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The buoyancy range, which represents a transition from large-scale wave-dominated
motions to small-scale turbulence in the oceans and the atmosphere, is investigated
through large-eddy simulations. The model presented here uses a continual forcing
based on large-scale standing internal waves and has a spectral truncation in the
isotropic inertial range. Evidence is presented for a break in the energy spectra from
the anisotropic k−3 buoyancy range to the small-scale k−5/3 isotropic inertial range.
Density structures that form during wave breaking and periods of high strain rate are
analysed. Elongated vertical structures produced during periods of strong straining
motion are found to collapse in the subsequent vertically compressional phase of the
strain resulting in a zone or patch of mixed fluid.

1. Introduction
Much of the large-scale variability in the atmosphere and oceans can be described

as internal wave activity, while isotropic turbulence dominates at small scales. Between
these extremes, the dynamics is a competition between waves and turbulence. The
nature of this intermediate range, called the buoyancy or the saturation range, is
highly controversial. A direct numerical simulation which could faithfully span the
full range of the scales involved would be a great benefit; however, such simulations
remain impractical because of the large range of scales that would need to be
represented. On the other hand, as we shall argue below, techniques of large-eddy
simulation (LES) should afford us the possibility of at least simulating flow in the
buoyancy range and capturing the transition to the inertial range. The goal of this
paper is to present some results that might confirm this hope and also give us some
insight into the kinds of structures one should be able to observe in the density field
of the buoyancy range.

To be concrete about spatial scales, we will concentrate on the oceanic application,
although much of the basic ideas that follow should hold for the atmospheric problem
as well. The spectra of density and velocity fluctuations in the ocean have several
distinguishable ranges. As a guide to these ranges, we follow the description in
Holloway (1981) and use a similar schematic diagram (figure 1). Here φ represents
either the spectrum of the vertical shear or the vertical gradient of temperature as
a function of the vertical wavenumber kz . The axis of the vertical wavenumber is
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Figure 1. Schematic of the oceanic horizontal shear spectrum. The horizontal axis is labelled
in terms of wavelength for convenience, but it is actually the kz wavenumber axis. The slopes
corresponding to the k−1

z buoyancy range and the k
1/3
z inertial range are labelled by the exponents.

labelled in terms of vertical wavelengths λ = 2π/kz . Internal wave activity dominates
the variability in the ocean for vertical scales from kilometres down to λG, which is
O(10 m). For this range of vertical scales, and for even much larger horizontal scales,
the shear and vertical density gradient spectra seem to be well described by the Garrett
& Munk (1975) (GM) spectra. This wave regime is dominated mainly by linear wave
propagation for vertical scales with λ greater than about 60 m (Holloway 1980),
while for scales from 60 m down to about 10 m, nonlinear wave–wave interactions are
important for generating even smaller scales of motion; however, the waves of vertical
scale larger than λG are not strong enough to overturn, that is not strong enough
to transfer heavy fluid above light fluid. The waves of vertical scale less than λG
that are produced by the nonlinear interaction of larger scale waves have amplitudes
sufficiently large to cause shear instability and overturning. These waves thus create
regions of instability in which there is generation of turbulence. This ‘breaking’ of the
waves below λG drains energy from them and hence the fall off of the spectrum. At
scales from O(10 m) to O(1 m), the vertical gradient spectra fall off like k−1

z . This is
the buoyancy range, terminating at the buoyancy or Ozmidov scale λb, which can be
thought of as the scale of the overturning structures. The Ozmidov scale forms the
boundary between the transitional buoyancy range and the turbulent inertial range.
The inertial range terminates in the dissipation range for scales of a few centimetres
and below.

It is difficult to model analytically the transition from the buoyancy to inertial range.
In part, this is because the buoyancy range is very anisotropic, while the inertial range
is isotropic, and thus a full description of the transition would really require a three-
dimensional wavevector space framework. However, to make progress, theoretical
arguments have tended to represent both spectra depending only on wavenumber k.
The model for the kinetic energy spectrum in the buoyancy range is then

E(k) = αN2k−3 (1.1)

where α is an empirical constant and N is the Brunt–Väisälä frequency, which mea-
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sures the strength of the stratification. The Brunt–Väisälä frequency is defined by

N2 = − g

ρ0

∂ρ̄

∂z
, (1.2)

where g is the acceleration due to gravity, ρ̄ is the background density profile, assumed
stable (i.e. ∂ρ̄/∂z < 0), and ρ0 is the volume average of ρ̄.

From the observed spectra of vertical shear, the constant α is determined to be
about 0.47, but it will be more convenient for us to consider the two components
of the horizontal velocity (u, v) separately, and, assuming horizontal isotropy in the
observations, this would suggest α ≈ 0.2 for the spectrum of either component (cf.
Gibson 1986; Gargett et al. 1981).

The inertial-range kinetic energy spectrum is given by

E(k) = CKε
2/3k−5/3 (1.3)

where ε is the turbulent dissipation rate of total kinetic energy and CK is the empirical
Kolmogorov constant. A reasonable value to assume for CK is 1.5 (cf. Lesieur 1997).
For the energy of one component of the velocity field, there would simply be a
prefactor of 1/3 multiplying this isotropic spectrum. The Ozmidov (or buoyancy)
wavenumber is then estimated by simply matching these two spectra at wavenumber
kb. The result is, up to an order one multiplicative constant,

kb =
√
N3/ε (1.4)

(cf. Holloway 1981; Gibson 1986).
The model for the potential energy spectrum in the buoyancy range is similar to

that for the kinetic energy spectrum. The empirical constant α for the temperature
spectrum is found to have value of about 0.2 (cf. Gibson 1986; Gregg 1977). The
spectral model for the inertial range of density fluctuations is the Corrsin–Obukhov
spectrum, which involves the decay rate of density fluctuations as well as ε. For our
purposes, we prefer to write the spectrum directly in terms of the turbulent decay rate
of potential energy, which we shall write as εpe. Then the Corrsin–Obukhov spectrum
for the potential energy takes the following form:

PE(k) = Coεpeε
−1/3k−5/3, (1.5)

where Co is the Corrsin constant.
Since the range of scales represented by the full spectrum covering the GM range

down to and including the dissipation range is far greater than we could hope to
simulate, we attempt a simulation of the buoyancy range and its transition to the
inertial range by modelling the large-scale forcing and the effect of the subgrid scales.
There have been a number of recent investigations involving internal-wave breaking
that have used a variety of forcings and subgrid-scale models. Siegel & Domaradzki
(1994) produced simulations of decaying, randomly generated stratified turbulence
that captured the k−1

z shear spectrum with a Smagorinsky SGS model. Kaltenbach,
Gerz & Schumann (1994) provide a detailed study of shear-driven stratified turbulence
using a finite difference LES model with a dynamically evolving SGS parameterization.
Winters & d’Asaro (1997) performed a study using a hyperviscosity involving sixth-
order spatial derivatives. They did this on an anisotropic grid that allowed them to
consider energy transfers over a vast range of scales. Werne & Fritts (1999) have
presented a high-resolution study of stratified shear turbulence producing inertial
and dissipation ranges. Bouruet-Aubertot, Sommeria & Staquet (1996) performed
decay numerical experiments in which the initial condition was a standing wave.
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Closely related to that work are the analytical and experimental studies of Benielli &
Sommeria (1996, 1998) on the excitation and breaking of internal waves by parametric
instability. A different experimental configuration that maintains a standing wave is
used by McEwan (1983a, b) and Taylor (1992), and this provides the closest laboratory
example of the kind of forcing that we have used in our simulations. The numerical
studies of wave breaking by Fritts, Garten & Andreassen (1996), Andreassen et al.
(1994), Fritts, Isler & Andreassen (1994), and Isler et al. (1994) have done much to
illuminate the nature of internal wave breaking using an SGS model in spectral space.
More recent work by Andreassen et al. (1998) and Fritts, Arendt & Andreasson (1998)
has provided details of the vortex wave dynamics involved in internal-wave breaking
in shear flows. The numerical simulations most similar to what will be presented
here are perhaps found in the recent work of Dornbrack (1998) and Afanasyev &
Peltier (1998) on stratified flow over topography. Their work is similar to ours in that
localized breaking events are produced with an LES model, although of a type rather
different from ours. Dornbrack (1998) concentrates on the effects of a critical layer
on the propagation of internal waves produced by flow over a sinusoidal bottom.
Afanasyev & Peltier (1998) show the formation of Kelvin–Helmholtz billows in the
flow over a hill. Some of the structures shown in their paper are very similar to the
breaking structures that we will show, but, in addition, the kind of forcing we are
using also produces some rather interesting structures not observed before. All of
these papers have either simply not addressed the spectral transition from buoyancy
to inertial range or have not been able to capture it because their simulations have
been either too dissipative, or too turbulent.

The question of the type of forcing to adopt in our model is even more complex than
suggested above. Besides the combined effect of all internal waves in the GM range
there are processes other than internal waves that could also contribute to small-scale
variance. As pointed out by Blix, Thrane & Andreason (1990) in the context of the
atmospheric problem, in addition to propagating internal waves, there are the effects
of two-dimensional turbulence, strongly layered phenomena and Kelvin–Helmholtz
instabilities etc. Nevertheless, here we will use a forcing that is an oversimplification
of the problem. We will limit ourselves to considering only the effect of the internal
waves of the GM spectrum on the buoyancy range, and, even with that simplification,
the representation of the forcing is beyond our capabilities because of the enormous
spectral range spanned by those waves. The ultimate simplification that we will use
here is to represent the effect of all the GM-range internal waves by internal waves
only on the largest-scale of our computational domain. This has the advantage of
forcing the flow with the same temporal behaviour as the waves that drive the
buoyancy range in the real ocean. Also by forcing at only the largest scale of the
domain, we have no sources of energy at scales in the buoyancy or inertial ranges
that may cause some contamination of the results. In addition, the amplitude of the
forcing wave is maintained at the same value throughout the simulation to avoid the
transient effects that may be found in decay experiments. With this kind of forcing,
long-term runs are possible to obtain stationary statistics. Furthermore, as will be
explained in detail in § 2, we have chosen to represent the forcing by a standing
internal wave. In this model, the wave breaking that we are interested in occurs
repeatedly, at approximately the same position, which makes defining various regions
of the flow practical. It is not that we imagine the actual forcing of the buoyancy
range to be a standing wave, although such a pattern could be set up temporarily by
the interaction of travelling waves groups; rather this is a convenient model that we
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can use to force with the internal wave temporal behaviour and at the levels of strain
and shear that we may imagine forces the real buoyancy range.

There is a variety of subgrid-scale (SGS) models, that could be used for stratified
turbulence. Since problems with anisotropic turbulence SGS models are still not well
resolved, the most trustworthy models, from a theoretical, numerical and historical
point of view, are those that have the numerical small-scale cutoff anchored in an
isotropic inertial range, where the scaling on which such subgrid-scale models rely is
well founded. For the oceans, this means that our best chance for faithful results in
terms of correct energy transfer is to put our numerical cutoff within the range from
about 1 m to about 10 cm, and to use only an isotropic grid. So our strategy will be
to model a cube of the ocean in which the forcing is only internal waves in the GM
spectrum with the small-scale cutoff in the inertial range.

As explained in detail in § 2, the specific SGS model that we will use is the ‘cusp
model’, and the form of simulation used is spectral. The results regarding the spectral
transition from buoyancy to inertial range are discussed in § 3. Interesting density and
flow structures found in the simulation of the buoyancy range will be presented in
§ 4. An investigation of the sensitivity of the results to the changes in the SGS model
will be presented in § 5.

2. The numerical model
For the range of parameters involved in our studies, the Boussinesq approximation

is appropriate. Following the notation of Herring & Metais (1992) with regard to
dissipation, the evolution equations may be written as

∂u

∂t
+ u · ∇u+

1

ρ0

∇p′ − ρ′

ρ0

g = ν(∇2)∇2u, (2.1)

∇ · u = 0, (2.2)

∂ρ′

∂t
+ u · ∇ρ′ + w

∂ρ̄

∂z
= κ(∇2)∇2ρ′, (2.3)

where ν( · ) and κ( · ) are considered functions of the Laplacian operator and are used
to represent eddy parameterizations in general, and g = −g. We have neglected the
effect of rotation, which should not play a significant role at the small scales with
which we are concerned. The total density is given by

ρ = ρ̄(z) + ρ′(x, y, z, t), (2.4)

where ρ̄(z) is the horizontally averaged background density assumed constant in time,
and ρ′(x, y, z, t) is the deviation from that mean; ρ0 is the average of ρ̄(z) over z. The
pressure p′ is the deviation from the background mean pressure; it can be determined
in terms of u by taking the divergence of (2.1) under the assumption that the velocity
field is divergenceless.

We simulate these dynamical equations with a spectral code with triply periodic
boundary conditions. The code is based on the method of Patterson & Orszag (1971)
for de-aliasing a pseudo-spectral code. The time-stepping algorithm used to advance
the velocity field is a second-order leap-frog scheme. This code is conservative,
that is total energy is conserved if no viscosity or diffusivity is applied and if the
time step is taken sufficiently small. See Briscolini & Santangelo (1992) for further
details. As a subgrid-scale parameterization, we have used the large-eddy simulation
model of Lesieur & Rogallo (1989), which is based on the eddy viscosity theory
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Figure 2. Graph of the eddy viscosity divided by (E(kc)/kc)
1/2, where kc is the numerical cutoff or

truncation wavenumber.

of Kraichnan (1976). This model is referred to as the cusp model since the eddy
viscosity (a function of wavenumber) has a cusp-like behaviour at the highest allowed
wavenumber, the spectral cutoff kc. The eddy viscosity νt(k) can be defined by use of
two-point Markovian closure theory (cf. Kraichnan 1976; Chollet 1985). The idea is
to design an eddy viscosity that depends on wavenumber in such a way that it will
withdraw from each wavenumber band the amount of energy that would have been
passed to wavenumbers higher than kc if there were no upper wavenumber cutoff.
For unstratified turbulence, there is an approximation based on assuming kc is in the
inertial energy range that has proven satisfactory. This approximation is

νt(k) = (a1 + a2 exp(−a3kc/k))
√
E(kc)/kc, (2.5)

where the ai are constants and E(k) is the isotropic energy spectrum. This model
results from assuming that the correct energy spectrum in the inertial range will take
a k−5/3 form. Hence, if the energy in the flow is sufficiently high that eddy viscosity
dominates over molecular viscosity, then the eddy damping will be such as to favour
the formation of a k−5/3 range. The study of Lesieur & Rogallo (1989) suggests
the optimal choices for the coefficients ai for the problem of truncating an infinitely
long inertial range. In general, the best choice of the coefficients will depend on the
extent of the inertial-range spectrum being modelled (Chollet 1985). In our work,
however, we have simplified things by just fixing the choice for these parameters for
all simulations. We have used the values Lesieur & Rogallo (1989) found appropriate
for a 643 simulation of infinite Reynolds number turbulence. Specifically, we take
a1 = 0.15, a2 = 5 and a3 = 3.03. In figure 2, we show a graph of νt normalized
by
√
E(kc)/kc. Note that there is a long plateau for large scales with the value

νt0 = a1

√
E(kc)/kc. This is the eddy viscosity that acts on large scales due to subgrid-

scale eddies. It seems reasonable in modelling the buoyancy range to use such a
model since it does not completely neglect the effects of unresolved eddies on the
buoyancy range, but, at the same time, it puts the strongest eddy viscosity in the
inertial range near the cutoff. Note that the spectral cutoff that we use is isotropic,
that is all wavevectors in any direction of wavenumber greater than kc are eliminated,
thus avoiding any anisotropic artifacts due to the truncation.

We should emphasize the point that the size of the eddy viscosity depends on the
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Figure 3. (a) Graphs of the potential energy spectra during a decay experiment (643). The thick
dashed straight lines indicate k−5/3 and k−1 spectra. (b) The potential energy spectrum for three
decay experiments differing only in the turbulent Prandtl number. The lower/middle/upper spectrum

corresponds to the choice Prt = 0.50, 0.55, 0.60. The thin straight line indicates a k−5/3 spectrum.
The x-range is k = 15 to k = 30.

amount of energy at the cutoff scale. If the resolution of the simulation of a given
physical flow is increased, that is if kc is increased, then the eddy viscosity will be
correspondingly smaller. The total viscosity used in the simulations is the sum of
the eddy viscosity (2.5) and the constant molecular viscosity νmol . Thus the ν(∇2) in
equation (2.1) in the spectral simulation is taken as the total viscosity:

ν(k) = νmol + νt(k). (2.6)

Therefore, if we imagine a sequence of simulations of increasing resolution for a
flow with the same large-scale forcing, the eddy viscosity will become smaller and
smaller compared to the molecular viscosity. For kc > kη , the eddy viscosity will be
insignificant, and the simulation will be equivalent to a fully resolved DNS (direct
numerical simulation) with molecular viscosity alone.

The choice of turbulent diffusion depends on the choice of values for various
parameters that enter into the turbulence closure model for stratified turbulence.
Chollet (1985) (see also Lesieur & Rogallo 1989) found that κt(k) is similar to νt(k)
to the extent that it also has a plateau at small k and a cusp at the spectral cutoff.
The value of the turbulent Prandtl number Prt ≡ νt/κt as a function of k for one set
of closure model parameters was found to vary from about 0.5 to 0.6. For simplicity,
we have just taken Prt(k) to be a fixed constant independent of k in our simulations.
We determined this constant by examining the evolution of the potential energy
spectrum for decaying stratified turbulence that is initially highly excited at all scales.
More specifically, we started with an initial spectrum in which the GM spectrum was
continued to scales below 10 m as in the decay simulations of Siegel & Domaradzki
(1994). With Prt = 0.55 our simulations of decaying turbulence produced spectra with
the high wavenumbers obeying the k−5/3 law for both velocity and density fluctuations.
In figure 3(a), we show the resulting evolution of the potential energy spectrum for
one such run with resolution 643. The initial, randomly generated spectrum, has a
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spectral form close to k−1 for large k. This quickly decays, and eventually the spectrum
is nearly k−5/3 from about k = 5 to k = kmax = 30. The evolution represented spans a
time of ∆t = 10/N, or in terms of the time-averaged enstrophy during the evolution,
this represents 100 eddy turnover times with the turnover time defined as the inverse
square root of the average enstrophy. The details of the high-wavenumber potential
energy spectra for the three test cases Prt = 0.5, 0.55, and 0.6 are shown in 3(b).
The jump in energy in the last wavenumber band is typical for the cusp model, and
indicates failure to sufficiently dissipate energy at the very end of the spectrum. Based
on these tests, we adopted Prt = 0.55 for all of the simulations reported here.

Of course, there are many criticisms one could make about the use of LES,
particularly for evolving flows. In a recent paper, Woodruff, Shebalin & Hussaini
(1999) attempt to provide a criterion for the closeness of fit between some DNS and
LES statistics in evolving flows based on several LES models. They found that when
a Reynolds number defined by Reε ≡ ∆2S0/νmol , where ∆ is the grid spacing and S0 is
the large-scale strain rate, is O(1) then the LES will be a good approximation to DNS
results. In the simulations to be presented below, we use a fixed value of S0 based on
some oceanographic parameters, and choose either ν = 0 or ν = 0.01 cm2 s−1, which
choices lead to Reε = ∞ and Reε ≈ 7, respectively. Thus the former case fails and the
latter case reasonably well satisfies this criterion. On the other hand, Chollet (1985)
observes that universal SGS models rely on the existence of a long inertial range
which suggests that the higher the Reynolds number, the better the LES model could
be expected to perform. At the same time it also means that any finite Reynolds
number flow would theoretically require an ad hoc parameterization that takes into
account the actual length of the inertial range beyond the truncation wavenumber.
These issues are yet unsettled, and the case of stratified flow has been far less the
object of study than unstratified flow. So, it should be born in mind when applying
LES to any stratified flow that there are many questions concerning the validity of
the approach that are still unresolved.

Next we turn to the question of the forcing. The large-scale flows that actually
drive the buoyancy range are predominantly the waves of the GM range. The full
range where internal wave dynamics dominates includes scales of kilometres in the
horizontal and hundreds of metres in the vertical. Because of lack of resolution, we
cannot provide a full representation of the effects of all large-scale internal wave
forcing on the buoyancy range. In our model, of necessity, we perform a drastic
reduction in modelling the forcing; we replace the driving of all of the GM waves
by a linear standing wave at one wavelength. As mentioned in the introduction,
Bouruet-Aubertot, Sommeria & Staquet (1995, 1996) in two-dimensional simulations
of a stratified turbulence excited a standing wave of the type we use, but they allowed
this wave to decay, while we maintain its amplitude.

To give the form of the forcing used, let us first introduce non-dimensional units.
We will take all lengths to be scaled by 2π/L, where L is the length of one side of
our computational domain. Time will be scaled by 1/N. Then the frequency of linear
internal waves is given by

σ = ±kh
k
, (2.7)

where kh =
√
k2
x + k2

y is the horizontal wavenumber. One particular linear standing

wave is

u = (u, v, w) = A
g∗√

2
(0, sin y sin z, cos y cos z) sin

t√
2
, (2.8)
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Figure 4. Contour plot of the density field in a vertical y, z cross-section through the centre of the
domain. The width and height of the cross-section are each 20 m. The instant shown corresponds
to maximum displacement of the isopycnals for the forcing of strength SGM(20 m) as discussed in
§ 3. The upper and lower flat thick contour lines are the isopycnals corresponding to the two nodal
planes of the forcing. The curved thick line is the isopycnal that is most strongly disturbed by the
forcing and corresponds to ρ = ρ0. The contour interval is πN2/16g.

ρ′

ρ0

= A cos y cos z cos
t√
2
, (2.9)

where A is an arbitrary amplitude and g∗ is the non-dimensional gravity. Note that
the dimensional period of this wave, which is the forcing period, is given by

TF =
√

2
2π

N
. (2.10)

To give some idea of the structure of this standing wave, we show in figure 4 a
contour plot of the density field in a vertical y, z cross-section. Note that the density
field in this standing wave has no variation along the x-direction. In this figure, we
see an instantaneous representation of the iso-density surfaces. When t/

√
2 is an odd

multiple of π/2, these isopycnals will all be flat. The degree to which they deviate
from that at other times depends on the value of A as well as t. The instant of time
represented here is such that t/

√
2 is an integer multiple of π and, hence, one of

maximum distortion of the density contours. Note however that the density field in
(2.9) has two nodal planes, represented by two thick contour lines in the figure, at
z = ±π/2 (non-dimensional). During the forcing cycle, these planes remain flat and
fixed in position. The fluid above and below these planes vertically approaches and
retreats from them depending on the phase in time and the y-position considered.
Thus the points on the nodal planes at y = 0 and y = ±π are the centres of regions of
oscillating high strain. For example, at the instant represented, consider the point y = 0
on the upper nodal plane. The currents in the vicinity of this point have advected fluid
vertically toward the nodal plane from both above and below, while in the horizontal
y-direction fluid has been advected to the left and right away from y = 0. Thus, at
this point on the nodal plane, at this time, the sense of the strain is compressional in
the z-direction and dilational in y. The point on the upper nodal plane at the edge
of the domain (y = ±π, recall the field is periodic) is in a region of high strain of the
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opposite sign, with the vertical direction being dilational and the horizontal direction
being compressional. On the lower nodal plane, we see that it is the y = 0 point that
is in a region of vertical ‘dilation’ and the edge in a region of vertical ‘compression’.
In terms of the density field, these points are centres of regions of high/low vertical
density gradients relative to the mean gradient. Also we should note that the instant
represented is one of maximal magnitude of strain at these points, but that the vertical
strain rate ∂w/∂z is zero everywhere because the motion of the density contours off the
nodal lines has just come to a halt and is about to change direction. The thick contour
line lying between the two nodal planes represents the most perturbed isopycnal at the
time of its greatest deviation from a flat surface. How the amplitude of the standing
wave is chosen for our simulations is discussed in the next section.

In two-dimensional numerical studies of Bouruet-Aubertot et al. (1996), the stand-
ing wave becomes unstable and generates turbulence. This would also happen in our
three-dimensional simulation, but the turbulence would be highly constrained since
there is as yet no source of x-variation in our flow. To break the two-dimensional
symmetry of the flow, while maintaining the basic structure of the large scale, we add
a weak component of forcing with x-variation. We have tried this in various ways:
adding a random initial perturbation at all scales, randomly forcing the modes with
k = 1 at each time step, adding another large-scale standing wave, adding a propa-
gating wave, and so on. The results are similar to each other if the perturbations are
sufficiently weak. For the simulations discussed below, we have added to the primary
forcing wave only a small-amplitude standing wave of the same scale. Specifically, we
added the following perturbation:

u = A′
g∗√

2
(cos(x+ z), 0,− cos(x+ z)) sin

t√
2
, (2.11)

ρ′

ρ0

= A′ cos(x+ z) cos
t√
2
. (2.12)

Thus in the simulations discussed below the forcing occurs only at k =
√

2. The
coefficient A′ was taken to be A/20, and, hence, the energy in the perturbation is only
1/400 that of the primary forcing wave.

3. Numerical experiments
With the numerical model presented above, we performed a series of experiments

in which the size of the computational domain and the amplitude of the forcing were
varied. The initial studies were at resolution 643 and showed that for sufficiently large
amplitudes A for which the forcing wave itself was overturning, a k−5/3 spectrum
extending over most of the spectral range could be established. For weaker forcing,
a steeper spectrum approximating k−3 was found (Carnevale & Briscolini 1999).
For intermediate-amplitude forcings, we were able to observe, at least intermittently,
cases which do appear to exhibit the transition from the buoyancy range to the
smaller-scale inertial range. Weak and strong forcings are measured relative to shear
amplitudes typical in the thermocline. The best results were obtained with a forcing
amplitude that could actually be considered representative of wave amplitudes in the
thermocline. Specifically, the forcing amplitude that we refer to as intermediate, is for
a value of A in equations (2.8) and (2.9) such that the maximum shear during a cycle
of the forcing is equivalent to the r.m.s. shear of the GM spectrum at the scale of
our computational domain. The r.m.s. shear is calculated by integrating the shear of
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the GM spectrum from the kilometre scale down to the scale of interest (cf. Gregg
1989). Our best results tended to be for cases in which the vertical wavelength of the
forcing was 20 m. For N = 3 c.p.h., the net r.m.s. shear from the GM spectrum for this
scale is SGM(20 m) ≈ 3× 10−3 s−1 (cf. Gregg 1989). Taking this value to determine the
amplitude of our forcing, we obtain a standing wave in which the largest deviation
of the density isosurfaces is as illustrated in figure 4. Thus we have a standing wave
that does not itself overturn during the forcing cycle, and, in addition, the Richardson
number of the forcing wave, defined by

Ri ≡ −
g

ρ0

∂ρ

∂z

∂u

∂z

2

+
∂v

∂z

2
(3.1)

does not drop below 3.125. Therefore, the forcing wave itself is convectively stable
and not subject to shear instability. This kind of forcing is consistent with the picture
that the GM waves themselves are not convectively or shear unstable, but through
wave–wave interactions will produce smaller scale waves that are unstable by these
criteria. Choosing a stronger forcing wave that is itself convectively or shear unstable
would miss the important cascade process that produces the unstable waves of the
buoyancy range, but would rather produce turbulence directly resulting in an inertial
range (cf. Carnevale & Briscolini 1999).

For all of the simulations discussed below, we used a resolution 1283 and a
computational cube of 20 m on a side, with the forcing amplitude fixed so that the
max shear in the forced wave is SGM(20 m). Thus our isotropic spectral cutoff is
at wavenumber 60, and the smallest resolved wavelength is about 33 cm (with grid
spacing 20 m/128 ≈ 16 cm). In each case, the Väisälä frequency is taken to be 3 cycles
per hour, which is a typical oceanic value.

A long simulation was performed with realistic values for the molecular viscosity
and diffusivity. The kinematic viscosity was set to νmol = 0.01 cm2 s−1 and the molecular
Prandtl number at Prmol = 7 (cf. Gargett 1985). We can calculate a Reynolds number
for the oceanic flow for vertical motions on the 20 m scale by using the r.m.s. shear.
Thus we can write

Re = SGM(L)L2/νmol . (3.2)

For L = 20 m, this Reynolds number would be approximately 105. By including the
molecular viscosity, the simulation is an attempt to represent flow with this Reynolds
number. We will see that there is not much difference with results obtained by
neglecting the molecular components of viscosity (i.e. Re = ∞) and diffusivity. With
slightly less resolution than used here, Dornbrack (1998) also found little Reynolds
number dependence for a similar problem when Re is above 5 × 104. That is to say
that over the range of scales simulated (20 m to 16 cm) the difference between infinite
Reynolds number flow and that for Re = 105 is small. At scales smaller than those
simulated here, there would, of course, be a large difference, with the infinite Reynolds
number case having an inertial range extending to k = ∞, while the finite Reynolds
number case should have a dissipation range starting presumably at a wavelength of
about a few cm. We could also discuss this in terms of the Taylor-scale Reynolds
number. There are several ways to calculate this number for isotropic turbulence; for
example, following Frisch (1995), it is given by

Reλ = (10/3)1/2 E

Ω1/2νmol
, (3.3)
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Figure 5. Graph of the evolution of the total enstrophy in units of N2. The unit for the horizontal

time axis is the period of the cyclic forcing, that is
√

2 (2π/N).

where E and Ω are the total energy and enstrophy of the flow. The Reynolds number
based on the forcing scale and flow strength at the large scale is related to the
Taylor-scale Reynolds number by the approximate relation Reλ ∼ Re1/2 for large
Re (Frisch 1995). For example, a physical flow with Re ∼ 105 will have Reλ ∼ 300.
Note that unlike Re, the definition of Reλ depends on the small scale structure of
the flow. Thus, although we can directly determine, Re from the resolved scales in an
LES, this is not so for Reλ which can only be inferred indirectly. For example, in the
formula (3.3), Ω is the total enstrophy of the physical flow, so if we replace this with
the resolved enstrophy, we will underestimate it, and thus overestimate Reλ. Thus it
is more practical from the viewpoint of these simulations to discuss Re for the flow
since this can be directly determined from the resolved scales and νmol , leaving Reλ to
be inferred from the asymptotic formula for high Reynolds number turbulence.

In order to understand the evolution of our forced flow, we made an animation
of the evolution of the isosurface that is most distorted by the forcing (ρ = ρ0) and
of one of the isosurfaces corresponding initially to a nodal plane. During the early
evolution, for approximately four periods of the forcing, the motion is essentially
just that of the nearly two-dimensional standing wave. During this time there are
only sinusoidal waves on the most disturbed isosurface, but these waves then fold
over forming elongated overturns. These regions are convectively unstable and break.
At this point the three-dimensionality of the flow becomes evident. The evolution
of the enstrophy is a good indicator of this first breaking event. In figure 5, we see
that for the first three periods of the forcing, the enstrophy is only that contained
in the forcing wave itself. Then, as folds in the density surface begin to form, the
mean enstrophy begins to rise, and for t ≈ 5, the wave breaks with the production
of a large amount of enstrophy. After this, the flow appears to become substantially
three-dimensional on the small scale, and this is verified by the component energy
spectra. The subsequent evolution of the enstrophy shows large fluctuations on which
there is a smaller cyclical component with frequency comparable to that of the
forcing. Although we have no runs at this resolution longer than 17 forcing periods,
similar experiments at resolution 643 show that such fluctuations persist even after
200 forcing periods (Carnevale & Briscolini 1999).

Although it proves difficult to precisely match the enstrophy fluctuations with
particular structures in the density isosurfaces, we can give some idea of the acyclic
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Figure 6. The evolution of the ρ = ρ0 isopycnal during one cycle of the forcing. The frames are
ordered by time from (a) to (h). The first corresponds to t = 11.39TF , the interval between frames
is ∆t = TF/7.

behaviour by displaying the evolution of the ρ = ρ0 surface for one cycle of the
forcing. The breaks occur nearly symmetrically with large-scale overturning occurring
nearly at the same values of y and z each time and along lines of constant x,
respecting in the large scales the symmetry of the main part of the forcing. However,
no two of the breaking events with the subsequent evolution during the forcing cycle
are the same. In figure 6, for one such cycle, we show eight instantaneous images
of this isosurface using a perspective three-dimensional plot. The frames are ordered
temporally from (a) to (h): (a) corresponds to t = 11.39TF , and the interval between
frames is ∆t = TF/7. Thus (a) and (h) correspond to the same phase of the forcing.
Frame (a) captures the moment when breaking is just beginning. Let us say that
(a–d) represent the breaking event, and (e–h) the aftermath. We see that during the
breaking event, heavy fluid spills over lighter fluid, crashing down with the creation
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Figure 7. Kinetic energy spectra for the v-component of the velocity during one cycle of the forcing.
In each panel the dashed line is the Kolmogorov spectrum (1/3)CKε

2/3k−5/3 with CK = 1.5, and the
dotted line is the saturation spectrum 0.2N2k−3. The time interval between frames is ∆TF/7 and
(a) corresponds to time t = 11.39TF . These are log-log plots of E(k) in units of N2(L/2π)3 vs. k in
units of 2π/L. All plots have the scales as indicated in panel (g).

of small-scale structures all along the lines of the two breaking regions. This kind
of breaking appears to be very similar to that found in the laboratory experiments
with standing-wave forcing (Taylor 1992; McEwan 1983a). Afterwards, the region
of the small-scale turbulent structures spreads, eventually ‘contaminating’ the entire
isosurface. If we compare frame (h) with frame (a), we see that the final surface
is much rougher, filled with small-scale structures everywhere, and that there is no
larger scale folding over of the surface as there was in the first frame. In the later
evolution, the wave will break again, but only after a refractory period, in this case
of about two forcing cycles. In terms of the enstrophy evolution during the breaking
event and its aftermath, we see from figure 5 that figure 6(a) represents a relative
minimum in enstrophy but then the enstrophy climbs rapidly during the breaking
event, with maximum values attained around the times of figures 6(c) and 6(d). During
the aftermath, the enstrophy declines rapidly, again reaching a value comparable to
that at the time of figure 6(a), even though this density isosurface is clearly more
perturbed. The nature of the later breaking events appears to depend on how much
small-scale structure is present, but in none of the subsequent events was there a
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Figure 8. Potential energy spectra one cycle of the forcing. In each panel, the dashed line is the
Corrsin–Obukhov spectrum Coεpeε

−1/3k−5/3 with Co = 0.67 and the dotted line is the saturation
spectrum 0.2N2k−3. The time interval between frames is ∆TF/7 and (a) corresponds to time
t = 11.39TF . These are log-log plots of PE(k) in units of N2(L/2π)3 vs. k in units of 2π/L. All plots
have the scales as indicated in panel (g).

repetition of the nearly two-dimensional breaking that occurs for the first breaking
event (at t ≈ 5TF ).

Next we will consider the energy spectra for the flow at the same times as those
illustrated in figure 6. Since the energy is highly anisotropic at scales larger than
those in the inertial range, plotting the total energy as a function of the isotropic
wavenumber tends to obscure the transition between small and large scales. To most
clearly display the transition, we have found it useful to consider the spectrum of
v, the y-component of velocity, which is the horizontal component that is directly
affected by the forcing. The spectra, Ev(k) are computed for integer wavenumbers
by summing all of the modal energies 1

2
|vk|2, with k between k (inclusive) and k + 1

(exclusive). Thus Ev(k = 1) contains the energy in the forced mode (k =
√

2) as well
as any energy in other modes k < 2 achieved by mode–mode interaction. Along with
the spectra, we have also drawn lines corresponding to the inertial-range spectrum
(1/3)CKε

2/3k−5/3 and buoyancy-range spectrum 0.2N2k−3. For each frame, ε is taken
as the total kinetic energy dissipation rate at that time. We have included a factor of
(1/3) which is appropriate for a single component in the isotropic inertial range. For
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the Kolmogorov constant, a value of 1.5 was used in each case. We should emphasize
that no attempt is made here to fit the data, but the coefficient is just taken as
this standard value a priori. For the buoyancy-range spectrum, we have used the
coefficient α = 0.2 in all cases. In each frame shown in figure 7, we see a fairly good
match at wavenumbers greater than about 20 (that is for scales below about 1 m) to
the Kolmogorov inertial-range spectrum. The main deviation is at wavenumbers near
k = 60, the cutoff wavenumber, and this is to be expected from previous experience
with the cusp model (cf. Lesieur & Rogallo 1989). The spectrum below wavenumber
20 is naturally far more irregular than that above due to the much smaller number
of modes in the lower spectral bands. If we neglect the first few wavenumbers, then
there is some evidence here for a steeper spectral range for wavenumbers below about
k = 20, that is for scales larger than about 1 m, at least in the frames that correspond
to times during the breaking of the wave (a–d). In the aftermath of breaking, the
spectra tend to be somewhat flatter (e–h). The best representative of the transition
between buoyancy and inertial range is found in panel (c), which corresponds to a
time when the enstrophy is near a local maximum. Here the buoyancy-range spectrum
makes a reasonably good fit in the range of scales from about 4 m down to about
1 m. From the forcing scale (20 m vertical) to about the 5 m scale, there is a dip in the
energy that has also been seen in the spectra from similar two-dimensional simulations
of the decay of a standing wave (Bouruet-Aubertot et al. 1996). These kinetic energy
spectra should be compared with the potential energy spectra in figure 8. Here the
high-wavenumber parts of the spectra are to be compared with the Corrsin–Obukhov
spectrum (1.5). Recalling that the potential energy in the Boussinesq approximation
is given by

PE =
1

2

g2

N2

∫
ρ′2

ρ2
0

d3r, (3.4)

we form the non-dimensional PE(k) by summing the modal values of 0.5g∗2|ρ′k/ρ0|2
in each k interval. An accepted value for the Corrsin constant is Co = 0.67 (cf. Lesieur
1997) and this has been used in each case. The potential energy dissipation rate εpe
is calculated separately for each time shown. Again no attempt has been made to
fit the data to this spectrum. We see that the match is less good than in the kinetic
energy case. It appears that the Corrsin constant is too small to match our results.
Also the slope of the spectra is somewhat less well matched to a pure k−5/3 spectrum
than for the Ev spectra. Nevertheless, the k−5/3 spectrum is still a reasonable match
to the PE spectra for scales smaller than about 1 m. Again, as for the kinetic energy
spectra, the buoyancy-range spectrum with the coefficient 0.2 (that is the spectrum
PE(k) = 0.2N2k−3) is a reasonable match to the spectra for scales from about 5 m
down to about 1 m. Of course there is a lot of variability in the large-scale part of
the spectra; however, it seems there is evidence here for a transition from a steep
buoyancy range to a shallower inertial range.

In this experiment it appears that the expected spectral signature of a transition
between a buoyancy range at large scale and the inertial range at small scale occurs
only for periods during which there is active breaking. Let us focus on the breaking
event. Figure 6(c, d) are images of the ρ = ρ0 isosurface at the two times identified
as the best for illustrating the spectral break we are looking for. The first shows
the curling over and spilling down or plunging of the heavier fluid over lighter, and
the later image suggests mixing by the appearance of many small-scale structures
along the two parallel lines of the breaking wave. The corresponding spectra for
all three components of kinetic and for the potential energy are shown in figure 9.
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Figure 9. (a) Kinetic energy spectra for all three components of the velocity at time t = 11.68TF . The
thick dashed, solid and dotted lines correspond to the energy spectra for the u, v, and w components
respectively. The thin solid lines correspond to the Kolmogorov spectrum (1/3)CKε

2/3k−5/3 with
CK = 1.4 and the saturation spectrum 0.2N2k−3. (b) Potential energy spectrum at time t = 11.68TF .
The thick solid line corresponds to the potential energy spectrum. The thin solid lines correspond
to the Corrsin–Obukhov spectrum Coεpeε

−1/3k−5/3 with Co = 0.83 and the saturation spectrum
0.2N2k−3. (c) As in (a) but for t = 11.82TF and CK = 1.4. (d) As in (b) but for t = 11.82TF and
Co = 0.80.

First we notice that although the spectra are highly anisotropic from the forcing
scale (20 m) down to about the 1 m scale, there is an approximate ‘return’ to isotropy
for the smaller scales. This is particularly evident in the kinetic energy spectra for
t = 11.82TF (panel c). In panels (a) and (c), we have made an attempt to draw the
best fit inertial-range spectra to determine the appropriate Kolmogorov constants
(CK) that fit these data. We did this for the Ev(k) spectra, obtaining the best fit
‘by eye’ from enlarged portions of the small-scale spectra. The result that was used
to draw the inertial-range model spectra in panels (a) and (c) is (CK) = 1.4. In
panels (b) and (d), the potential energy spectra are drawn. The small scales were fit
to the Corrsin–Obukhov spectrum to determine the appropriate Corrsin constant.
The Corrsin constants used to draw the model Corrsin–Obukhov spectrum were
Co = 0.83 and 0.8 respectively. In all panels the model buoyancy-range spectrum
drawn is 0.2N2k−3. Thus the Kolmogorov constant found here is somewhat smaller
than the empirical values of 1.5 and the Corrsin constant is somewhat larger than the
empirical value of 0.67. Nevertheless, the values are remarkably close to the empirical
values, given that the spectral width of the inertial range here only covers wavelengths
from about 1 m to about 33 cm. Also the near collapse of the three kinetic energy
spectra for small scales at the time corresponding to the image shown in figure 6(d) is
encouraging, and this isotropization is even better for later breaking events as we will
see below. Thus it seems that the subgrid-scale model is working well at small scales
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Figure 10. (a) Kinetic energy spectra for all three components of the velocity at time 16.8TF just
after a wave breaking event. The dot-dashed, solid and dashed lines correspond to the energy
spectra for the u, v, and w components respectively. The dotted straight line corresponds to 1/3 of
the theoretical spectrum in (3.5) with CK = 1.44 and Cu = 0.16. (b) Potential energy spectrum at
time 16.8TF . The solid line corresponds to the potential energy spectrum. The dotted straight line
corresponds to the theoretical spectrum in (3.6) with Co = 0.73 and Cθ = 0.16.

and that the dynamics of the transition from anisotropic buoyancy to the isotropic
inertial range is acting as imagined in theoretical models.

From this run, perhaps the best example that we have of the transition from
buoyancy to isotropic inertial range occurs somewhat later, at about time 16.75TF .
The flow at that time is approximately at the same phase of the forcing that existed
at t = 11.82TF in figures 6(d) and 9(c, d). The ρ = ρ0 isosurface at t = 16.75TF is
similar to that shown in 6(d). The kinetic and potential energy spectra at t = 16.75TF
are shown in figure 10. Here the degree of isotropization at small scales is very good.
For wavelengths below 1 m, the difference between E(k)/3 and any of the component
spectra is below 10%. Questions of the anisotropy in the buoyancy range and the
degree of isotropy in the inertial range have been the subject of many studies, too
many to try list here, but we refer the reader to van Haren, Staquet & Cambon (1996)
and Gargett, Osborn & Nasmyth (1984) where further references may be found.

We will also use the spectra shown in figure 10 to discuss Lumley’s (1964) theoretical
model of the transition from buoyancy to inertial range. By considering how the flux
of energy would change from one wavenumber band to the next in the kinetic energy
spectrum, due to loss of kinetic energy to the potential energy, Lumley (1964) found
a composite spectrum that represents in a continuous way the transition from the
buoyancy range to the inertial range as a function of k. Since then, there have been
several attempts at a complete theory along these lines, most notably by Phillips
(1967), Holloway (1981, 1983) and Weinstock (1985), with an alternative approach
taken by Gibson (1986). Following the notation of Holloway (1981) but ignoring, for
the present, questions of the anisotropy in the buoyancy range, we can write

Ev(k) = CKε
2/3k−5/3 + CuN

2k−3, (3.5)
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PE(k) = Coεpeε
−1/3k−5/3 + CθN

2k−3. (3.6)

For large k the spectra are just the inertial-range forms that we used previously. For
small k the spectra are of the buoyancy-range type given in equation (1.1) save for
the possibility of the constant coefficient α taking different values in the two spectra:
Cu and Cθ for the kinetic and potential energies respectively. In figure 10(a) we fit the
component spectrum Ev with 1/3 of the E(k) given by equation (3.5), and in figure
10(b) the potential energy spectrum with (3.6). As before when matching with the
asymptotic spectra, the match was made by eye. The selected curves are drawn in as
the dotted lines in figure 10(a, b). The matches appear to be fairly good for scales well
above the forcing and somewhat below the spectral cutoff.

Besides the kinetic and potential energy spectra, we can also find predictions for
the buoyancy flux spectrum in both the theory of Lumley–Shur (cf. Lumley 1964,
1967; Phillips 1967; Weinstock 1985) and the theory of Holloway (1983, 1986). The
modal spectrum of the buoyancy flux can be written as

−gR〈w∗kρ′k〉/ρ0. (3.7)

If this quantity is positive, then for wavevector k there is conversion of potential
energy to kinetic energy, and vice versa if it is negative. In figure 11(a), we plot
the buoyancy flux spectrum from our simulation as a function of k. This is a time-
averaged spectrum, where we have averaged over a period of 6TF , with time increment
of 0.1TF . The time averaging is necessary to remove temporal fluctuations in the large
scales. Note that the buoyancy flux spectrum is negative for large scales (1 < k < 3),
and positive for smaller scales. This implies a transformation of kinetic to potential
energy at large scales (closest to the forcing scale k =

√
2) and a transfer of potential

to kinetic energy at all smaller scales.
The prediction of the Lumley–Shur theory for the buoyancy flux spectrum in the

buoyancy and inertial ranges is

BF(k) = −2D
ε0

kb
(1 + D(kb/k)

4/3)1/2(kb/k)
7/3 (3.8)

where kb is as defined in (1.4) and D is a constant. Lumley (1964) assumed the
buoyancy flux and hence D to be positive. In displaying his final result, Lumley
incorporated D into his definition for kb, but we will leave it explicit. Lumley’s
prediction of positive buoyancy flux through the buoyancy and inertial ranges is
just the opposite of what we have found numerically for our wave-forced problem.
All of the ingredients for an alternative prediction of the buoyancy flux are given
in Holloway (1983); however, the buoyancy flux was not calculated in that paper.
In Holloway (1986), we find a prediction for the buoyancy flux that, interestingly,
can be either positive or negative depending on certain empirical constants. We have
not been able to reproduce the buoyancy flux formula given in Holloway (1986),
but in our Appendix, we provide a derivation of the buoyancy flux based on the
theory of Holloway (1983, 1986). The resulting expression is identical in form to the
Lumley–Shur result (3.8). However, in the derivation based on Holloway (1986), it is
clear that D may be positive, negative or zero.

Since our observed buoyancy flux spectrum is positive through both the buoyancy
and inertial ranges, it can be compared to the theoretical prediction given by (3.8)
only by choosing a negative value for D. To define the constant D, we note that the
wavenumber, where the buoyancy flux vanishes is determined by D. Here we shall
choose D so that the zero value occurs at k = 3.5 (corresponding in our simulation to
a wavelength of 5.7 m) since our buoyancy flux was found to vanish between k = 3
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Figure 11. (a) The buoyancy flux spectrum averaged over 6 periods of the forcing, with 10 samples
per period. (b) As in (a) but only the positive portion of the spectrum plotted in log-log format
to compare with the theoretical spectrum of equation (3.8) with negative coefficient D. The result
from the simulation is represented by the thick line, while the theoretical spectrum, based on ε0 = ε̄
where the overbar represents time averaging, is drawn as a thin line. All graphs in (a) and (b) are
normalized by ε̄/κb.

and k = 4. The theory will apply only above this wavenumber, and we can think
of this as the lower limit on the buoyancy range, or the upper wavenumber of the
GM spectrum in the schematic shown in our introduction. To compute kb, given by
(1.4), we use the time-averaged dissipation rate ε̄. Thus all parameters in the theory
are determined by the wavenumber where the buoyancy flux vanishes and the values
of N and ε̄ (in this case kb ≡ (N3/ε̄)1/2 ≈ 34.1). The resulting theoretical buoyancy
flux spectrum is compared in figure 11(b) to the results from our simulation. For
wavenumbers in the buoyancy range, the match between theory and simulations is
remarkably good. For the theoretical curve, the decay with k is approximately k−7/3

for all k above about 10. The simulation data follows the theoretical curve fairly well
up to about wavenumber 20, where the simulation spectrum begins to deviate from
k−7/3, and is clearly much shallower than this for k > 30. This shallowness of the
simulation spectrum for k greater than about 30 is probably an indication that the
buoyancy flux is not captured properly by the SGS model near the high-wavenumber
cutoff. Recall that the cusp model viscosity grows rapidly with k for wavenumbers
above about k = 30 and is largest at kmax (compare figure 2). This is just the range
where our buoyancy flux spectrum becomes very shallow. It is very possible that the
artificial damping of the high-k modes that the model performs to mimic transfer of
energy beyond kmax does not allow for the proper treatment of the buoyancy flux in
that region. But this is not unexpected for such a subgrid-scale model. It is remarkable
that the theory does quantitatively so well in the buoyancy range considering that
except for the point of zero value, there are no adjustable parameters in the theory.

Positive buoyancy flux for small scales has also been found in other simulations.
In direct numerical simulations (i.e. simulations without subgrid-scale modelling) of
forced stratified turbulence in both two and three dimensions, Holloway (1988), and
Ramsden & Holloway (1992) showed that the buoyancy flux was negative only at
large scales and positive at small scales. These results were interpreted as meaning
negative buoyancy flux for k < kb (i.e. in the buoyancy range) and positive buoyancy
flux for higher k. However, the forcing used in their simulations was spectrally fairly
broad, and it would not be inconsistent with their results to say that the buoyancy
flux was negative at the strongly forced modes and positive for smaller scales as
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in our findings. Additionally, we have repeated our numerical simulations with a
finite difference code using a Smagorinsky eddy viscosity, an independent test, and
also found positive buoyancy flux through the buoyancy and inertial ranges. In their
finite difference LES study of shear-driven stratified turbulence, Kaltenbach et al.
(1994) also found positive buoyancy flux at small scale and negative at large scales,
although we must note that the region of negative buoyancy flux in their simulations
is spectrally very broad compared to ours. Perhaps this is just a result of differences in
the type of forcing used. One can imagine that different forcing mechanisms capable
of injecting a different mix of kinetic vs. potential energy at large scale would be
able to extend the spectral range of negative buoyancy flux. Finally, we note that in
two-dimensional flow simulations of the decay of a standing wave of just the type that
we use for forcing our flow, Bouruet-Aubertot et al. (1996) found that the buoyancy
flux was positive through most to the range that they identified with the buoyancy
range, and also that the flux followed a k−7/3 spectral law in a run with grid resolution
2562 and a slightly steeper law at resolution 5122 (note that those simulations did not
include an inertial range).

4. Density-field structures
The main structure of interest in the buoyancy range evident in the density iso-

surfaces presented in the last section is the overturn produced by the curling over
of the isosurface in a manner familiar from surface wave breaking. The overturning
region shown in the breaking wave illustrated in figure 6(c) has a vertical scale of
about 2 m. This is similar in size to overturns found in oceanographic measurements
in the buoyancy range. Alford & Pinkel (2000) made an inventory of more than 2200
overturns. They found a median Thorpe scale, a measure of the vertical extent of
the overturn, of 1.88 m. Since the observational data are primarily one-dimensional
in space, it is difficult to form a three-dimensional image of those overturns. The
ability to perform three-dimensional analysis of such structures is one of the benefits
of numerical simulation.

Examining the full density field more thoroughly, we also find interesting structures
of a rather different nature. These can be represented well by the deformations of
the density surfaces that are the flat nodal surfaces of the forcing wave. We shall
just refer to these surfaces as the nodal surfaces even when perturbed and deformed
by eddies. The most basic motion of the fluid in the nodal surfaces is alternately
toward and away from the centres of high strain as discussed in § 2; however, the
combination of the large-scale background straining motion and small-scale eddies
produces localized deformations of the nodal surface that can result in overturning
and mixing in a manner different from the overturns discussed in the last section. By
plotting simultaneously three density isosurfaces (one ‘nodal surface’ and the most
strongly perturbed isosurfaces above and below it) for a sequence of times during
the forcing cycle, we can get some understanding of the nature, formation, evolution
and fate of these structures, as shown in figure 12(a–f). We have shifted our view of
the computational domain by an amount in the vertical sufficient to centre the upper
‘nodal surface’ in the image. Above and below the nodal surface, the most strongly
displaced isosurfaces are shown. The upper and lower isosurfaces move vertically
but always in opposite directions at any horizontal location. The combined effect of
the motion of these surfaces above and below the nodal surface produces vertical
‘dilation’ and ‘compression’ centred on the nodal surface without producing large-scale
sinusoidal displacement of that surface. In panels (a), (b) and (c), the upper/lower
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(a) (b)

(c) (d )

(e) ( f )

Figure 12. The evolution of three density isosurfaces (g∗(ρ−ρ0)/ρ0 = 0, π/2, π) showing the evolu-
tion of ‘spouts’ from a ‘nodal surface’ and their subsequent collapse with considerable broadening
and mixing. Times represented are t = 12.1TF , 12.4TF , 12.5TF , 12.7TF , 12.8TF , and 13.1TF .

surface is moving upward/downward in the middle of the domain (i.e. at y = 0, where
y is the horizontal coordinate), and oppositely at the left and right ends of the domain.
This is associated with the vertical straining of the nodal surface in the middle and
at the left and right ends of the domain. In panel (b) the isosurface ‘erupts’ with
elements moving up and down from a midline pointing into the plane. The eruption
reaches its maximum extension when the upper and lower surfaces stop their motion,
and reverses direction around the time of panel (c). At y = 0 on the nodal surface this
is a time of maximum vertical dilational strain but zero strain rate (where ∂w/∂z is
the vertical strain rate). The structures formed by these eruptions represent localized
intrusions of heavy fluid into light fluid and vice versa. We shall refer to them as
‘spouts’. As the upper and lower isosurfaces move back toward the nodal surface, the
sense of straining motion is reversed and the spouts that were formed are flattened.
This causes a spreading out of these structures, which in some cases results in tossing
elements of the spouts to the right and left of the midline. This results in the kind of
pattern seen in panel (e) which is in part an elongated horizontal structure as opposed
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(a)

(b)

(c)

Figure 13. Visualization of the isosurface corresponding to one of the nodal planes of the forcing
(g∗(ρ− ρ0)/ρ0 = π/2) for a sequence of times during the formation of spouts. View taken along the
x-axis. The time sequence is (a) 15.90TF , (b) 16.04TF and (c) 16.32TF .

to the elongated vertical structures originally produced during the vertically dilational
phase of the large-scale straining motion. The final panel (f) shows the isosurface a
short time after the upper and lower surfaces have again reversed their direction of
vertical motion. This is a phase of the motion near to that of the initial panel (a), but
now there is a mixed patch of fluid at the mid section (y = 0) of the nodal surface.

This production of spouts happens repeatedly, although not in each cycle of the
forcing. Another example, from a later time, is given in figure 13 where we display
the spouts on a larger scale to give a better idea of their physical structure. The
isosurface starts relatively smooth (panel a), but then there is an eruption along a
central line on the surface producing elongated vertical structures (panel b). In the
final image (panel c), these structures have been elongated horizontally, producing
regions of overturned fluid. Some of the spouts are elongated in the x-direction while
some are nearly symmetric in x and y and appear like fingers of fluid.

Further details of one of these spouts and its environment are provided by contour
plots of the full density field during one whole cycle of the forcing. Focusing on
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(a) (b)

(c) (d )

Figure 14. Contour plots of density in a vertical y, z cross-section through the domain during half
of a forcing cycle to illustrate action of vertical dilational strain on the lower nodal surface. The
origin is taken as the centre of each panel. The y- and z-axes are horizontal and vertical respectively.
The thick contour lines correspond to isopycnals with the same densities as the nodal surfaces of
the forced standing wave. In non-dimensional units these are g∗(ρ− ρ0)/ρ0 = ±π/2. The sequence
of times represented is (a) 15.61TF , (b) 15.76TF , (c) 15.90TF and (d) 16.04TF .

the lower nodal surface near the middle of the domain (y = 0), we have broken
the cycle up into the vertically dilational and compressional phases of the forcing
(figures 14 and 15 respectively). Figure 14(a) corresponds to time 15.61TF , which is
just after the time of maximum vertical (compressional) strain, and is in the phase
of vertical dilational straining motion (i.e. ∂w/∂x > 0), with isosurfaces below and
above the nodal surface retreating away from that surface. This continues in figures
14(b) and 14(c). In panel (c), we see the small perturbation that is being elongated
vertically by the straining motion and this results in the spout seen in figure 14(d),
which is roughly 2.5 m high and 0.75 m wide. Recall that our grid spacing is 15.6 cm,
so that there are only about 5 grid points across the width of the structure making
it resolved but close to the scale where the subgrid-scale model viscosity begins
to grow with k (cf. figure 2). Thus the structure may be somewhat broader than
it would appear in a higher resolution simulation. Note that at time of panel (d)
(t = 16.04TF ) the phase of the forcing is such that the neighbourhood of the spout is
near maximum vertical (dilational) strain, which is evidenced by the large distortion
of the contours surrounding the spout. Also, from the formula for the standing wave,
we know that this instant corresponds to a time of approximately zero vertical strain
rate. The next phase of the development is dominated by the vertically compressional
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(a) (b)

(c) (d )

Figure 15. Contour plots of density in a vertical y, z cross-section through the domain during half
of a forcing cycle to illustrate action of vertical compressional strain on the lower nodal surface. As
in figure 14 except for the sequence of times: (a) 16.18TF , (b) 16.32TF , (c) 16.46TF and (d) 16.60TF .

and horizontally dilational straining motion, and we follow the evolution in figure
15. Figure 15(a) shows the spout beginning to collapse under the influence of the
vertically compressional motion, and the effect of the horizontally dilational motion is
seen in panels (b) and (c) where the horizontal elongation of the spout is evident. Note
that this horizontal elongation has deformed it into a structure that has regions of
overturning and is, hence, convectively unstable. In the last panel, we have returned to
approximately the same phase of the forcing as in 14(a), but the collapse of the spout
has produced a region of mixed fluid with relatively low vertical density gradient,
although very strong gradients appear just above and below the region where the
spout had been.

To further illustrate the dynamics that create the spouts, we superimpose contour
plots of vorticity ωx and vertical strain ∂w/∂z on the density field illustrated in figures
14 and 15. The vorticity and strain fields are filtered at the 2 m level. The vorticity
and strain rate reach their highest values at the smallest scales, where they are fairly
isotropic. The creation of structures in the buoyancy range, however, is the result of
the larger scale vortices that can have a coherent effect on the density field. We will
specifically focus on the creation of the spout at time 16.04TF (figure 14d). If we
look at the vorticity and strain field, there is not much obvious correlation between
the density structure and these fields because the vortices that create the spout have
waned in strength by this time. It proves more illuminating to consider the vorticity
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(a) (b)

Figure 16. Contour plots of the density ρ/ρ0 (thick lines) in a y, z cross-section at time t = 16.04TF ,
as in figure 14d, with superimposed vorticity and strain fields from t = 15.9TF (see text). (a) Contour
plot of ωx, filtered at the 2 m scale, superimposed on the contours of density. The thin solid/dashed
lines represent positive/negative contour levels (contour interval 1.1SG (20 m)). (b) Contour plot
of ∂w/∂z, filtered at the 2 m scale, superimposed on the contours of density (contour interval
0.65SG (20 m)).

and strain at a somewhat earlier phase in the evolution, say at time 15.90TF (the same
time as in figure 14c). At that time the vortices that create the spout are near their
maximum strength and it is their action that causes the growth of the incipient spout
shown at 15.90TF into the fully developed structure that we see at time 16.04TF . Thus
in terms of the phase of the large-scale forcing, the development of the spout lags that
of the vorticity field. In figure 16(a), we see that just above and to the right and left
of the spout are a positive and a negative vortex. Since the vorticity is the source of
the velocity field, we can say that this vortex pair creates a velocity field that advects
the localized perturbation of the density surface away from its equilibrium position,
creating the spout. We can also comment on the effect of the dipolar pair of vortices
near the bottom of the figure. These create a velocity field that advects the density
contours downward. The combined effect of the quadrupolar arrangement of vortices
(the two adjacent to the spout and the two further down) is the creation of a region
of low stratification just below the spout. The vertical strain-rate field associated with
this vorticity distribution is shown in figure 16(b). There we see that the quadrupolar
vorticity distribution near the spout creates a region of high positive strain rate, as
anticipated in our earlier discussion. Similarly the phase of the horizontal strain ∂v/∂y
(not shown) is such as to ‘squeeze’ the spout horizontally during its growth.

To summarize, we can say that the spouts originate from small-scale deviations of
the nodal surface created by turbulent flow at the nodal surface. Once perturbations
pull structures from the nodal planes vertically, these elements are subject to advection
due to the large-scale straining motion of the forcing wave. At times and positions
where the straining is highly dilational in the vertical, these deviations from the flat
plane elongate vertically and narrow horizontally, forming spouts. Then, during the
vertically compressional and horizontally dilational phase of the forcing, the spout
is elongated horizontally creating regions of convectively unstable overturned fluid.
Note that if the large-scale forcing were the only field acting on the spout, then the
growth of the spout would simply have been reversed when the sense of the straining
motion was reversed. Thus the presence of the eddy field must play an important
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role in this irreversible process. The distortions of the spout by the eddy field are
enhanced during the horizontally dilational phase of the evolution.

Finally, note that structures other than spouts at t = 16.04 can also be interpreted
as created by the vorticity field after some lag. For example, there are some overturns
in figure 16 that are associated with vortices of the correct sense of rotation to result
in the localized curling over or plunging of the density surface. Thus the vorticity
field filtered at the 2 m scale appears as a reasonably good predictor of the evolution
of the density field structures that we have been discussing.

5. Sensitivity to the details of the SGS model
Before concluding we should discuss the sensitivity of our results to the precise

form of the subgrid-scale model that we have used. First of all, let us note that we
have compared the results obtained in our spectral simulations at resolution 1283

with the same experiment performed with the same code at 643 and also with a finite
difference code at 1283 using a Smagorinsky type eddy viscosity and diffusivity. The
results were essentially the same except that, as one would expect, in both comparison
studies the observed structures were somewhat more diffuse than in the 1283 spectral
run.

Next, let us address the fact that we have incorporated in the model non-zero
molecular viscosity and diffusivity. Recall that for the results shown above, we have
used νmol = 0.01 cm2 s−1 and a molecular Prandtl number of 7, as would be reasonable
values for the oceanographic problem. For the simulation used as an example here,
this resulted in a Reynolds number of O(105) based on the scale and maximum shear
of the forcing wave. We have also run parallel studies in which we have set the
molecular viscosity and diffusivity equal to zero (i.e. infinite Reynolds number runs).
For the time t = 11.68TF for which the energy spectra are shown in figure 9, the
molecular viscosity is about 20% of the large-scale eddy viscosity νt(k = 1) and less
than 8% of the cusp value νt(k = kc). To test the sensitivity of the results given above
to the presence of the molecular viscosity and diffusivity, we restarted the simulation
at time t = 11.26TF as an infinite Reynolds number run, that is with no molecular
viscosity or diffusivity, and compared the subsequent evolution for six forcing periods
to that of the finite viscosity case. Even at the end of the six forcing periods, there
was very little difference between the two results in terms of the spectra or the density
field structures. As we mentioned above, this is much in accord with the findings of
Dornbrack (1998).

Before displaying some of the results for this comparison, let us also discuss another
sensitivity test that we performed on the constants employed in the cusp model. The
closure theory model for an infinitely long inertial range gives an eddy viscosity of the
form (2.5) with coefficients a1 = 0.267 and a2 = 9.21, whereas we chose the coefficients
a1 = 0.15 and a2 = 5 from the empirical model of Lesieur & Rogallo (1989). As a
sensitivity test, we also ran a simulation in which we again started from t = 11.26TF
of the finite Reynolds number run and then continued it with the infinite Reynolds
number model with coefficients a1 = 0.267 and a2 = 9.21. Although, there were no
significant differences with the finite Reynolds number results after one forcing period,
by the end of six forcing periods differences did become evident both in the energy
spectra and the density isosurfaces.

To compare the evolution of the finite Reynolds number case with the eddy viscosity
with a1 = 0.15 and a2 = 5 to the infinite Reynolds number case with the two types
of eddy viscosities, we first consider the evolution of the enstrophy for all three runs.
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Figure 17. Graph of the evolution of the total enstrophy for three different parameterizations of
the dissipation: the solid curve corresponds to the case with a1 = 0.15, a2 = 5, and νmol = 0; the
long-dashed curve corresponds to the case with a1 = 0.15, a2 = 5 and νmol = 0.01 cm2 s−1; and the
short-dashed corresponds to the case with a1 = 0.267, a2 = 9.21 and νmol = 0. The enstrophy is
given in units of N−2, and the unit for the horizontal time axis is the period of the cyclic forcing,

that is
√

2 (2π/N).

This is shown in figure 17. The long-dashed curve corresponds to the finite Reynolds
number case. First compare this with the enstrophy evolution for the Re = ∞ case
with the a1 = 0.15 and a2 = 5 model drawn as a solid curve. The curves rapidly
separate. The size of the difference fluctuates with the distance between the curves,
sometimes vanishing, and the error does not exceed 8% over the 6TF period of the
test. On the other hand, the difference between the enstrophies for the two infinite
Reynolds number models with different cusp parameters remains relatively large and
varies by up to about 24% using the solid curve as the reference.

In figure 18, we show the ρ = ρ0 density isosurface at time 15.3TF for these tests.
Frames (a) and (b) are respectively the infinite and finite Re cases, both using the
a1 = 0.15 and a2 = 5 eddy viscosity model. There are some small differences that
are noticeable, but basically both the large and small scales compare favourably.
Figure 18(c) is from the infinite Re case with the a1 = 0.267 and a2 = 9.21 model. In
comparison with (a) and (b) we notice some deviation on the large scale, but mainly
we note that the surface texture is much smoother than in the other two cases.

The differences noted in the density isosurfaces are also born out by the energy
spectra. Figure 19 shows the Ev(k) and PE(k) for each of the three runs at the
t = 15.3TF . There is essentially no difference in the spectra for two cases with the
a1 = 0.15 and a2 = 5 eddy viscosity model. These are shown as thick solid curves. The
spectra for the alternative eddy viscosity model (a1 = 0.2.67, a2 = 9.26) are indicated
by dotted lines. In each panel, the k−5/3 inertial range and the k−3 buoyancy model
spectra are depicted by thin solid lines. The inertial-range spectra are fit to the data
by choosing the Kolmogorov and Corrsin constants appropriately. On the other hand,
the model buoyancy-range spectra in both panels are just given by 0.2N2k−3 with no
attempt to fit the data. In panel (a), we see that the thick curve follows the inertial-
range model spectrum from about 1 m down to smaller scales. In that range, the data
match the Kolmogorov inertial-range spectrum with a Kolmogorov constant of 1.55.
The dotted curve however, tends to fall off more rapidly than the solid curve for scales
smaller than about 60 cm. In panel (b), we see that the thick curve approaches the
inertial-range model for scales smaller than about 60 cm and the inertial-range model
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(a)

(b)

(c)

Figure 18. A breaking event visualized on the ρ = ρ0 isopycnal at time 15.3TF . The three
surfaces shown are the same isopycnal level at the same time but for the three different dissipation
parameterizations discussed in the text. (a) a1 = 0.15, a2 = 5, νmol = 0, κmol = 0. (b) a1 = 0.15,
a2 = 5, νmol = 0.01 cm2 s−1, Prmol = 7. (c) a1 = 0.267, a2 = 9.21, νmol = 0, κmol = 0.

that fits for these small scales has a Corrsin constant of 0.77. The dotted curve, on
the other hand, falls off more steeply than the model inertial-range spectrum. Thus
the spectra for the a1 = 0.267 and a2 = 9.21 model, follow the others fairly well for
large scales; however, compared to the inertial-range models, they represent a deficit
of energy for scales smaller than about 60 cm. This deficit results in the smoother
texture noted in the corresponding density isosurface.

Finally, we shall discuss the sensitivity of our results to the choice of turbulent
Prandtl number. In § 2, we explained that we chose the specific value of 0.55 based on
simulations of decaying turbulence. The variation of the potential energy spectrum as
a function of Prt is a measure of the reasonableness of this choice. We have performed
a series of numerical simulations starting from t = 11TF in the run with Prt = 0.55,
νmol = 0.01 cm2 s−1 and Prmol = 7 discussed extensively in §§ 3 and 4. The earlier
discussion in this section indicates that we should not expect much sensitivity of our
results to the precise choice of the molecular values, and so we held those fixed while
varying only Prt in our sensitivity study. In figure 20, we show the resulting potential
energy spectra after evolution to t = 16.8TF for five of the values of Prt that we find
representative of this series of simulations. The time t = 16.8TF is chosen because
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Figure 19. Energy spectra at time 15.3TF from three different runs with different parameterizations
of dissipation. The thick solid curves in each panel correspond to the two cases with a = 0.15,
b = 5, and with νmol = 0 and νmol = 0.01 cm2 s−1; and the dotted curves correspond to the case
with a1 = 0.267, a2 = 9.21 and νmol = 0. In each panel there is one thin line that corresponds to
the appropriate k−5/3 inertial-range model, and one corresponding to the buoyancy-range model
0.2N2k−3. (a) Kinetic energy spectra for the v component of velocity. (b) Potential energy spectra.
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Figure 20. The potential energy spectrum at time 16.8TF for each of five runs representing different
choices of Prt. For all cases νmol = 0.01 cm2 s−1 and Prmol = 7. The values of Prt are 0.3 (short-dash),
0.4 (long-dash), 0.55 (solid), 0.6 (dots), and 1.0 (dot-dash). The correspondence of these values with
the graphs is such that the lower the value of Prt, the lower the value of the energy at the upper
wavenumber cutoff.

it is the same as in figure 10(b) where we demonstrated an excellent correspondence
between the numerical potential energy spectrum obtained with Prt = 0.55 and the
theoretical prediction. Here we again display PE(k) for Prt = 0.55 as well as curves
for two higher values Prt = 0.6 and 1.0 and two lower values Prt = 0.3 and 0.4.
Looking at the high k end of the spectrum, we note that PE is larger for larger
values of Prt. Note that the curve for Prt = 0.3 has an increase in the steepness of
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the spectrum from about k = 20 toward higher wavenumbers, and this cannot be fit
by the theoretical model (3.6), which shows the slope becoming steadily shallower as
k increases. The curve for Prt = 0.4 has much more nearly constant slope for high k,
but there is still a tendency, although slight, toward a steeper slope as k increases for
k greater than about 20. We saw in figure 10(b) that the Prt = 0.55 curve matches
the theoretical prediction fairly well except in the range near the cutoff, somewhat
above k = 50 where there is some curl-up. This curl-up becomes systematically worse
as Prt is increased as evidenced by the curves for Prt = 0.6 and 1. As we mentioned
above, this curl-up indicates a degree of failure of the SGS model to properly mimic
the transfer of energy to subgrid scales, near the high-wavenumber cutoff. Ideally, the
model should be tuned to minimize this curl-up. These results indicate that a choice
of Prt somewhere from 0.4 and 0.55 would be appropriate for our forced simulations,
but also that variation in this range would not make significant differences except
perhaps at the highest wavenumbers.

6. Discussion
We have seen that with the large-scale standing internal-wave type of forcing that

we have used here, the expected spectral transition from a steep spectrum at large
scales to a shallow inertial-range spectrum at small scales can be achieved, but only
transiently during breaking events. How can we interpret this in terms of the buoyancy
range of the ocean? If the spectral break does relate to breaking events, perhaps we
should think of the oceanic spectra as an average of many different breaking events
over a volume much larger than what is available to us with the methods employed
here. Or perhaps a stationary spectrum with this transition could be observed in
a cube of the ocean of 20 m width because the forcing to which it is subjected is
composed of many different internal waves all interacting within this cube producing
many more breaking events than we have with our single standing wave.

As for the structures that we have observed, the typical breaking patterns shown
in figure 6(c, d) were very much what was to be expected given our familiarity
with breaking surface waves, previous two-dimensional simulations, and the recent
simulations of Andreassen et al. (1994), Dornbrack (1998) and Afanasyev & Peltier
(1998). On the other hand, the spouts observed to form in regions of high vertical
strain were unexpected. Their subsequent evolution that produced overturns of a
type different from the classic breaking pattern could be of interest in analysing
oceanic observations of overturns in regions of high strain (cf. Alford & Pinkel 2000).
Although, a long-term standing wave is not the typical image one has for motions
in the thermocline, it is certainly possible that waves passing through each other can
create regions of high strain rate, and then it is possible that the isodensity surfaces
could erupt with the kinds of spouts found here.
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Appendix
Here we derive the result (3.8) for the theoretical buoyancy flux by starting from the

basic relations of the Holloway (1983, 1986) theory. The equation for the evolution
of the kinetic energy spectrum can be written as

∂E

∂t
= T + BF − 2νk2E (A 1)

where E, T and BF are functions of k and t (cf. Frisch 1995). Here T is the nonlinear
transfer of kinetic energy and BF(k, t) is the spectrum of buoyancy flux. The term
∂tE can be assumed to vanish in a statistically stationary flow and also in our flow
with oscillating forcing after sufficient time averaging. In the buoyancy and inertial
ranges, the viscous dissipation can be neglected. Hence, in the statistically stationary
buoyancy and inertial ranges we have BF(k) = −T (k).

The transfer is the divergence of the flux of energy in spectral space (cf. Frisch 1995):

T = −∂ε/∂k. (A 2)

Here the energy flux ε is treated as a function of k and we will assume that ε becomes
a constant ε0 for sufficiently high wavenumbers in the inertial range. A model is
needed for ε. The following four equations constitute such a model (Holloway 1986,
equations 9, 10, 11 and 15 respectively):

ε(k) = −aµ2θkr+1∂rkE, (A 3)

θ(k) =
µ

µ2 +N2
, (A 4)

µ(k) = bε1/3k2/3, (A 5)

E = Aε
2/3
0 k−5/3(1 + B(kb/k)

4/3). (A 6)

The order of the derivative r in equation (A 3) was left as an arbitrary positive
(possibly fractional) number. For simplicity we will choose r = 1 in our derivation,
but other choices give similar results as discussed below. The timescale θ is the
corelation time for triad interactions, and it takes a form suggested by turbulence
closure theory. Dimensional scaling based only on ε and k gives the relation (A 5)
for the the nonlinear interaction rate or inverse eddy turnover time µ. We have
introduced the constants of proportionality a and b which were left implicit in
Holloway’s equations. Positive ε may require negative values of a, depending on the
value of r, while b can be assumed positive. In the energy equation, A = CK is the
Kolmogorov constant and B is a positive empirical constant that takes into account
that kb = (N3/ε0)

1/2 defines the transition wavenumber only approximately.
Taking (A 3) with r = 1 and substituting for θ from (A 4), we obtain

ε = − aµ3

µ2 +N2
k2∂kE. (A 7)

Then substituting from (A 5) for µ, we have

b2ε2/3k4/3 +N2 = −ab3k4∂kE. (A 8)

Next we substitute for E from (A 6), and after some algebra obtain

ε = ε0

(
5
3
abA+ (3abAB − b−2)(kb/k)

4/3
)3/2

. (A 9)
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To achieve the correct limiting form for high k, we must choose 5abA/3 = 1, and we
can use this relation to fix a. Thus we have

ε = ε0(1 + D(kb/k)
4/3)3/2 (A 10)

where D = (9B/5− b−2). Therefore, depending on the size of B relative to b, this
parameter D can be positive, negative or zero. Finally we can obtain BF(k) in the
buoyancy and inertial ranges from the relation BF = −T = ∂kε(k). This yields the
desired result

BF(k) = −2D
ε0

kb
(1 + D(kb/k)

4/3)1/2

(
kb

k

)7/3

. (A 11)

Other choices of the order of the derivative in (A 3) lead to the same result except
for the coefficient of B in the expression for D. For example, if r = 3 then D =
(81/22)B − b−2. For fractional r, the coefficient of B would be more complicated, but
can be expressed in terms of the Gamma function.

Thus we have demonstrated that the buoyancy flux predicted by the Holloway
(1983) theory has the same analytical form as that of the Lumley–Shur theory.
We must note, however, that the theories of Holloway and Lumley–Shur differ on
important points. For example, in the Lumley–Shur theory, the relation between the
kinetic energy spectrum and ε(k) is given by

E(k) = A[ε(k)]2/3k−5/3, (A 12)

whereas in the Holloway theory the relation is given by (A 3). Thus, in Lumley–
Shur theory, the only way to obtain the correct form of the energy spectrum is to
have ε(k) vary strongly with k in the buoyancy range. In contrast, in the Holloway
theory the correct energy spectrum (A 6) can be obtained even if ε is constant in
k. Furthermore, the energetics of the buoyancy and inertial ranges with negative
buoyancy flux, as assumed in the Lumley–Shur theory, is very different from that
with positive buoyancy flux, as allowed by Holloway’s (1983, 1986) theory. With
negative buoyancy flux, there is a transfer of kinetic to potential energy, and the
kinetic energy flux ε(k) is a decreasing function of k. With positive buoyancy flux, the
transfer is from potential to kinetic energy, in agreement with our numerical results
for the wave forced turbulence, and ε(k) increases with k.
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