and laser alignment providing great accuracy and reproducibility

Full single beam performance has been demonstrated

Cryogenic System

User Optics

NIC

Target Design

Target Fabrication

Diagnostics

NIF-1105-11560

The "phase space" over which NIF targets are expected to ignite has expanded

Be is also about 2x more tolerant to ice roughness

The revised NIF Project baseline completes in Q2FY2009 and supports Ignition 2010

NIF-0402-04478_r12.ai 052605/cc

A national ignition plan has been signed by the sites and NNSA

	FY05	FY06	FY07	FY08	FY09	FY10	FY11		
Level 0	National Igr	nition Cam	paign	Begin first integrated ignition experiments △					
Level 1	National Ignition Campaign Begin FY10 target performance experiments Ready for 1.8 MJ operations Ready for 1.8 MJ operations								
Level 2	National Ignition Campaign Complete hazardous materials MPR Complete tritium/neutron production MPR Complete first ignition experiments MPR								
	Systems Engineering	9 ·	∆ Complete laser pe	Facility requirem formance and fac Complete LPO	ents for FY10 ignit ility impacts revier M power balance o	ion experiments u w \triangle calibration \triangle	nder CM		
	Target △r Physics	Place ignition po ∠	int design under C . Begin hohlraum d ∆Specity I	M energetics experim laser irradiance re A Complete Synolete EV10 tarra	nents with smooth quirements te Title II design re	ed beams on OME view for FY10 igni vergent shock tim	GA tion target ing on OMEG		

	FY05	FY06	FY07	FY08	FY09	FY10	FY11		
evel 2	Integrated Target Syst	tems A	plete cryogenic , Demonstrate so △ De ∠	Title I design cientific prototype monstrate scientif ∆ Complete cryogu △ Demon	capsules ic prototype capsu enic Title II design Istrate engineering △Demonstrate eng △Qualify c	les with fill tubes prototype ignition ineering prototyp ryogenic target p	n target e target layering roduction		
	Complete fül för cryogenic sys* Diagnostics A Place ignition diagnostics requirements under CM								
	User Optics								
	Personnel Environme Protection	and ntal Systems	2 Comp	Complete PEPS Title I design Complete PEPS ID for tritium operations* Complete PEPS IO for first ignition experiments*					
	△ DOE M *Installatio Some title	ilestone Commitr on Qualification (es have been abb	ment Date IQ): Systems ar reviated for this	e installed, aligne s chart, full titles a	d, and under com are contained in A	puter control (if r ppendix E, Table	equired). E-1.		

Direct drive (uniform and "polar") is also being developed for NIF

¹S. Skupsky et al., Phys. Plasmas <u>11</u>, 2763 (2004).

²R. S. Craxton et al., Phys. Plasmas to be published (2005).

The plan for use of NIF calls for first ignition experiments in FY2010

* Weapons physics experiments in support of Stockpile Stewardship

OMEGA continues to be the principal experimental laser facility in the United States (World)

The OMEGA EP laser beams will be located *magazie* next to the existing OMEGA facility

~ 4 × 10¹⁸

 6×10^{20}

> 80% in 20 μm |> 80% in 40 μm

Laser Bay

G5546q

Focusing

Intensity (W/cm²)

OMEGA EP construction

ZR and Z Beamlet- petawatt are important additions to program capability

- The ZR project is upgrading the performance of Z
 - 18 MA to 26 MA
 - 2x increase in diagnostic access
 - 2x shot rate capability

- The Z-Petawatt project is upgrading the capability of Z-Beamlet
 - 2 TW to 1 PW
 - backlighter hv 9 25 keV
 - integrated FI experiments on ZR

• The ZR and Z-Petawatt facilities will begin operations in 2007.

High resolution x-ray backlighting is an important new diagnostic now in routine use on Z

X-ray backlighting using a bent crystal imaging detector system

3.2 mm dia. capsule radiograph $(C_r = 1.7)$

Recent National Academy of Sciences reports have stressed importance of high energy density physics

• "Frontiers in High Energy Density Physics" (R. Davidson et al.)

"...research opportunities in this crosscutting area of physics are of the highest intellectual caliber and are fully deserving of the consideration of support by the leading funding agencies of the physical sciences."

 "Connecting Quarks with the Cosmos: Eleven Science Questions for the New Century" (M. Turner et al.)

"Discern the physical principles that govern extreme astrophysical environments through the laboratory study of high energy density physics. The Committee recommends that the agencies cooperate in bringing together the different scientific communities that can foster this rapidly developing field."

Interagency Working Group on the Physics of the Universe (OSTP, DOE/SC, DOE/NNSA, NSF, NASA)

"HEDP is an emerging field that provides crucial measurements that are relevant to interpreting astrophysical observations of the universe. The field has great promise that should be better coordinated across the various Federal agencies to capitalize on the emerging opportunities."

Interagency group chartered a team to develop an HEDP "roadmap"

FRONTIERS FOR DISCOVERY IN HIGH ENERGY DENSITY PHYSICS	
Prepared for	
Office of Science and Technology Policy	
National Science and Technology Council	
Interagency Working Group on the	
Physics of the Universe	
Prepared by	
National Task Force	
on High Energy Density Physics	
July 20, 2004	

Conclusions

- The next 10 years will offer major new opportunities for inertial fusion and high energy density physics
 - NIF 81% complete, first ignition experiments planned for 2010
 - Increased confidence in ignition (direct and indirect drive)
 - Strong progress in pulsed power fusion- fuel and symmetry conditions
 - Petawatt lasers open new programmatic and scientific opportunities
 - Important new scientific capabilities coming in FY2007- OMEGA EP, refurbished Z, Z-Beamlet PW I
- High energy density physics is recognized as an important and emerging scientific field
 - NAS, OSTP reports
 - Interagency working group
- University activities continue to play an important role
 - Recent SSAA solicitation- awards nearly complete
 - User group for high energy density physics (HEDSUP)