# 1 A. STATISTICAL TABLES AND PROCEDURES

# 2 A.1 Normal Distribution

3

#### Table A.1 Cumulative Normal Distribution Function $\Phi(z)$

| Z    | 0.00   | 0.01   | 0.02   | 0.03   | 0.04   | 0.05   | 0.06   | 0.07   | 0.08   | 0.09   |
|------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|
| 0.00 | 0.5000 | 0.5040 | 0.5080 | 0.5120 | 0.5160 | 0.5199 | 0.5239 | 0.5279 | 0.5319 | 0.5359 |
| 0.10 | 0.5398 | 0.5438 | 0.5478 | 0.5517 | 0.5557 | 0.5596 | 0.5636 | 0.5674 | 0.5714 | 0.5753 |
| 0.20 | 0.5793 | 0.5832 | 0.5871 | 0.5910 | 0.5948 | 0.5987 | 0.6026 | 0.6064 | 0.6103 | 0.6141 |
| 0.30 | 0.6179 | 0.6217 | 0.6255 | 0.6293 | 0.6331 | 0.6368 | 0.6406 | 0.6443 | 0.6480 | 0.6517 |
| 0.40 | 0.6554 | 0.6591 | 0.6628 | 0.6664 | 0.6700 | 0.6736 | 0.6772 | 0.6808 | 0.6844 | 0.6879 |
| 0.50 | 0.6915 | 0.6950 | 0.6985 | 0.7019 | 0.7054 | 0.7088 | 0.7123 | 0.7157 | 0.7190 | 0.7224 |
| 0.60 | 0.7257 | 0.7291 | 0.7324 | 0.7357 | 0.7389 | 0.7422 | 0.7454 | 0.7486 | 0.7517 | 0.7549 |
| 0.70 | 0.7580 | 0.7611 | 0.7642 | 0.7673 | 0.7704 | 0.7734 | 0.7764 | 0.7794 | 0.7823 | 0.7852 |
| 0.80 | 0.7881 | 0.7910 | 0.7939 | 0.7967 | 0.7995 | 0.8023 | 0.8051 | 0.8078 | 0.8106 | 0.8133 |
| 0.90 | 0.8159 | 0.8186 | 0.8212 | 0.8238 | 0.8264 | 0.8289 | 0.6315 | 0.8340 | 0.8365 | 0.8389 |
| 1.00 | 0.8413 | 0.8438 | 0.8461 | 0.8485 | 0.8508 | 0.8531 | 0.8554 | 0.8577 | 0.8599 | 0.8621 |
| 1.10 | 0.8643 | 0.8665 | 0.8686 | 0.8708 | 0.8729 | 0.8749 | 0.8770 | 0.8790 | 0.8810 | 0.8830 |
| 1.20 | 0.8849 | 0.8869 | 0.8888 | 0.8907 | 0.8925 | 0.8944 | 0.8962 | 0.8980 | 0.8997 | 0.9015 |
| 1.30 | 0.9032 | 0.9049 | 0.9066 | 0.9082 | 0.9099 | 0.9115 | 0.9131 | 0.9147 | 0.9162 | 0.9177 |
| 1.40 | 0.9192 | 0.9207 | 0.9222 | 0.9236 | 0.9251 | 0.9265 | 0.9279 | 0.9292 | 0.9306 | 0.9319 |
| 1.50 | 0.9332 | 0.9345 | 0.9357 | 0.9370 | 0.9382 | 0.9394 | 0.9406 | 0.9418 | 0.9429 | 0.9441 |
| 1.60 | 0.9452 | 0.9463 | 0.9474 | 0.9484 | 0.9495 | 0.9505 | 0.9515 | 0.9525 | 0.9535 | 0.9545 |
| 1.70 | 0.9554 | 0.9564 | 0.9573 | 0.9582 | 0.9591 | 0.9599 | 0.9608 | 0.9616 | 0.9625 | 0.9633 |
| 1.80 | 0.9641 | 0.9649 | 0.9656 | 0.9664 | 0.9671 | 0.9678 | 0.9686 | 0.9693 | 0.9699 | 0.9706 |
| 1.90 | 0.9713 | 0.9719 | 0.9726 | 0.9732 | 0.9738 | 0.9744 | 0.9750 | 0.9756 | 0.9761 | 0.9767 |
| 2.00 | 0.9772 | 0.9778 | 0.9783 | 0.9788 | 0.9793 | 0.9798 | 0.9803 | 0.9808 | 0.9812 | 0.9817 |
| 2.10 | 0.9821 | 0.9826 | 0.9830 | 0.9834 | 0.9838 | 0.9842 | 0.9846 | 0.9850 | 0.9854 | 0.9857 |
| 2.20 | 0.9861 | 0.9864 | 0.9868 | 0.9871 | 0.9875 | 0.9878 | 0.9881 | 0.9884 | 0.9887 | 0.9890 |
| 2.30 | 0.9893 | 0.9896 | 0.9898 | 0.9901 | 0.9904 | 0.9906 | 0.9909 | 0.9911 | 0.9913 | 0.9916 |
| 2.40 | 0.9918 | 0.9920 | 0.9922 | 0.9925 | 0.9927 | 0.9929 | 0.9931 | 0.9932 | 0.9934 | 0.9936 |
| 2.50 | 0.9938 | 0.9940 | 0.9941 | 0.9943 | 0.9945 | 0.9946 | 0.9948 | 0.9949 | 0.9951 | 0.9952 |
| 2.60 | 0.9953 | 0.9955 | 0.9956 | 0.9957 | 0.9959 | 0.9960 | 0.9961 | 0.9962 | 0.9963 | 0.9964 |
| 2.70 | 0.9965 | 0.9966 | 0.9967 | 0.9968 | 0.9969 | 0.9970 | 0.9971 | 0.9972 | 0.9973 | 0.9974 |
| 2.80 | 0.9974 | 0.9975 | 0.9976 | 0.9977 | 0.9977 | 0.9978 | 0.9979 | 0.9979 | 0.9980 | 0.9981 |
| 2.90 | 0.9981 | 0.9982 | 0.9982 | 0.9983 | 0.9984 | 0.9984 | 0.9985 | 0.9985 | 0.9986 | 0.9986 |
| 3.00 | 0.9987 | 0.9987 | 0.9987 | 0.9988 | 0.9988 | 0.9989 | 0.9989 | 0.9989 | 0.9990 | 0.9990 |
| 3.10 | 0.9990 | 0.9991 | 0.9991 | 0.9991 | 0.9992 | 0.9992 | 0.9992 | 0.9992 | 0.9993 | 0.9993 |
| 3.20 | 0.9993 | 0.9993 | 0.9994 | 0.9994 | 0.9994 | 0.9994 | 0.9994 | 0.9995 | 0.9995 | 0.9995 |
| 3.30 | 0.9995 | 0.9995 | 0.9995 | 0.9996 | 0.9996 | 0.9996 | 0.9996 | 0.9996 | 0.9996 | 0.9997 |
| 3.40 | 0.9997 | 0.9997 | 0.9997 | 0.9997 | 0.9997 | 0.9997 | 0.9997 | 0.9997 | 0.9997 | 0.9998 |

4

Negative values of z can be obtained from the relationship  $\Phi(-z) = 1 - \Phi(z)$ 

A-1

# 5 A.2 Sample Sizes for Statistical Tests

6

### Table A.2a Sample Sizes for Sign Test

| - 1 |
|-----|
|     |

### (Number of measurements to be performed in each survey unit)

|     |       |       |       |       |       |       | (α,   | B) or (f | <b>β,</b> α) |       |       |       |       |      |      |
|-----|-------|-------|-------|-------|-------|-------|-------|----------|--------------|-------|-------|-------|-------|------|------|
|     | 0.01  | 0.01  | 0.01  | 0.01  | 0.01  | 0.025 | 0.025 | 0.025    | 0.025        | 0.05  | 0.05  | 0.05  | 0.1   | 0.1  | 0.25 |
| Δ/σ | 0.01  | 0.025 | 0.05  | 0.1   | 0.25  | 0.025 | 0.05  | 0.1      | 0.25         | 0.05  | 0.1   | 0.25  | 0.1   | 0.25 | 0.25 |
| 0.1 | 4,095 | 3,476 | 2,984 | 2,463 | 1,704 | 2,907 | 2,459 | 1,989    | 1,313        | 2,048 | 1,620 | 1,018 | 1,244 | 725  | 345  |
| 0.2 | 1,035 | 879   | 754   | 623   | 431   | 735   | 622   | 503      | 333          | 518   | 410   | 258   | 315   | 184  | 88   |
| 0.3 | 468   | 398   | 341   | 282   | 195   | 333   | 281   | 227      | 150          | 234   | 185   | 117   | 143   | 83   | 40   |
| 0.4 | 270   | 230   | 197   | 162   | 113   | 192   | 162   | 131      | 87           | 136   | 107   | 68    | 82    | 48   | 23   |
| 0.5 | 178   | 152   | 130   | 107   | 75    | 126   | 107   | 87       | 58           | 89    | 71    | 45    | 54    | 33   | 16   |
| 0.6 | 129   | 110   | 94    | 77    | 54    | 92    | 77    | 63       | 42           | 65    | 52    | 33    | 40    | 23   | 11   |
| 0.7 | 99    | 83    | 72    | 59    | 41    | 70    | 59    | 48       | 33           | 50    | 40    | 26    | 30    | 18   | 9    |
| 0.8 | 80    | 68    | 58    | 48    | 34    | 57    | 48    | 39       | 26           | 40    | 32    | 21    | 24    | 15   | 8    |
| 0.9 | 66    | 57    | 48    | 40    | 28    | 47    | 40    | 33       | 22           | 34    | 27    | 17    | 21    | 12   | 6    |
| 1.0 | 57    | 48    | 41    | 34    | 24    | 40    | 34    | 28       | 18           | 29    | 23    | 15    | 18    | 11   | 5    |
| 1.1 | 50    | 42    | 36    | 30    | 21    | 35    | 30    | 24       | 17           | 26    | 21    | 14    | 16    | 10   | 5    |
| 1.2 | 45    | 38    | 33    | 27    | 20    | 32    | 27    | 22       | 15           | 23    | 18    | 12    | 15    | 9    | 5    |
| 1.3 | 41    | 35    | 30    | 26    | 17    | 29    | 24    | 21       | 14           | 21    | 17    | 11    | 14    | 8    | 4    |
| 1.4 | 38    | 33    | 28    | 23    | 16    | 27    | 23    | 18       | 12           | 20    | 16    | 10    | 12    | 8    | 4    |
| 1.5 | 35    | 30    | 27    | 22    | 15    | 26    | 22    | 17       | 12           | 18    | 15    | 10    | 11    | 8    | 4    |
| 1.6 | 34    | 29    | 24    | 21    | 15    | 24    | 21    | 17       | 11           | 17    | 14    | 9     | 11    | 6    | 4    |
| 1.7 | 33    | 28    | 24    | 20    | 14    | 23    | 20    | 16       | 11           | 17    | 14    | 9     | 10    | 6    | 4    |
| 1.8 | 32    | 27    | 23    | 20    | 14    | 22    | 20    | 16       | 11           | 16    | 12    | 9     | 10    | 6    | 4    |
| 1.9 | 30    | 26    | 22    | 18    | 14    | 22    | 18    | 15       | 10           | 16    | 12    | 9     | 10    | 6    | 4    |
| 2.0 | 29    | 26    | 22    | 18    | 12    | 21    | 18    | 15       | 10           | 15    | 12    | 8     | 10    | 6    | 3    |
| 2.5 | 28    | 23    | 21    | 17    | 12    | 20    | 17    | 14       | 10           | 15    | 11    | 8     | 9     | 5    | 3    |
| 3.0 | 27    | 23    | 20    | 17    | 12    | 20    | 17    | 14       | 9            | 14    | 11    | 8     | 9     | 5    | 3    |

### Table A.2b Sample Sizes for Wilcoxon Rank Sum Test

9

10

(Number of measurements to be performed on the reference material and for each survey unit)

|                 |       |       |       |       |       |       | (α,   | β <b>) or (</b> β | 3,α)  |       |       |       |       |      |      |
|-----------------|-------|-------|-------|-------|-------|-------|-------|-------------------|-------|-------|-------|-------|-------|------|------|
|                 | 0.01  | 0.01  | 0.01  | 0.01  | 0.01  | 0.025 | 0.025 | 0.025             | 0.025 | 0.05  | 0.05  | 0.05  | 0.1   | 0.1  | 0.25 |
| $\Delta/\sigma$ | 0.01  | 0.025 | 0.05  | 0.1   | 0.25  | 0.025 | 0.05  | 0.1               | 0.25  | 0.05  | 0.1   | 0.25  | 0.1   | 0.25 | 0.25 |
| 0.1             | 5,452 | 4,627 | 3,972 | 3,278 | 2,268 | 3,870 | 3,273 | 2,646             | 1,748 | 2,726 | 2,157 | 1,355 | 1,655 | 964  | 459  |
| 0.2             | 1,370 | 1,163 | 998   | 824   | 570   | 973   | 823   | 665               | 440   | 685   | 542   | 341   | 416   | 243  | 116  |
| 0.3             | 614   | 521   | 448   | 370   | 256   | 436   | 369   | 298               | 197   | 307   | 243   | 153   | 187   | 109  | 52   |
| 0.4             | 350   | 297   | 255   | 211   | 146   | 248   | 210   | 170               | 112   | 175   | 139   | 87    | 106   | 62   | 30   |
| 0.5             | 227   | 193   | 166   | 137   | 95    | 162   | 137   | 111               | 73    | 114   | 90    | 57    | 69    | 41   | 20   |
| 0.6             | 161   | 137   | 117   | 97    | 67    | 114   | 97    | 78                | 52    | 81    | 64    | 40    | 49    | 29   | 14   |
| 0.7             | 121   | 103   | 88    | 73    | 51    | 86    | 73    | 59                | 39    | 61    | 48    | 30    | 37    | 22   | 11   |
| 0.8             | 95    | 81    | 69    | 57    | 40    | 68    | 57    | 46                | 31    | 48    | 38    | 24    | 29    | 17   | 8    |
| 0.9             | 77    | 66    | 56    | 47    | 32    | 55    | 46    | 38                | 25    | 39    | 31    | 20    | 24    | 14   | 7    |
| 1.0             | 64    | 55    | 47    | 39    | 27    | 46    | 39    | 32                | 21    | 32    | 26    | 16    | 20    | 12   | 6    |
| 1.1             | 55    | 47    | 40    | 33    | 23    | 39    | 33    | 27                | 18    | 28    | 22    | 14    | 17    | 10   | 5    |
| 1.2             | 48    | 41    | 35    | 29    | 20    | 34    | 29    | 24                | 16    | 24    | 19    | 12    | 15    | 9    | 4    |
| 1.3             | 43    | 36    | 31    | 26    | 18    | 30    | 26    | 21                | 14    | 22    | 17    | 11    | 13    | 8    | 4    |
| 1.4             | 38    | 32    | 28    | 23    | 16    | 27    | 23    | 19                | 13    | 19    | 15    | 10    | 12    | 7    | 4    |
| 1.5             | 35    | 30    | 25    | 21    | 15    | 25    | 21    | 17                | 11    | 18    | 14    | 9     | 11    | 7    | 3    |
| 1.6             | 32    | 27    | 23    | 19    | 14    | 23    | 19    | 16                | 11    | 16    | 13    | 8     | 10    | 6    | 3    |
| 1.7             | 30    | 25    | 22    | 18    | 13    | 21    | 18    | 15                | 10    | 15    | 12    | 8     | 9     | 6    | 3    |
| 1.8             | 28    | 24    | 20    | 17    | 12    | 20    | 17    | 14                | 9     | 14    | 11    | 7     | 9     | 5    | 3    |
| 1.9             | 26    | 22    | 19    | 16    | 11    | 19    | 16    | 13                | 9     | 13    | 11    | 7     | 8     | 5    | 3    |
| 2.0             | 25    | 21    | 18    | 15    | 11    | 18    | 15    | 12                | 8     | 13    | 10    | 7     | 8     | 5    | 3    |
| 2.25            | 22    | 19    | 16    | 14    | 10    | 16    | 14    | 11                | 8     | 11    | 9     | 6     | 7     | 4    | 2    |
| 2.5             | 21    | 18    | 15    | 13    | 9     | 15    | 13    | 10                | 7     | 11    | 9     | 6     | 7     | 4    | 2    |
| 2.75            | 20    | 17    | 15    | 12    | 9     | 14    | 12    | 10                | 7     | 10    | 8     | 5     | 6     | 4    | 2    |
| 3.0             | 19    | 16    | 14    | 12    | 8     | 14    | 12    | 10                | 6     | 10    | 8     | 5     | 6     | 4    | 2    |
| 3.5             | 18    | 16    | 13    | 11    | 8     | 13    | 11    | 9                 | 6     | 9     | 8     | 5     | 6     | 4    | 2    |
| 4.0             | 18    | 15    | 13    | 11    | 8     | 13    | 11    | 9                 | 6     | 9     | 7     | 5     | 6     | 4    | 2    |

# 12 A.3 Critical Values for the Sign Test

| 13 |
|----|
|    |

Table A.3 Critical Values for the Sign Test Statistic S+

|    |       |      |       |      | Alpha |     |     |     |     |
|----|-------|------|-------|------|-------|-----|-----|-----|-----|
| Ν  | 0.005 | 0.01 | 0.025 | 0.05 | 0.1   | 0.2 | 0.3 | 0.4 | 0.5 |
| 4  | 4     | 4    | 4     | 4    | 3     | 3   | 3   | 2   | 2   |
| 5  | 5     | 5    | 5     | 4    | 4     | 3   | 3   | 3   | 2   |
| 6  | 6     | 6    | 5     | 5    | 5     | 4   | 4   | 3   | 3   |
| 7  | 7     | 6    | 6     | 6    | 5     | 5   | 4   | 4   | 3   |
| 8  | 7     | 7    | 7     | 6    | 6     | 5   | 5   | 4   | 4   |
| 9  | 8     | 8    | 7     | 7    | 6     | 6   | 5   | 5   | 4   |
| 10 | 9     | 9    | 8     | 8    | 7     | 6   | 6   | 5   | 5   |
| 11 | 10    | 9    | 9     | 8    | 8     | 7   | 6   | 6   | 5   |
| 12 | 10    | 10   | 9     | 9    | 8     | 7   | 7   | 6   | 6   |
| 13 | 11    | 11   | 10    | 9    | 9     | 8   | 7   | 7   | 6   |
| 14 | 12    | 11   | 11    | 10   | 9     | 9   | 8   | 7   | 7   |
| 15 | 12    | 12   | 11    | 11   | 10    | 9   | 9   | 8   | 7   |
| 16 | 13    | 13   | 12    | 11   | 11    | 10  | 9   | 9   | 8   |
| 17 | 14    | 13   | 12    | 12   | 11    | 10  | 10  | 9   | 8   |
| 18 | 14    | 14   | 13    | 12   | 12    | 11  | 10  | 10  | 9   |
| 19 | 15    | 14   | 14    | 13   | 12    | 11  | 11  | 10  | 9   |
| 20 | 16    | 15   | 14    | 14   | 13    | 12  | 11  | 11  | 10  |
| 21 | 16    | 16   | 15    | 14   | 13    | 12  | 12  | 11  | 10  |
| 22 | 17    | 16   | 16    | 15   | 14    | 13  | 12  | 12  | 11  |
| 23 | 18    | 17   | 16    | 15   | 15    | 14  | 13  | 12  | 11  |
| 24 | 18    | 18   | 17    | 16   | 15    | 14  | 13  | 13  | 12  |
| 25 | 19    | 18   | 17    | 17   | 16    | 15  | 14  | 13  | 12  |
| 26 | 19    | 19   | 18    | 17   | 16    | 15  | 14  | 14  | 13  |
| 27 | 20    | 19   | 19    | 18   | 17    | 16  | 15  | 14  | 13  |
| 28 | 21    | 20   | 19    | 18   | 17    | 16  | 15  | 15  | 14  |
| 29 | 21    | 21   | 20    | 19   | 18    | 17  | 16  | 15  | 14  |
| 30 | 22    | 21   | 20    | 19   | 19    | 17  | 16  | 16  | 15  |

|    |       |      |       |      | Alnha |     |     |     |     |
|----|-------|------|-------|------|-------|-----|-----|-----|-----|
| NI | 0.005 | 0.01 | 0.025 | 0.05 |       | 0.2 | 0.2 | 0.4 | 0.5 |
| 1  | 0.005 | 0.01 | 0.025 | 0.05 | 0.1   | 0.2 | 0.5 | 0.4 | 0.5 |
| 31 | 23    | 22   | 21    | 20   | 19    | 18  | 17  | 16  | 15  |
| 32 | 23    | 23   | 22    | 21   | 20    | 18  | 17  | 17  | 16  |
| 33 | 24    | 23   | 22    | 21   | 20    | 19  | 18  | 17  | 16  |
| 34 | 24    | 24   | 23    | 22   | 21    | 19  | 19  | 18  | 17  |
| 35 | 25    | 24   | 23    | 22   | 21    | 20  | 19  | 18  | 17  |
| 36 | 26    | 25   | 24    | 23   | 22    | 21  | 20  | 19  | 18  |
| 37 | 26    | 26   | 24    | 23   | 22    | 21  | 20  | 19  | 18  |
| 38 | 27    | 26   | 25    | 24   | 23    | 22  | 21  | 20  | 19  |
| 39 | 27    | 27   | 26    | 25   | 23    | 22  | 21  | 20  | 19  |
| 40 | 28    | 27   | 26    | 25   | 24    | 23  | 22  | 21  | 20  |
| 41 | 29    | 28   | 27    | 26   | 25    | 23  | 22  | 21  | 20  |
| 42 | 29    | 28   | 27    | 26   | 25    | 24  | 23  | 22  | 21  |
| 43 | 30    | 29   | 28    | 27   | 26    | 24  | 23  | 22  | 21  |
| 44 | 30    | 30   | 28    | 27   | 26    | 25  | 24  | 23  | 22  |
| 45 | 31    | 30   | 29    | 28   | 27    | 25  | 24  | 23  | 22  |
| 46 | 32    | 31   | 30    | 29   | 27    | 26  | 25  | 24  | 23  |
| 47 | 32    | 31   | 30    | 29   | 28    | 26  | 25  | 24  | 23  |
| 48 | 33    | 32   | 31    | 30   | 28    | 27  | 26  | 25  | 24  |
| 49 | 33    | 33   | 31    | 30   | 29    | 27  | 26  | 25  | 24  |
| 50 | 34    | 33   | 32    | 31   | 30    | 28  | 27  | 26  | 25  |

 Table A.3 Critical Values for the Sign Test Statistic S+ (continued)

#### 16 A.4 Critical Values for the WRS Test

17 The parameter "m" is the number of reference area samples and the parameter "n" is the number

18 of survey unit samples. When using this table under Scenario A, m is the number of reference

19 area samples and n is the number of survey unit samples. When using this table for Scenario B,

20 the roles of m and n in this table are reversed.

21

 Table A.4 Critical Values for the WRS Test

|   |       |    |    |    |    |    |    |    |    |    | n  |    |    |    |     |     |     |     |     |     |
|---|-------|----|----|----|----|----|----|----|----|----|----|----|----|----|-----|-----|-----|-----|-----|-----|
| m | α     | 2  | 3  | 4  | 5  | 6  | 7  | 8  | 9  | 10 | 11 | 12 | 13 | 14 | 15  | 16  | 17  | 18  | 19  | 20  |
|   | 0.001 | 7  | 9  | 11 | 13 | 15 | 17 | 19 | 21 | 23 | 25 | 27 | 29 | 31 | 33  | 35  | 37  | 39  | 41  | 43  |
|   | 0.005 | 7  | 9  | 11 | 13 | 15 | 17 | 19 | 21 | 23 | 25 | 27 | 29 | 31 | 33  | 35  | 37  | 39  | 40  | 42  |
| 2 | 0.01  | 7  | 9  | 11 | 13 | 15 | 17 | 19 | 21 | 23 | 25 | 27 | 28 | 30 | 32  | 34  | 36  | 38  | 39  | 41  |
| 2 | 0.025 | 7  | 9  | 11 | 13 | 15 | 17 | 18 | 20 | 22 | 23 | 25 | 27 | 29 | 31  | 33  | 34  | 36  | 38  | 40  |
|   | 0.05  | 7  | 9  | 11 | 12 | 14 | 16 | 17 | 19 | 21 | 23 | 24 | 26 | 27 | 29  | 31  | 33  | 34  | 36  | 38  |
|   | 0.1   | 7  | 8  | 10 | 11 | 13 | 15 | 16 | 18 | 19 | 21 | 22 | 24 | 26 | 27  | 29  | 30  | 32  | 33  | 35  |
|   | 0.001 | 12 | 15 | 18 | 21 | 24 | 27 | 30 | 33 | 36 | 39 | 42 | 45 | 48 | 51  | 54  | 56  | 59  | 62  | 65  |
|   | 0.005 | 12 | 15 | 18 | 21 | 24 | 27 | 30 | 32 | 35 | 38 | 40 | 43 | 46 | 48  | 51  | 54  | 57  | 59  | 62  |
| 2 | 0.01  | 12 | 15 | 18 | 21 | 24 | 26 | 29 | 31 | 34 | 37 | 39 | 42 | 45 | 47  | 50  | 52  | 55  | 58  | 60  |
| 3 | 0.025 | 12 | 15 | 18 | 20 | 22 | 25 | 27 | 30 | 32 | 35 | 37 | 40 | 42 | 45  | 47  | 50  | 52  | 55  | 57  |
|   | 0.05  | 12 | 14 | 17 | 19 | 21 | 24 | 26 | 28 | 31 | 33 | 36 | 38 | 40 | 43  | 45  | 47  | 50  | 52  | 54  |
|   | 0.1   | 11 | 13 | 16 | 18 | 20 | 22 | 24 | 27 | 29 | 31 | 33 | 35 | 37 | 40  | 42  | 44  | 46  | 48  | 50  |
|   | 0.001 | 18 | 22 | 26 | 30 | 34 | 38 | 42 | 46 | 49 | 53 | 57 | 60 | 64 | 68  | 71  | 75  | 78  | 82  | 86  |
|   | 0.005 | 18 | 22 | 26 | 30 | 33 | 37 | 40 | 44 | 47 | 51 | 54 | 58 | 61 | 64  | 68  | 71  | 75  | 78  | 81  |
| 4 | 0.01  | 18 | 22 | 26 | 29 | 32 | 36 | 39 | 42 | 46 | 49 | 52 | 56 | 59 | 62  | 66  | 69  | 72  | 76  | 79  |
| - | 0.025 | 18 | 22 | 25 | 28 | 31 | 34 | 37 | 41 | 44 | 47 | 50 | 53 | 56 | 59  | 62  | 66  | 69  | 72  | 75  |
|   | 0.05  | 18 | 21 | 24 | 27 | 30 | 33 | 36 | 39 | 42 | 45 | 48 | 51 | 54 | 57  | 59  | 62  | 65  | 68  | 71  |
|   | 0.1   | 17 | 20 | 22 | 25 | 28 | 31 | 34 | 36 | 39 | 42 | 45 | 48 | 50 | 53  | 56  | 59  | 61  | 64  | 67  |
|   | 0.001 | 25 | 30 | 35 | 40 | 45 | 50 | 54 | 58 | 63 | 67 | 72 | 76 | 81 | 85  | 89  | 94  | 98  | 102 | 107 |
|   | 0.005 | 25 | 30 | 35 | 39 | 43 | 48 | 52 | 56 | 60 | 64 | 68 | 72 | 77 | 81  | 85  | 89  | 93  | 97  | 101 |
| 5 | 0.01  | 25 | 30 | 34 | 38 | 42 | 46 | 50 | 54 | 58 | 62 | 66 | 70 | 74 | 78  | 82  | 86  | 90  | 94  | 98  |
| 5 | 0.025 | 25 | 29 | 33 | 37 | 41 | 44 | 48 | 52 | 56 | 60 | 63 | 67 | 71 | 75  | 79  | 82  | 86  | 90  | 94  |
|   | 0.05  | 24 | 28 | 32 | 35 | 39 | 43 | 46 | 50 | 53 | 57 | 61 | 64 | 68 | 71  | 75  | 79  | 82  | 86  | 89  |
|   | 0.1   | 23 | 27 | 30 | 34 | 37 | 41 | 44 | 47 | 51 | 54 | 57 | 61 | 64 | 67  | 71  | 74  | 77  | 81  | 84  |
|   | 0.001 | 33 | 39 | 45 | 51 | 57 | 63 | 67 | 72 | 77 | 82 | 88 | 93 | 98 | 103 | 108 | 113 | 118 | 123 | 128 |
|   | 0.005 | 33 | 39 | 44 | 49 | 54 | 59 | 64 | 69 | 74 | 79 | 83 | 88 | 93 | 98  | 103 | 107 | 112 | 117 | 122 |
| 6 | 0.01  | 33 | 39 | 43 | 48 | 53 | 58 | 62 | 67 | 72 | 77 | 81 | 86 | 91 | 95  | 100 | 104 | 109 | 114 | 118 |
|   | 0.025 | 33 | 37 | 42 | 47 | 51 | 56 | 60 | 64 | 69 | 73 | 78 | 82 | 87 | 91  | 95  | 100 | 104 | 109 | 113 |
|   | 0.05  | 32 | 36 | 41 | 45 | 49 | 54 | 58 | 62 | 66 | 70 | 75 | 79 | 83 | 87  | 91  | 96  | 100 | 104 | 108 |
|   | 0.1   | 31 | 35 | 39 | 43 | 47 | 51 | 55 | 59 | 63 | 67 | 71 | 75 | 79 | 83  | 87  | 91  | 94  | 98  | 102 |

Table A.4 Critical Values for the WRS Test (continued)

|    |       |     |     |     |     |     |     |     |     |     | n   |     |     |     |     |     |     |     |     |     |
|----|-------|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|
| m  | α     | 2   | 3   | 4   | 5   | 6   | 7   | 8   | 9   | 10  | 11  | 12  | 13  | 14  | 15  | 16  | 17  | 18  | 19  | 20  |
|    | 0.001 | 42  | 49  | 56  | 63  | 69  | 75  | 81  | 87  | 92  | 98  | 104 | 110 | 116 | 122 | 128 | 133 | 139 | 145 | 151 |
|    | 0.005 | 42  | 49  | 55  | 61  | 66  | 72  | 77  | 83  | 88  | 94  | 99  | 105 | 110 | 116 | 121 | 127 | 132 | 138 | 143 |
| 7  | 0.01  | 42  | 48  | 54  | 59  | 65  | 70  | 76  | 81  | 86  | 92  | 97  | 102 | 108 | 113 | 118 | 123 | 129 | 134 | 139 |
|    | 0.025 | 42  | 47  | 52  | 57  | 63  | 68  | 73  | 78  | 83  | 88  | 93  | 98  | 103 | 108 | 113 | 118 | 123 | 128 | 133 |
|    | 0.05  | 41  | 46  | 51  | 56  | 61  | 65  | 70  | 75  | 80  | 85  | 90  | 94  | 99  | 104 | 109 | 113 | 118 | 123 | 128 |
|    | 0.1   | 40  | 44  | 49  | 54  | 58  | 63  | 67  | 72  | 76  | 81  | 85  | 90  | 94  | 99  | 103 | 108 | 112 | 117 | 121 |
|    | 0.001 | 52  | 60  | 68  | 75  | 82  | 89  | 95  | 102 | 109 | 115 | 122 | 128 | 135 | 141 | 148 | 154 | 161 | 167 | 174 |
|    | 0.005 | 52  | 60  | 66  | 73  | 79  | 85  | 92  | 98  | 104 | 110 | 116 | 122 | 129 | 135 | 141 | 147 | 153 | 159 | 165 |
| 8  | 0.01  | 52  | 59  | 65  | 71  | 77  | 84  | 90  | 96  | 102 | 108 | 114 | 120 | 125 | 131 | 137 | 143 | 149 | 155 | 161 |
| U  | 0.025 | 51  | 57  | 63  | 69  | 75  | 81  | 86  | 92  | 98  | 104 | 109 | 115 | 121 | 126 | 132 | 137 | 143 | 149 | 154 |
|    | 0.05  | 50  | 56  | 62  | 67  | 73  | 78  | 84  | 89  | 95  | 100 | 105 | 111 | 116 | 122 | 127 | 132 | 138 | 143 | 148 |
|    | 0.1   | 49  | 54  | 60  | 65  | 70  | 75  | 80  | 85  | 91  | 96  | 101 | 106 | 111 | 116 | 121 | 126 | 131 | 136 | 141 |
|    | 0.001 | 63  | 72  | 81  | 88  | 96  | 104 | 111 | 118 | 126 | 133 | 140 | 147 | 155 | 162 | 169 | 176 | 183 | 190 | 198 |
|    | 0.005 | 63  | 71  | 79  | 86  | 93  | 100 | 107 | 114 | 121 | 127 | 134 | 141 | 148 | 155 | 161 | 168 | 175 | 182 | 188 |
| 9  | 0.01  | 63  | 70  | 77  | 84  | 91  | 98  | 105 | 111 | 118 | 125 | 131 | 138 | 144 | 151 | 157 | 164 | 170 | 177 | 184 |
|    | 0.025 | 62  | 69  | 76  | 82  | 88  | 95  | 101 | 108 | 114 | 120 | 126 | 133 | 139 | 145 | 151 | 158 | 164 | 170 | 176 |
|    | 0.05  | 61  | 67  | 74  | 80  | 86  | 92  | 98  | 104 | 110 | 116 | 122 | 128 | 134 | 140 | 146 | 152 | 158 | 164 | 170 |
|    | 0.1   | 60  | 66  | 71  | 77  | 83  | 89  | 94  | 100 | 106 | 112 | 117 | 123 | 129 | 134 | 140 | 145 | 151 | 157 | 162 |
|    | 0.001 | 75  | 85  | 94  | 103 | 111 | 119 | 128 | 136 | 144 | 152 | 160 | 167 | 175 | 183 | 191 | 199 | 207 | 215 | 222 |
|    | 0.005 | 75  | 84  | 92  | 100 | 108 | 115 | 123 | 131 | 138 | 146 | 153 | 160 | 168 | 175 | 183 | 190 | 197 | 205 | 212 |
| 10 | 0.01  | 75  | 83  | 91  | 98  | 106 | 113 | 121 | 128 | 135 | 142 | 150 | 157 | 164 | 171 | 178 | 186 | 193 | 200 | 207 |
| 10 | 0.025 | 74  | 81  | 89  | 96  | 103 | 110 | 117 | 124 | 131 | 138 | 145 | 151 | 158 | 165 | 172 | 179 | 186 | 192 | 199 |
|    | 0.05  | 73  | 80  | 87  | 93  | 100 | 107 | 114 | 120 | 127 | 133 | 140 | 147 | 153 | 160 | 166 | 173 | 179 | 186 | 192 |
|    | 0.1   | 71  | 78  | 84  | 91  | 97  | 103 | 110 | 116 | 122 | 128 | 135 | 141 | 147 | 153 | 160 | 166 | 172 | 178 | 184 |
|    | 0.001 | 88  | 99  | 109 | 118 | 127 | 136 | 145 | 154 | 163 | 171 | 180 | 188 | 197 | 206 | 214 | 223 | 231 | 240 | 248 |
|    | 0.005 | 88  | 98  | 107 | 115 | 124 | 132 | 140 | 148 | 157 | 165 | 173 | 181 | 189 | 197 | 205 | 213 | 221 | 229 | 237 |
| 11 | 0.01  | 88  | 97  | 105 | 113 | 122 | 130 | 138 | 146 | 153 | 161 | 169 | 177 | 185 | 193 | 200 | 208 | 216 | 224 | 232 |
|    | 0.025 | 87  | 95  | 103 | 111 | 118 | 126 | 134 | 141 | 149 | 156 | 164 | 171 | 179 | 186 | 194 | 201 | 208 | 216 | 223 |
|    | 0.05  | 86  | 93  | 101 | 108 | 115 | 123 | 130 | 137 | 144 | 152 | 159 | 166 | 173 | 180 | 187 | 195 | 202 | 209 | 216 |
|    | 0.1   | 84  | 91  | 98  | 105 | 112 | 119 | 126 | 133 | 139 | 146 | 153 | 160 | 167 | 173 | 180 | 187 | 194 | 201 | 207 |
|    | 0.001 | 102 | 114 | 125 | 135 | 145 | 154 | 164 | 173 | 183 | 192 | 202 | 210 | 220 | 230 | 238 | 247 | 256 | 266 | 275 |
|    | 0.005 | 102 | 112 | 122 | 131 | 140 | 149 | 158 | 167 | 176 | 185 | 194 | 202 | 211 | 220 | 228 | 237 | 246 | 254 | 263 |
| 12 | 0.01  | 102 | 111 | 120 | 129 | 138 | 147 | 156 | 164 | 173 | 181 | 190 | 198 | 207 | 215 | 223 | 232 | 240 | 249 | 257 |
|    | 0.025 | 100 | 109 | 118 | 126 | 135 | 143 | 151 | 159 | 168 | 176 | 184 | 192 | 200 | 208 | 216 | 224 | 232 | 240 | 248 |
|    | 0.05  | 99  | 108 | 116 | 124 | 132 | 140 | 147 | 155 | 165 | 171 | 179 | 186 | 194 | 202 | 209 | 217 | 225 | 233 | 240 |
|    | 0.1   | 97  | 105 | 113 | 120 | 128 | 135 | 143 | 150 | 158 | 165 | 172 | 180 | 187 | 194 | 202 | 209 | 216 | 224 | 231 |
|    | 0.001 | 117 | 130 | 141 | 152 | 163 | 173 | 183 | 193 | 203 | 213 | 223 | 233 | 243 | 253 | 263 | 273 | 282 | 292 | 302 |
|    | 0.005 | 117 | 128 | 139 | 148 | 158 | 168 | 177 | 187 | 196 | 206 | 215 | 225 | 234 | 243 | 253 | 262 | 271 | 280 | 290 |
| 13 | 0.01  | 116 | 127 | 137 | 146 | 156 | 165 | 174 | 184 | 193 | 202 | 211 | 220 | 229 | 238 | 247 | 256 | 265 | 274 | 283 |
|    | 0.025 | 115 | 125 | 134 | 143 | 152 | 161 | 170 | 179 | 187 | 196 | 205 | 214 | 222 | 231 | 239 | 248 | 257 | 265 | 274 |
|    | 0.05  | 114 | 123 | 132 | 140 | 149 | 157 | 166 | 174 | 183 | 191 | 199 | 208 | 216 | 224 | 233 | 241 | 249 | 257 | 266 |
|    | 0.1   | 112 | 120 | 129 | 137 | 145 | 153 | 161 | 169 | 177 | 185 | 193 | 201 | 209 | 217 | 224 | 232 | 240 | 248 | 256 |

24

23

MARSAME

 Table A.4 Critical Values for the WRS Test (continued)

|     |       |     |     |     |     |     |     |     |     |     | n   |     |     |     |     |     |     |     |     |     |
|-----|-------|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|
| m   | α     | 2   | 3   | 4   | 5   | 6   | 7   | 8   | 9   | 10  | 11  | 12  | 13  | 14  | 15  | 16  | 17  | 18  | 19  | 20  |
|     | 0.001 | 133 | 147 | 159 | 171 | 182 | 193 | 204 | 215 | 225 | 236 | 247 | 257 | 268 | 278 | 289 | 299 | 310 | 320 | 330 |
|     | 0.005 | 133 | 145 | 156 | 167 | 177 | 187 | 198 | 208 | 218 | 228 | 238 | 248 | 258 | 268 | 278 | 288 | 298 | 307 | 317 |
| 14  | 0.01  | 132 | 144 | 154 | 164 | 175 | 185 | 194 | 204 | 214 | 224 | 234 | 243 | 253 | 263 | 272 | 282 | 291 | 301 | 311 |
| 17  | 0.025 | 131 | 141 | 151 | 161 | 171 | 180 | 190 | 199 | 208 | 218 | 227 | 236 | 245 | 255 | 264 | 273 | 282 | 292 | 301 |
|     | 0.05  | 129 | 139 | 149 | 158 | 167 | 176 | 185 | 194 | 203 | 212 | 221 | 230 | 239 | 248 | 257 | 265 | 274 | 283 | 292 |
|     | 0.1   | 128 | 136 | 145 | 154 | 163 | 171 | 180 | 189 | 197 | 206 | 214 | 223 | 231 | 240 | 248 | 257 | 265 | 273 | 282 |
|     | 0.001 | 150 | 165 | 178 | 190 | 202 | 212 | 225 | 237 | 248 | 260 | 271 | 282 | 293 | 304 | 316 | 327 | 338 | 349 | 360 |
|     | 0.005 | 150 | 162 | 174 | 186 | 197 | 208 | 219 | 230 | 240 | 251 | 262 | 272 | 283 | 293 | 304 | 314 | 325 | 335 | 346 |
| 15  | 0.01  | 149 | 161 | 172 | 183 | 194 | 205 | 215 | 226 | 236 | 247 | 257 | 267 | 278 | 288 | 298 | 308 | 319 | 329 | 339 |
| 15  | 0.025 | 148 | 159 | 169 | 180 | 190 | 200 | 210 | 220 | 230 | 240 | 250 | 260 | 270 | 280 | 289 | 299 | 309 | 319 | 329 |
|     | 0.05  | 146 | 157 | 167 | 176 | 186 | 196 | 206 | 215 | 225 | 234 | 244 | 253 | 263 | 272 | 282 | 291 | 301 | 310 | 319 |
|     | 0.1   | 144 | 154 | 163 | 172 | 182 | 191 | 200 | 209 | 218 | 227 | 236 | 246 | 255 | 264 | 273 | 282 | 291 | 300 | 309 |
|     | 0.001 | 168 | 184 | 197 | 210 | 223 | 236 | 248 | 260 | 272 | 284 | 296 | 308 | 320 | 332 | 343 | 355 | 367 | 379 | 390 |
|     | 0.005 | 168 | 181 | 194 | 206 | 218 | 229 | 241 | 252 | 264 | 275 | 286 | 298 | 309 | 320 | 331 | 342 | 353 | 365 | 376 |
| 16  | 0.01  | 167 | 180 | 192 | 203 | 215 | 226 | 237 | 248 | 259 | 270 | 281 | 292 | 303 | 314 | 325 | 336 | 347 | 357 | 368 |
| 10  | 0.025 | 166 | 177 | 188 | 200 | 210 | 221 | 232 | 242 | 253 | 264 | 274 | 284 | 295 | 305 | 316 | 326 | 337 | 347 | 357 |
|     | 0.05  | 164 | 175 | 185 | 196 | 206 | 217 | 227 | 237 | 247 | 257 | 267 | 278 | 288 | 298 | 308 | 318 | 328 | 338 | 348 |
|     | 0.1   | 162 | 172 | 182 | 192 | 202 | 211 | 221 | 231 | 241 | 250 | 260 | 269 | 279 | 289 | 298 | 308 | 317 | 327 | 336 |
|     | 0.001 | 187 | 203 | 218 | 232 | 245 | 258 | 271 | 284 | 297 | 310 | 322 | 335 | 347 | 360 | 372 | 384 | 397 | 409 | 422 |
| 17  | 0.005 | 187 | 201 | 214 | 227 | 239 | 252 | 264 | 276 | 288 | 300 | 312 | 324 | 336 | 347 | 359 | 371 | 383 | 394 | 406 |
|     | 0.01  | 186 | 199 | 212 | 224 | 236 | 248 | 260 | 272 | 284 | 295 | 307 | 318 | 330 | 341 | 353 | 364 | 376 | 387 | 399 |
| 1/  | 0.025 | 184 | 197 | 209 | 220 | 232 | 243 | 254 | 266 | 277 | 288 | 299 | 310 | 321 | 332 | 343 | 354 | 365 | 376 | 387 |
|     | 0.05  | 183 | 194 | 205 | 217 | 228 | 238 | 249 | 260 | 271 | 282 | 292 | 303 | 313 | 324 | 335 | 345 | 356 | 366 | 377 |
|     | 0.1   | 180 | 191 | 202 | 212 | 223 | 233 | 243 | 253 | 264 | 274 | 284 | 294 | 305 | 315 | 325 | 335 | 345 | 355 | 365 |
|     | 0.001 | 207 | 224 | 239 | 254 | 268 | 282 | 296 | 309 | 323 | 336 | 349 | 362 | 376 | 389 | 402 | 415 | 428 | 441 | 454 |
|     | 0.005 | 207 | 222 | 236 | 249 | 262 | 275 | 288 | 301 | 313 | 326 | 339 | 351 | 364 | 376 | 388 | 401 | 413 | 425 | 438 |
| 18  | 0.01  | 206 | 220 | 233 | 246 | 259 | 272 | 284 | 296 | 309 | 321 | 333 | 345 | 357 | 370 | 382 | 394 | 406 | 418 | 430 |
| 10  | 0.025 | 204 | 217 | 230 | 242 | 254 | 266 | 278 | 290 | 302 | 313 | 325 | 337 | 348 | 360 | 372 | 383 | 395 | 406 | 418 |
|     | 0.05  | 202 | 215 | 226 | 238 | 250 | 261 | 273 | 284 | 295 | 307 | 318 | 329 | 340 | 352 | 363 | 374 | 385 | 396 | 407 |
|     | 0.1   | 200 | 211 | 222 | 233 | 244 | 255 | 266 | 277 | 288 | 299 | 309 | 320 | 331 | 342 | 352 | 363 | 374 | 384 | 395 |
|     | 0.001 | 228 | 246 | 262 | 277 | 292 | 307 | 321 | 335 | 350 | 364 | 377 | 391 | 405 | 419 | 433 | 446 | 460 | 473 | 487 |
|     | 0.005 | 227 | 243 | 258 | 272 | 286 | 300 | 313 | 327 | 340 | 353 | 366 | 379 | 392 | 405 | 419 | 431 | 444 | 457 | 470 |
| 19  | 0.01  | 226 | 242 | 256 | 269 | 283 | 296 | 309 | 322 | 335 | 348 | 361 | 373 | 386 | 399 | 411 | 424 | 437 | 449 | 462 |
|     | 0.025 | 225 | 239 | 252 | 265 | 278 | 290 | 303 | 315 | 327 | 340 | 352 | 364 | 377 | 389 | 401 | 413 | 425 | 437 | 450 |
|     | 0.05  | 223 | 236 | 248 | 261 | 273 | 285 | 297 | 309 | 321 | 333 | 345 | 356 | 368 | 380 | 392 | 403 | 415 | 427 | 439 |
|     | 0.1   | 220 | 232 | 244 | 256 | 267 | 279 | 290 | 302 | 313 | 325 | 336 | 347 | 358 | 370 | 381 | 392 | 403 | 415 | 426 |
|     | 0.001 | 250 | 269 | 286 | 302 | 317 | 333 | 348 | 363 | 377 | 392 | 407 | 421 | 435 | 450 | 464 | 479 | 493 | 507 | 521 |
|     | 0.005 | 249 | 266 | 281 | 296 | 311 | 325 | 339 | 353 | 367 | 381 | 395 | 409 | 422 | 436 | 450 | 463 | 477 | 490 | 504 |
| • • | 0.01  | 248 | 264 | 279 | 293 | 307 | 321 | 335 | 349 | 362 | 376 | 389 | 402 | 416 | 429 | 442 | 456 | 469 | 482 | 495 |
| 20  | 0.025 | 247 | 261 | 275 | 289 | 302 | 315 | 329 | 341 | 354 | 367 | 380 | 393 | 406 | 419 | 431 | 444 | 457 | 470 | 482 |
|     | 0.05  | 245 | 258 | 271 | 284 | 297 | 310 | 322 | 335 | 347 | 360 | 372 | 385 | 397 | 409 | 422 | 434 | 446 | 459 | 471 |
|     | 0.1   | 242 | 254 | 267 | 279 | 291 | 303 | 315 | 327 | 339 | 351 | 363 | 375 | 387 | 399 | 410 | 422 | 434 | 446 | 458 |

MARSAME

A-8

26 Reject the null hypothesis if the test statistic (W<sub>r</sub>) is greater than the table (critical) value.

For n or m greater than 20 with few or no ties, the table (critical) value can be calculated from:

28 
$$Critical Value = \frac{m(n+m+1)}{2} + z_{\sqrt{\frac{nm(n+m+1)}{12}}}$$
(A-1)

29 If there are ties, the critical value can be calculated from:

30  

$$Critical Value = \frac{m(n+m+1)}{2} + z_{\sqrt{\frac{nm}{12}\left[(n+m+1) - \sum_{j=1}^{g} \frac{t_{j}(t_{j}^{2}-1)}{(n+m)(n+m+1)}\right]}}$$
(A-2)

31 Where:

32 g = the number of groups of tied measurements.

33  $t_j$  = the number of tied measurements in the jth group.

34  $z = the (1-\alpha)$  percentile of a standard normal distribution (see list below).

| α     | Z.    |
|-------|-------|
| 0.001 | 3.090 |
| 0.005 | 2.575 |
| 0.01  | 2.326 |
| 0.025 | 1.960 |
| 0.05  | 1.645 |
| 0.1   | 1.282 |

35 Other values for z can be obtained from Table A.1.

# 36 A.5 Critical Values for the Quantile Test

37

### Table A.5a Values of r and k for the Quantile Test When $\alpha$ Is Approximately 0.01

|     |       |       |       |       |       |       | Ν     | umber | of Su | rvey U | nit Me | easure | ments, | , n   |       |       |       |       |       |       |
|-----|-------|-------|-------|-------|-------|-------|-------|-------|-------|--------|--------|--------|--------|-------|-------|-------|-------|-------|-------|-------|
| т   | 5     | 10    | 15    | 20    | 25    | 30    | 35    | 40    | 45    | 50     | 55     | 60     | 65     | 70    | 75    | 80    | 85    | 90    | 95    | 100   |
| 5   | r,k   |       | 11,11 | 13,13 | 16,16 | 19,19 | 22,22 | 25,25 | 28,28 |        |        |        |        |       |       |       |       |       |       | r,k   |
|     | α     |       | 0.008 | 0.015 | 0.014 | 0.013 | 0.013 | 0.013 | 0.012 |        |        |        |        |       |       |       |       |       |       | α     |
| 10  |       | 6,6   | 7,7   | 9,9   | 11,11 | 13,13 | 14,14 | 16,16 | 18,18 | 19,19  | 21,21  | 23,23  | 25,25  | 26,26 | 28,28 | 30,30 |       |       |       |       |
|     |       | 0.005 | 0.013 | 0.012 | 0.011 | 0.01  | 0.014 | 0.013 | 0.012 | 0.015  | 0.014  | 0.013  | 0.012  | 0.015 | 0.014 | 0.013 |       |       |       |       |
| 15  | 3,3   | 7,6   | 6,6   | 7,7   | 8,8   | 10,10 | 11,11 | 12,12 | 13,13 | 15,15  | 16,16  | 17,17  | 18,18  | 19,19 | 21,21 | 22,22 | 23,23 | 24,24 | 26,26 | 27,27 |
|     | 0.009 | 0.007 | 0.008 | 0.011 | 0.014 | 0.009 | 0.011 | 0.013 | 0.014 | 0.011  | 0.012  | 0.013  | 0.014  | 0.015 | 0.012 | 0.013 | 0.014 | 0.015 | 0.013 | 0.013 |
| 20  | 6,4   | 4,4   | 5,5   | 6,6   | 7,7   | 8,8   | 9,9   | 10,10 | 11,11 | 12,12  | 13,13  | 14,14  | 15,15  | 16,16 | 17,17 | 18,18 | 19,19 | 19,19 | 20,20 | 21,21 |
|     | 0.005 | 0.008 | 0.009 | 0.01  | 0.011 | 0.011 | 0.011 | 0.011 | 0.011 | 0.011  | 0.011  | 0.012  | 0.012  | 0.012 | 0.012 | 0.012 | 0.012 | 0.015 | 0.015 | 0.015 |
| 25  | 4,3   | 7,5   | 4,4   | 5,5   | 6,6   | 7,7   | 8,8   | 9,9   | 9,9   | 10,10  | 11,11  | 12,12  | 12,12  | 13,13 | 14,14 | 15,15 | 16,16 | 16,16 | 17,17 | 18,18 |
|     | 0.009 | 0.012 | 0.015 | 0.013 | 0.011 | 0.01  | 0.009 | 0.009 | 0.014 | 0.012  | 0.011  | 0.011  | 0.015  | 0.014 | 0.013 | 0.012 | 0.011 | 0.014 | 0.014 | 0.013 |
| 30  | 4,3   | 3,3   | 4,4   | 5,5   | 6,6   | 6,6   | 7,7   | 8,8   | 8,8   | 9,9    | 10,10  | 10,10  | 11,11  | 1211  | 12,12 | 13,13 | 14,14 | 14,14 | 15,15 | 15,15 |
|     | 0.006 | 0.012 | 0.009 | 0.007 | 0.006 | 0.012 | 0.01  | 0.008 | 0.013 | 0.011  | 0.009  | 0.013  | 0.011  | 0.014 | 0.013 | 0.012 | 0.011 | 0.014 | 0.012 | 0.015 |
| 35  | 2,2   | 3,3   | 4,4   | 4,4   | 5,5   | 6,6   | 6,6   | 7,7   | 7,7   | 8,8    | 9,9    | 9,9    | 10,10  | 10,10 | 11,11 | 11,11 | 12,12 | 13,13 | 13,13 | 14,14 |
|     | 0.013 | 0.008 | 0.006 | 0.014 | 0.01  | 0.007 | 0.012 | 0.009 | 0.014 | 0.011  | 0.009  | 0.013  | 0.01   | 0.014 | 0.011 | 0.015 | 0.012 | 0.011 | 0.013 | 0.012 |
| 40  | 2,2   | 3,3   | 7,5   | 4,4   | 5,5   | 5,5   | 6,6   | 6,6   | 7,7   | 7,7    | 8,8    | 8,8    | 9,9    | 9,9   | 10,10 | 10,10 | 11,11 | 11,11 | 12,12 | 12,12 |
|     | 0.01  | 0.006 | 0.013 | 0.01  | 0.006 | 0.012 | 0.008 | 0.013 | 0.009 | 0.013  | 0.01   | 0.014  | 0.011  | 0.014 | 0.011 | 0.014 | 0.012 | 0.014 | 0.012 | 0.014 |
| 45  | 2,2   | 6,4   | 3,3   | 4,4   | 4,4   | 5,5   | 5,5   | 6,6   | 6,6   | 7,7    | 7,7    | 8,8    | 8,8    | 9,9   | 9,9   | 10,10 | 10,10 | 10,10 | 11,11 | 11,11 |
|     | 0.008 | 0.008 | 0.013 | 0.007 | 0.014 | 0.008 | 0.014 | 0.009 | 0.013 | 0.009  | 0.013  | 0.009  | 0.012  | 0.009 | 0.012 | 0.009 | 0.012 | 0.015 | 0.012 | 0.014 |
| 50  |       | 4,3   | 3,3   | 4,4   | 4,4   | 5,5   | 5,5   | 5,5   | 6,6   | 6,6    | 7,7    | 7,7    | 8,8    | 8,8   | 8,8   | 9,9   | 9,9   | 10,10 | 10,10 | 10,10 |
|     |       | 0.013 | 0.01  | 0.005 | 0.01  | 0.006 | 0.01  | 0.015 | 0.009 | 0.013  | 0.009  | 0.012  | 0.009  | 0.011 | 0.014 | 0.011 | 0.013 | 0.01  | 0.012 | 0.015 |
| 55  |       | 4,3   | 3,3   | 7,5   | 4,4   | 4,4   | 5,5   | 5,5   | 6,6   | 6,6    | 6,6    | 7,7    | 7,7    | 8,8   | 8,8   | 8,8   | 9,9   | 9,9   | 9,9   | 10,10 |
|     |       | 0.01  | 0.008 | 0.013 | 0.008 | 0.014 | 0.007 | 0.011 | 0.007 | 0.01   | 0.014  | 0.009  | 0.012  | 0.008 | 0.01  | 0.013 | 0.009 | 0.012 | 0.014 | 0.011 |
| 60  |       | 4,3   | 3,3   | 3,3   | 4,4   | 4,4   | 5,5   | 5,5   | 5,5   | 6,6    | 6,6    | 6,6    | 7,7    | 7,7   | 7,7   | 8,8   | 8,8   | 8,8   | 9,9   | 9,9   |
|     |       | 0.008 | 0.007 | 0.014 | 0.006 | 0.011 | 0.006 | 0.009 | 0.013 | 0.007  | 0.01   | 0.014  | 0.009  | 0.011 | 0.014 | 0.01  | 0.012 | 0.015 | 0.01  | 0.013 |
| 65  |       | 4,3   | 3,3   | 3,3   | 6,5   | 4,4   | 4,4   | 5,5   | 5,5   | 5,5    | 6,6    | 6,6    | 6,6    | 7,7   | 7,7   | 7,7   | 8,8   | 8,8   | 8,8   | 9,9   |
|     |       | 0.007 | 0.006 | 0.012 | 0.006 | 0.009 | 0.013 | 0.007 | 0.01  | 0.014  | 0.008  | 0.011  | 0.014  | 0.009 | 0.011 | 0.014 | 0.009 | 0.011 | 0.014 | 0.01  |
| 70  |       | 2,2   | 6,4   | 3,3   | 7,5   | 4,4   | 4,4   | 5,5   | 5,5   | 5,5    | 5,5    | 6,6    | 6,6    | 6,6   | 7,7   | 7,7   | 7,7   | 8,8   | 8,8   | 8,8   |
|     |       | 0.014 | 0.008 | 0.01  | 0.013 | 0.007 | 0.011 | 0.005 | 0.008 | 0.011  | 0.015  | 0.008  | 0.011  | 0.014 | 0.009 | 0.011 | 0.013 | 0.009 | 0.011 | 0.013 |
| 75  |       | 2,2   | 4,3   | 3,3   | 3,3   | 4,4   | 4,4   | 4,4   | 5,5   | 5,5    | 5,5    | 6,6    | 6,6    | 6,6   | 6,6   | 7,7   | 7,7   | 7,7   | 8,8.  | 8,8   |
|     |       | 0.013 | 0.014 | 0.008 | 0.014 | 0.006 | 0.009 | 0.013 | 0.006 | 0.009  | 0.012  | 0.007  | 0.009  | 0.011 | 0.014 | 0.009 | 0.011 | 0.013 | 0.008 | 0.01  |
| 80  |       | 2,2   | 4,3   | 3,3   | 3,3   | 6,5   | 4,4   | 4,4   | 5,5   | 5,5    | 5,5    | 5,5    | 6,6    | 6,6   | 6,6   | 6,6   | 7,7   | 7,7   | 7,7   | 7,7   |
|     |       | 0.011 | 0.012 | 0.007 | 0.012 | 0.006 | 0.008 | 0.011 | 0.005 | 0.007  | 0.01   | 0.013  | 0.007  | 0.009 | 0.012 | 0.014 | 0.009 | 0.01  | 0.013 | 0.015 |
| 85  |       | 2,2   | 4,3   | 3,3   | 3,3   | 7,5   | 4,4   | 4,4   | 4,4   | 5,5    | 5,5    | 5,5    | 5,5    | 6,6   | 6,6   | 6,6   | 6,6   | 7,7   | 7,7   | 7,7   |
|     |       | 0.01  | 0.01  | 0.006 | 0.011 | 0.013 | 0.006 | 0.009 | 0.013 | 0.006  | 0.008  | 0.011  | 0.014  | 0.008 | 0.01  | 0.012 | 0.014 | 0.008 | 0.01  | 0.012 |
| 90  |       |       | 4,3   | 3,3   | 3,3   | 3,3   | 4,4   | 4,4   | 4,4   | 5,5    | 5,5    | 5,5    | 5,5    | 5,5   | 6,6   | 6,6   | 6,6   | 6,6   | 7,7   | 7,7   |
|     |       |       | 0.009 | 0.005 | 0.009 | 0.014 | 0.005 | 0.008 | 0.011 | 0.005  | 0.007  | 0.009  | 0.012  | 0.015 | 0.008 | 0.01  | 0.012 | 0.014 | 0.008 | 0.019 |
| 95  |       |       | 4,3   | 6,4   | 3,3   | 3,3   | 6,5   | 4,4   | 4,4   | 4,4    | 5,5    | 5,5    | 5,5    | 5,5   | 6,6   | 6,6   | 6,6   | 6,6   | 6,6   | 7,7   |
|     |       |       | 0.008 | 0.008 | 0.008 | 0.013 | 0.005 | 0.007 | 0.01  | 0.013  | 0.006  | 0.008  | 0.01   | 0.013 | 0.007 | 0.008 | 0.01  | 0.012 | 0.014 | 0.008 |
| 100 | r,k   |       | 4,3   | 4,3   | 3,3   | 3,3   | 7,5   | 4,4   | 4,4   | 4,4    | 4,4    | 5,5    | 5,5    | 5,5   | 5,5   | 6,6   | 6,6   | 6,6   | 6,6   | 6,6   |
|     | α     |       | 0.007 | 0.014 | 0.007 | 0.011 | 0.013 | 0.006 | 0.008 | 0.011  | 0.015  | 0.007  | 0.009  | 0.011 | 0.013 | 0.007 | 0.008 | 0.01  | 0.012 | 0.014 |

December 2006

|     |       |       |       |       |       | -     | N     | umber | of Su | rvey U | nit Me | easure | ments, | n     |       | -     |       |       |       |       |
|-----|-------|-------|-------|-------|-------|-------|-------|-------|-------|--------|--------|--------|--------|-------|-------|-------|-------|-------|-------|-------|
| m   | 5     | 10    | 15    | 20    | 25    | 30    | 35    | 40    | 45    | 50     | 55     | 60     | 65     | 70    | 75    | 80    | 85    | 90    | 95    | 100   |
| 5   | r,k   |       | 9,9   | 12,12 | 15,15 | 17,17 | 20,20 | 22,22 | 25,25 |        |        |        |        |       |       |       |       |       |       | r,k   |
|     | α     |       | 0.03  | 0.024 | 0.021 | 0.026 | 0.024 | 0.028 | 0.025 |        |        |        |        |       |       |       |       |       |       | α     |
| 10  |       | 7,6   | 6,6   | 8,8   | 9,9   | 11,11 | 12,12 | 14,14 | 17,17 | 18,18  | 20,20  | 21,21  | 23,23  | 24,24 | 26,26 | 27,27 |       |       |       |       |
|     |       | 0.029 | 0.028 | 0.022 | 0.029 | 0.024 | 0.029 | 0.025 | 0.025 | 0.029  | 0.026  | 0.029  | 0.026  | 0.029 | 0.026 | 0.029 |       |       |       |       |
| 15  | 11,5  | 6,5   | 5,5   | 6,6   | 7,7   | 8,8   | 9,9   | 10,10 | 11,11 | 13,13  | 15,15  | 14,14  | 16,16  | 17,17 | 18,18 | 19,19 | 21,21 | 21,21 | 22,22 | 23,23 |
|     | 0.03  | 0.023 | 0.021 | 0.024 | 0.026 | 0.027 | 0.028 | 0.029 | 0.03  | 0.022  | 0.023  | 0.023  | 0.024  | 0.025 | 0.025 | 0.026 | 0.021 | 0.027 | 0.027 | 0.027 |
| 20  | 8,4   | 3,3   | 4,4   | 5,5   | 6,6   | 7,7   | 12,11 | 13,12 | 9,9   | 10,10  | 11,11  | 12,12  | 13,13  | 13,13 | 14,14 | 15,15 | 16 16 | 17,17 | 17,17 | 18,18 |
|     | 0.023 | 0.03  | 0.026 | 0.024 | 0.022 | 0.02  | 0.021 | 0.024 | 0.028 | 0.026  | 0.024  | 0.023  | 0.022  | 0.029 | 0.027 | 0.026 | 0.025 | 0.024 | 0.029 | 0.028 |
| 25  | 2,2   | 8,5   | 6,5   | 7,6   | 5,5   | 6,6   | 10,9  | 7,7   | 8,8   | 13,12  | 9,9    | 10,10  | 11,11  | 11,11 | 12,12 | 13,13 | 13,13 | 14,14 | 15,15 | 15,15 |
|     | 0.023 | 0.027 | 0.021 | 6.023 | 0.025 | 0.02  | 0.026 | 0.027 | 0.023 | 0.027  | 0.027  | 0.024  | 0.022  | 0.028 | 0.025 | 0.823 | 0.628 | 0.025 | 0.023 | 0.028 |
| 30  | 6,3   | 6,4   | 9,6   | 4,4   | 7,6   | 5,5   | 9,8   | 6,6   | 7,7   | 12,11  | 8,8    | 9,9    | 9,9    | 10,10 | 10,10 | 11,11 | 11,11 | 12,12 | 13,13 | 13,13 |
|     | 0.026 | 0.026 | 0.026 | 0.021 | 0.029 | 0.026 | 0.024 | 0.029 | 0.023 | 0.021  | 0.025  | 0.021  | 0.027  | 0.023 | 0.029 | 0.025 | 0.03  | 0.026 | 0.023 | 0.027 |
| 35  | 7,3   | 4,3   | 3,3   | 6,5   | 4,4   | 10,8  | 5,5   | 9,8   | 6,6   | 7,7    | 7,7    | 8,8    | 8,8    | 9,9   | 9,9   | 10,10 | 10,10 | 11,11 | 11,11 | 12,12 |
|     | 0.03  | 0.03  | 0.023 | 0.02  | 0.026 | 0.022 | 0.027 | 0.024 | 0.027 | 0.02   | 0.027  | 0.021  | 0.027  | 0.022 | 0.027 | 0.022 | 0.027 | 0.022 | 0.027 | 0.023 |
| 40  | 3,2   | 4,3   | 8,5   | 11,7  | 6,5   | 4,4   | 10,8  | 5,5   | 9,8   | 6,6    | 10,9   | 7,7    | 12,11  | 8,8   | 8,8   | 9,9   | 9,9   | 10,10 | 10,10 | 11,11 |
|     | 0.029 | 0.022 | 0.028 | 0.025 | 0.028 | 0.03  | 0.026 | 0.027 | 0.023 | 0.026  | 0.028  | 0.024  | 0.02   | 0.023 | 0.029 | 0.022 | 0.027 | 0.021 | 0.026 | 0.021 |
| 45  | 3,2   | 8,4   | 6,4   | 3,3   | 8,6   | 4,4   | 7,6   | 5,5   | 5,5   | 9,8    | 6,6    | 10,9   | 7,7    | 7,7   | 8,8   | 8,8   | 8,8   | 9,9   | 9,9   | 10,10 |
|     | 0.023 | 0.029 | 0.036 | 0.026 | 0.021 | 0.023 | 0.025 | 0.02  | 0.028 | 0.023  | 0.024  | 0.026  | 0.022  | 0.027 | 0.02  | 0.025 | 0.03  | 0.023 | 0.027 | 0.021 |
| 50  |       | 2,2   | 6,4   | 3,3   | 11,7  | 6,5   | 4,4   | 7,6   | 5,5   | 5,5    | 9,8    | 6,6    | 6,6    | 7,7   | 7,7   | 12,11 | 8,8   | 8,8   | 13,12 | 9,9   |
|     |       | 0.025 | 0.022 | 0.021 | 0.077 | 6.026 | 0.026 | 0.028 | 0.021 | 0.028  | 0.022  | 0.023  | 0.029  | 0.02  | 0.025 | 0.02  | 0.022 | 0.026 | 0.027 | 0.023 |
| 55  |       | 2,2   | 4,3   | 8,5   | 3,3   | 8,6   | 4,4   | 4,4   | 10,8  | 5,5    | 5,5    | 9,8    | 6,6    | 6,6   | 10,9  | 7,7   | 7,7   | 12,11 | 8,8   | 8,8   |
|     |       | 0.022 | 0.029 | 0.028 | 0.028 | 0.021 | 0.02  | 0.029 | 0.021 | 0.022  | 0.028  | 0.022  | 0.092  | 0.028 | 0.029 | 0.023 | 0.027 | 0.023 | 0.023 | 0.027 |
| 60  |       | 14,5  | 4,3   | 8,5   | 3,3   | 11,7  | 6,5   | 4,4   | 7,6   | 10,8   | 5,5    | 5,5    | 9,8    | 6,6   | 6,6   | 10,9  | 7,7   | 7,7   | 7,7   | 8,8   |
|     |       | 0.022 | 0.024 | 0.021 | 0.023 | 0.029 | 0.024 | 0.023 | 0.023 | 0.024  | 0.023  | 0.029  | 0.022  | 0.022 | 0.027 | 0.027 | 0.021 | 0.025 | 0.03  | 0.021 |
| 65  |       | 6,3   | 7,4   | 6,4   | 10,6  | 3,3   | 8,6   | 6,5   | 4,4   | 7,6    | 10,8   | 5,5    | 5,5    | 9,8   | 6,6   | 6,6   | 10,9  | 7,7   | 7,7   | 7,7   |
|     |       | 0.028 | 0.021 | 0.025 | 0.025 | 0.029 | 0.021 | 0.029 | 0.026 | 0.026  | 0.026  | 0.023  | 0.029  | 0.022 | 0.021 | 0.026 | 0.026 | 0.020 | 0.024 | 0.028 |
| 70  |       | 6,3   | 2,2   | 6,4   | 8,5   | 3,3   | 13,8  | 6,5   | 4,4   | 4,4    | 7,6    | 10,8   | 5,5    | 5,5   | 9,8   | 6,6   | 6,6   | 6,6   | 10,9  | 7,7   |
|     |       | 0.024 | 0.029 | 0.021 | 0.028 | 0.025 | 0.026 | 0.023 | 0.022 | 0.028  | 0.028  | 0.027  | 0.024  | 0.029 | 0.022 | 0.021 | 0.025 | 0.029 | 0.03  | 0.022 |
| 75  |       | 11,4  | 2,2   | 4,3   | 8,5   | 3,3   | 9,6   | 8,6   | 6,5   | 4,4    | 7,6    | 7,6    | 10,8   | 5,5   | 5,5   | 9,8   | 6,6   | 6,6   | 6,6   | 10,9  |
|     |       | 0.022 | 0.026 | 0.028 | 0.022 | 0.022 | 0.028 | 0.021 | 0.027 | 0.024  | 0.023  | 0.03   | 0.029  | 0.024 | 0.029 | 0.021 | 0.021 | 0.024 | 0.028 | 0.028 |
| 80  |       | 7,3   | 2,2   | 4,3   | 6,4   | 10,6  | 3,3   | 13,8  | 6,5   | 4,4    | 4,4    | 7,6    | 10,8   | 5,5   | 5,5   | 5,5   | 9,8   | 6,6   | 6,6   | 6,6   |
|     |       | 0.028 | 0.024 | 0.024 | 0.028 | 0.024 | 0.027 | 0.027 | 0.023 | 0.02   | 0.026  | 0.024  | 0.023  | 0.07  | 0.025 | 0.029 | 0.021 | 0.02  | 0.024 | 0.027 |
| 85  |       | 3,2   | 2,2   | 4,3   | 6,4   | 8,5   | 3,3   | 9,6   | 8,6   | 6,5    | 4,4    | 4,4    | 7,6    | 10,8  | 5,5   | 5,5   | 5,5   | 9,8   | 6,6   | 6,6   |
|     |       | 0.029 | 0.021 | 0.021 | 0.023 | 0.028 | 0.023 | 0.03  | 0.02  | 0.026  | 0.022  | 0.028  | 0.026  | 0.024 | 0.021 | 0.025 | 0.029 | 0.021 | 0.02  | 0.023 |
| 90  |       |       | 5,3   | 11,5  | 9,5   | 8,5   | 3,3   | 3,3   | 13,8  | 6,5    | 6,5    | 4,4    | 4,4    | 7,6   | 10,8  | 5,5   | 5,5   | 5,5   | 9,8   | 9,8   |
|     |       |       | 0.02  | 0.027 | 0.023 | 0.023 | 0.021 | 0.028 | 0.028 | 0.022  | 0.029  | 0.024  | 0.029  | 0.028 | 0.026 | 0.022 | 0.025 | 0.03  | 0.021 | 0.025 |
| 95  |       |       | 10,4  | 2,2   | 4,3   | 6,4   | 10,6  | 3,3   | 11,7  | 8,6    | 6,5    | 4,4    | 4,4    | 7,6   | 7,6   | 10,8  | 5,5   | 5,5   | 5,5   | 9,8   |
|     |       |       | 0.029 | 0.029 | 0.028 | 0.029 | 0.023 | 0.025 | 0.026 | 0.02   | 0.025  | 0.021  | 0.026  | 0.024 | 0.029 | 0.027 | 0.022 | 0.026 | 0.03  | 0.021 |
| 100 | r,k   |       | 6,3   | 2,2   | 4,3   | 6,4   | 8,5   | 3,3   | 3,3   | 13,8   | 6,5    | 6,5    | 4,4    | 4,4   | 7,6   | 10,8  | 10,8  | 5,5   | 5,5   | 5,5   |
|     | α     |       | 0.029 | 0.027 | 0.025 | 0.025 | 0.028 | 0.022 | 0.029 | 0.028  | 0.022  | 0.028  | 0.023  | 0.027 | 0.025 | 0.022 | 0.028 | 0.022 | 0.026 | 0.03  |

# **Table A.5b** Values of *r* and *k* for the Quantile Test When α Is Approximately 0.025

|     |       |       |       |       |       |       | Ν     | umber | of Su | rvey U | nit Me | easure | ments, | n     |       | _     |       |       |       |       |
|-----|-------|-------|-------|-------|-------|-------|-------|-------|-------|--------|--------|--------|--------|-------|-------|-------|-------|-------|-------|-------|
| m   | 5     | 10    | 15    | 20    | 25    | 30    | 35    | 40    | 45    | 50     | 55     | 60     | 65     | 70    | 75    | 80    | 85    | 90    | 95    | 100   |
| 5   | r,k   |       | 8,8   | 10,10 | 13 13 | 15 15 | 17,17 | 19,19 | 21,21 |        |        |        |        |       |       |       |       |       |       | r,k   |
|     | α     |       | 0.051 | 0.057 | 0.043 | 0.048 | 0.051 | 0.054 | 0.056 |        |        |        |        |       |       |       |       |       |       | α     |
| 10  |       | 4,4   | 5,5   | 14,12 | 8,8   | 9,9   | 10,10 | 12,12 | 13,13 | 14,14  | 15,15  | 17,17  | 18,18  | 19,19 | 20,20 | 21,21 | 23,23 |       |       |       |
|     |       | 0.043 | 0.057 | 0.045 | 0.046 | 0.052 | 0.058 | 0.046 | 0.05  | 0.054  | 0.057  | 0.049  | 0.052  | 0.055 | 0.057 | 0.059 | 0.053 |       |       |       |
| 15  | 2,2   | 3,3   | 4,4   | 5,5   | 6,6   | 7,7   | 8,8   | 9,9   | 9,9   | 10,10  | 11,11  | 12,12  | 13,13  | 14,14 | 15,15 | 16,16 | 16,16 | 17,17 | 18,18 | 19,19 |
|     | 0.053 | 0.052 | 0.05  | 0.048 | 0.046 | 0.045 | 0.052 | 0.043 | 0.06  | 0.057  | 0.055  | 0.054  | 0.052  | 0.051 | 0.05  | 0.049 | 0.058 | 0.057 | 0.056 | 0.055 |
| 20  | 9,4   | 8,5   | 6,5   | 4,4   | 5,5   | 9,8   | 6,6   | 7,7   | 8,8   | 8,8    | 9,9    | 10,10  | 10,10  | 11,11 | 12,12 | 12,12 | 13,13 | 14,14 | 14,14 | 15,15 |
|     | 0.04  | 0.056 | 0.04  | 0.053 | 0.043 | 0.052 | 0.056 | 48    | 0.043 | 0.057  | 0.051  | 0.046  | 0.057  | 0.052 | 0.048 | 0.057 | 0.053 | 0.049 | 0.057 | 0.054 |
| 25  | 6,3   | 6,4   | 3,3   | 6,5   | 4,4   | 5,5   | 5,5   | 6,6   | 11,10 | 7,7    | 8,8    | 8,8    | 9,9    | 9,9   | 10,10 | 11,11 | 11,11 | 11,11 | 12,12 | 12,12 |
|     | 0.041 | 0.043 | 0.046 | 0.052 | 0.055 | 0.041 | 0.059 | 0.046 | 0.042 | 0.05   | 0.042  | 0.053  | 0.045  | 0.055 | 0.048 | 0.042 | 0.05  | 0.058 | 0.052 | 0.06  |
| 30  | 3,2   | 2,2   | 10,6  | 3,3   | 11,8  | 4,4   | 8,7   | 5,5   | 6,6   | 6,6    | 7,7    | 7,7    | 8,8    | 8,8   | 9,9   | 9,9   | 9,9   | 10,10 | 10,10 | 11,11 |
|     | 0.047 | 0.058 | 0.052 | 0.058 | 0.045 | 0.056 | 0.044 | 0.054 | 0.04  | 0.053  | 0.041  | 0.052  | 0.042  | 0.051 | 0.042 | 0.05  | 0.059 | 0.049 | 0.057 | 0.049 |
| 35  | 8,3   | 2,2   | 6,4   | 3,3   | 6,5   | 4,4   | 4,4   | 8,7   | 5,5   | 9,8    | 6,6    | 6,6    | 7,7    | 7,7   | 8,8   | 8,8   | 8,8   | 9,9   | 9,9   | 10,10 |
|     | 0.046 | 0.045 | 0.058 | 0.043 | 0.041 | 0.04  | 0.057 | 0.043 | 0.051 | 0.052  | 0.047  | 0.057  | 0.043  | 0.053 | 0.041 | 0.049 | 0.057 | 0.046 | 0.053 | 0.044 |
| 40  | 4,2   | 5,3   | 4,3   | 10,6  | 3,3   | 6,5   | 4,4   | 4,4   | 8,7   | 5,5    | 9,8    | 6,6    | 6,6    | 11,10 | 7,7   | 7,7   | 8,8   | 8,8   | 8,8   | 9,9   |
|     | 0.055 | 0.048 | 0.057 | 0.059 | 0.053 | 0.048 | 0.043 | 0.058 | 0.042 | 0.048  | 0.047  | 0.042  | 0.051  | 0.042 | 0.045 | 0.053 | 0.041 | 0.048 | 0.055 | 0.043 |
| 45  | 4,2   | 9,4   | 2,2   | 8,5   | 3,3   | 8,6   | 6,5   | 4,4   | 4,4   | 8,7    | 5,5    | 5,5    | 9,8    | 6,6   | 6,6   | 11,10 | 7,7   | 7,7   | 8,8   | 8,8   |
|     | 0.045 | 0.047 | 0.059 | 0.052 | 0.042 | 0.041 | 0.054 | 0.045 | 0.058 | 0.041  | 0.046  | 0.057  | 0.056  | 0.047 | 0.055 | 0.046 | 0.047 | 0.054 | 0.041 | 0.047 |
| 50  |       | 6,3   | 2,2   | 6,4   | 12,7  | 3,3   | 8,6   | 6,5   | 4,4   | 4,4    | 8,7    | 5,5    | 5,5    | 9,8   | 6,6   | 6,6   | 6,6   | 7,7   | 7,7   | 7,7   |
|     |       | 0.051 | 0.05  | 0.051 | 0.05  | 0.049 | 0.049 | 0.059 | 0.047 | 0.059  | 0.041  | 0.045  | 0.054  | 0.051 | 0.043 | 0.05  | 0.058 | 0.041 | 0.048 | 0.054 |
| 55  |       | 3,2   | 2,2   | 4,3   | 8,5   | 3,3   | 5,4   | 6,5   | 9,7   | 4,4    | 4,4    | 8,7    | 5,5    | 5,5   | 9,8   | 6,6   | 6,6   | 6,6   | 11,10 | 7,7   |
|     |       | 0.059 | 0.043 | 0.056 | 0.058 | 0.041 | 0.041 | 0.046 | 0.042 | 0.048  | 0.059  | 0.04   | 0.043  | 0.052 | 0.048 | 0.04  | 0.047 | 0.054 | 0.043 | 0.043 |
| 60  |       | 3,2   | 5,3   | 4,3   | 6,4   | 3,3   | 3,3   | 8,6   | 6,5   | 9,7    | 4,4    | 4,4    | 13,10  | 5,5   | 5,5   | 5,5   | 9,8   | 6,6   | 6,6   | 6,6   |
|     |       | 0.052 | 0.052 | 0.046 | 0.059 | 0.035 | 0.047 | 0.043 | 51    | 0.046  | 0.049  | 0.059  | 0.052  | 0.042 | 0.05  | 0.058 | 0.054 | 0.044 | 0.05  | 0.056 |
| 65  |       | .3,2  | 5,3   | 2,2   | 6,4   | 10,6  | 3,3   | 3,3   | 6,5   | 6,5    | 4,4    | 4,4    | 4,4    | 13,10 | 5,5   | 5,5   | 5,5   | 9,8   | 6,6   | 6,6   |
|     |       | 0.045 | 0.043 | 0.053 | 0.048 | 0.05  | 0.04  | 0.052 | 0.041 | 0.055  | 0.042  | 0.05   | 0.06   | 0.052 | 0.041 | 0.048 | 0.055 | 0.051 | 0.041 | 0.047 |
| 70  |       | 8,3   | 9,4   | 2,2   | 4,3   | 8,5   | 5,4   | 3,3   | 3,3   | 6,5    | 6,5    | 4,4    | 4,4    | 4,4   | 13,10 | 5,5   | 5,5   | 5,5   | 9,8   | 9,8   |
|     |       | 0.057 | 0.048 | 0.047 | 0.055 | 0.05  | 0.041 | 0.046 | 0.057 | 0.045  | 0.058  | 0.043  | 0.051  | 0.06  | 0.051 | 0.041 | 0.047 | 0.054 | 0.048 | 0.057 |
| 75  |       | 8,3   | 6,3   | 2,2   | 4,3   | 6,4   | 10,6  | 3,3   | 3,3   | 8,6    | 6,5    | 9,7    | 4,4    | 4,4   | 5,5   | 13,10 | 8,7   | 5,5   | 5,5   | 5,5   |
|     |       | 0.049 | 0.056 | 0.043 | 0.047 | 0.054 | 0.053 | 0.04  | 0.051 | 0.044  | 0.049  | 0.041  | 0.044  | 0.052 | 0.06  | 0.051 | 0.047 | 0.046 | 0.052 | 0.058 |
| 80  |       | 4,2   | 6,3   | 5,3   | 2,2   | 6,4   | 8,5   | 5,4   | 3,3   | 3,3    | 6,5    | 6,5    | 9,7    | 4,4   | 4,4   | 7,6   | 13,10 | 87    | 5,5   | 5,5   |
|     |       | 0.059 | 0.048 | 0.053 | 0.055 | 0.046 | 0.055 | 0.041 | 0.045 | 0.055  | 0.041  | 0.052  | 0.043  | 0.045 | 0.053 | 0.058 | 0.051 | 0.046 | 0.045 | 0.051 |
| 85  |       | 4,2   | 3,2   | 5,3   | 2,2   | 4,3   | 4,3   | 10,6  | 5,4   | 3,3    | 3,3    | 6,5    | 6,5    | 9,7   | 4,4   | 4,4   | 7,6   | 10,8  | 8,7   | 5,5   |
|     |       | 0.054 | 0.058 | 0.047 | 0.05  | 0.054 | 0.048 | 0.056 | 0.049 | 0.049  | 0.059  | 0.044  | 0.055  | 0.046 | 0.046 | 0.053 | 0.059 | 0.06  | 0.045 | 0.044 |
| 90  |       |       | 3,2   | 5,3   | 2,2   | 6,4   | 6,4   | 8,5   | 5,4   | 3,3    | 3,3    | 8,6    | 6,5    | 6,5   | 4,4   | 4,4   | 4,4   | 7,6   | 10,8  | 8,7   |
|     |       |       | 0.053 | 0.041 | 0.046 | 0.059 | 0.051 | 0.058 | 0.042 | 0.044  | 0.053  | 0.045  | 0.047  | 0.058 | 0.041 | 0.047 | 0.054 | 0.059 | 0.06  | 0.041 |
| 95  |       |       | 3,2   | 9,4   | 2,2   | 2,2   | 4,3   | 8,5   | 10,6  | 5,4    | 3,3    | 3,3    | 6,5    | 6,5   | 9,7   | 4,4   | 4,4   | 4,4   | 7,6   | 10,8  |
|     |       |       | 0.048 | 0.048 | 0.042 | 0.056 | 0.059 | 0.05  | 0.058 | 0.048  | 0.048  | 0.056  | 0.041  | 0.05  | 0.040 | 0.042 | 0.048 | 0.054 | 0.59  | 0.059 |
| 100 | r,k   |       | 3,2   | 6,3   | 5,3   | 2,2   | 4,3   | 6,4   | 10,6  | 5,4    | 3,3    | 3,3    | 3,3    | 6,5   | 6,5   | 9,7   | 4,4   | 4,4   | 4,4   | 7,6   |
|     | α     |       | 0.044 | 0.057 | 0.054 | 0.052 | 0.053 | 0.056 | 0.049 | 0.043  | 0.043  | 0.051  | 0.059  | 0.044 | 0.053 | 0.042 | 0.043 | 0.049 | 0.055 | 0.059 |

### Table A.5c Values of r and k for the Quantile Test When $\alpha$ Is Approximately 0.05

#### 41

Table A.5d Values of r and k for the Quantile Test When  $\alpha$  Is Approximately 0.10

|          |       |       |       |       |       |       | Ν     | umber | • of Su | rvey U | nit Me | easure | ments, | n     |       |       |       |       |       |       |
|----------|-------|-------|-------|-------|-------|-------|-------|-------|---------|--------|--------|--------|--------|-------|-------|-------|-------|-------|-------|-------|
| т        | 5     | 10    | 15    | 20    | 25    | 30    | 35    | 40    | 45      | 50     | 55     | 60     | 65     | 70    | 75    | 80    | 85    | 90    | 95    | 100   |
| 5        | r,k   |       | 7,7   | 8,8   | 10,10 | 12,12 | 14,14 | 15,15 | 17,17   |        |        |        |        |       |       |       |       |       |       | r,k   |
|          | α     |       | 0.083 | 0.116 | 0.109 | 0.104 | 0.1   | 0.117 | 0.112   |        |        |        |        |       |       |       |       |       |       | α     |
| 10       |       | 3,3   | 4,4   | 5,5   | 6,6   | 7,7   | 8,8   | 9,9   | 10,10   | 11,11  | 12,12  | 13,13  | 14,14  | 15,15 | 16,16 | 1712  | 18,18 |       |       |       |
|          |       | 0.105 | 0.108 | 0.109 | 0.109 | 0.109 | 0.109 | 0.109 | 0.109   | 0.109  | 0.109  | 0.109  | 0.109  | 0.109 | 0.109 | 0.109 | 0.109 |       |       |       |
| 15       | 9,4   | 10,6  | 3,3   | 4,4   | 5,5   | 5,5   | 6,6   | 7,7   | 7,7     | 8,8    | 9,9    | 9,9    | 10,10  | 11,11 | 11,11 | 12,12 | 13,13 | 13,13 | 14,14 | 15,15 |
|          | 0.098 | 0.106 | 0.112 | 0.093 | 0.081 | 0.117 | 0.102 | 0.092 | 0.118   | 0.106  | 0.098  | 0.118  | 0.109  | 0.101 | 0.118 | 0.11  | 0.104 | 0.118 | 0.111 | 0.106 |
| 20       | 3,2   | 2,2   | 5,4   | 3,3   | 4,4   | 4,4   | 5,5   | 10,9  | 6,6     | 7,7    | 7,7    | 8,8    | 8,8    | 9,9   | 9,9   | 10,10 | 10,11 | 11,11 | 11,11 | 12,12 |
|          | 0.091 | 0.103 | 0.093 | 0.115 | 0.085 | 0.119 | 0.093 | 0.084 | 0.099   | 0.083  | 0.102  | 0.088  | 0.105  | 0.092 | 0.107 | 0.095 | 0.108 | 0.098 | 0.11  | 0.1   |
| 25       | 4,2   | 7,4   | 8,5   | 3,3   | 3,3   | 4,4   | 4,4   | 8,7   | 5,5     | 10,9   | 6,6    | 6,6    | 7,7    | 7,7   | 8,8   | 8,8   | 8,8   | 9,9   | 9,9   | 10,10 |
|          | 0.119 | 0.084 | 0.112 | 0.08  | 0.117 | 0.08  | 0.107 | 0.108 | 0.101   | 0.088  | 0.096  | 0.114  | 0.093  | 0.108 | 0.091 | 0.104 | 0.117 | 0.1   | 0.112 | 0.098 |
| 30       | 4,2.  | 5,3   | 2,2   | 14,8  | 3,3   | 3,3   | 9,7   | 4,4   | 8,7     | 5,5    | 5,5    | 6,6    | 6,6    | 6,6   | 7,7   | 7,7   | 7,7   | 8,8   | 8,8   | 8,8   |
|          | 0.089 | 0.089 | 0.106 | 0.111 | 0.088 | 0.119 | 0.116 | 0.1   | 0.093   | 0.088  | 0.106  | 0.08   | 0.095  | 0.11  | 0.087 | 0.1   | 0.113 | 0.092 | 0.103 | 0.115 |
| 35       | 5,2   | 3,2   | 2,2   | 6,4   | 5,4   | 3,3   | 3,3   | 9,7   | 4,4     | 4,4    | 8,7    | 5,5    | 5,5    | 6,6   | 6,6   | 6,6   | 6,6   | 7,7   | 7,7   | 7,7   |
|          | 0.109 | 0.119 | 0.086 | 0.12  | 0.091 | 0.093 | 0.12  | 0.112 | 0.094   | 0.114  | 0.107  | 0.094  | 0.11   | 0.081 | 0.094 | 0.107 | 0.12  | 0.094 | 0.105 | 0.116 |
| 40       | 5,2   | 3,2   | 5,3   | 2,2   | 12,7  | 5,4   | 3,3   | 6,5   | 9,7     | 4,4    | 4,4    | 8,7    | 5,5    | 5,5   | 5,5   | 6,6   | 6,6   | 6,6   | 6,6   | 7,7   |
| -        | 0.087 | 0.098 | 0.119 | 0.107 | 0.109 | 0.102 | 0.097 | 0.100 | 0.109   | 0.09   | 0.107  | 0.097  | 0.086  | 0.099 | 0.112 | 0.082 | 0.093 | 0.104 | 0.116 | 0.089 |
| 45       | 6,2   | 3,2   | 5,3   | 2,2   | 6,4   | 7,5   | 5,4   | 3,3   | 6,5     | 9,7    | 4,4    | 4,4    | 4,4    | 8,7   | 5,5   | 5,5   | 5,5   | 6,6   | 6,6   | 6,6   |
| -        | 0.103 | 0.082 | 0.094 | 0.091 | 0.115 | 0.086 | 0.112 | 0.1   | 0.101   | 0.107  | 0.087  | 0.102  | 0.117  | 0.107 | 0.091 | 0.103 | 0.115 | 0.083 | 0.093 | 0.103 |
| 50       |       | 7,3   | 9,4   | 7,4   | 2,2   | 10,6  | 5,4   | 3,3   | 3,3     | 6,5    | 9,7    | 4,4    | 4,4    | 4,4   | 8,7   | 5,5   | 5,5   | 5,5   | 5,5   | 6,6   |
|          |       | 0.083 | 0.115 | 0.097 | 0.108 | 0.112 | 0.09  | 0.084 | 0.103   | 0.102  | 0.105  | 0.084  | 0.098  | 0.112 | 0.099 | 0.084 | 0.95  | 0.105 | 0.116 | 0.083 |
| 55       |       | 4,2   | 3,2   | 5,3   | 2,2   | 6,4   | 14,8  | 5,4   | 3,3     | 3,3    | 6,5    | 9,7    | 4,4    | 4,4   | 4,4   | 4,4   | 8,7   | 5,5   | 5,5   | 5,5   |
|          |       | 0.109 | 0.114 | 0.114 | 0.095 | 0.112 | 0.111 | 0.098 | 0.088   | 0.104  | 0.103  | 0.104  | 0.082  | 0.095 | 0.107 | 0.12  | 0.107 | 0.088 | 0.098 | 0.108 |
| 60       |       | 4,2   | 3,2   | 5,3   | 2,2   | 2,2   | 8,5   | 5,4   | 5,4     | 3,3    | 3,3    | 6,5    | 9,7    | 4,4   | 4,4   | 4,4   | 4,4   | 8,7   | 5,5   | 5,5   |
|          |       | 0.095 | 0.1   | 0.097 | 0.084 | 0.109 | 0.119 | 0.082 | 0.105   | 0.091  | 0.106  | 0.103  | 0.102  | 0.081 | 0.092 | 0.103 | 0.115 | 0.1   | 0.083 | 0.092 |
| 65       |       | 4,2   | 3,2   | 5,3   | 7,4   | 2,2   | 6,4   | 12,7  | 5,4     | 5,4    | 3,3    | 3,3    | 6,5    | 9,7   | 7,6   | 4,4   | 4,4   | 4,4   | 8,7   | 8,7   |
| -        |       | 0.084 | 0.089 | 0.082 | 0.090 | 0.097 | 0.11  | 0.113 | 0.089   | 0.111  | 0.093  | 0.108  | 0.104  | 0.101 | 0.084 | 0.09  | 0.1   | 0.11  | 0.094 | 0.107 |
| 70       |       | 5,2   | 7,3   | 9,4   | 5,3   | 2,2   | 2,2   | 8,5   | 7,5     | 5,4    | 3,3    | 3,3    | 3,3    | 6,5   | 9,7   | 7,6   | 4,4   | 4,4   | 4,4   | 4,4   |
|          |       | 0.115 | 0.101 | 0.106 | 0.112 | 0.088 | 0.109 | 0.114 | 0.081   | 0.096  | 0.083  | 0.096  | 0.109  | 0.104 | 0.191 | 0.082 | 0.088 | 0.097 | 0.107 | 0.117 |
| 75       |       | 5,2   | 7,3   | 3,2   | 5,3   | 7,4   | 2,2   | 2,2   | 10,6    | 5,4    | 5,4    | 3,3    | 3,3    | 3,3   | 6,5   | 9,7   | 7,6   | 4,4   | 4,4   | 4,4   |
|          |       | 103   | 0.088 | 0.111 | 0.098 | 0.101 | 0.099 | 0.119 | 0.117   | 0.083  | 0.102  | 0.085  | 0.098  | 0.11  | 0.105 | 0.1   | 0.081 | 0.086 | 0.095 | 0.104 |
| 80       |       | 5,2   | 4,2   | 3,2   | 5,3   | 7,4   | 2,2   | 2,2   | 8,5     | 14,8   | 5,4    | 5,4    | 3,3    | 3,3   | 3,3   | 6,5   | 6,5   | 9,7   | 4,4   | 4,4   |
| <u> </u> |       | 0.093 | 0.116 | 0.101 | 0.086 | 0.086 | 0.09! | 0.109 | 0.111   | 0.11   | 0.089  | 0.107  | 0.088  | 0.099 | 0.111 | 0.105 | 0.12  | 0.116 | 0.084 | 0.093 |
| 85       |       | 5,2   | 4,2   | 3,2   | 9,4   | 5,3   | 2,2   | 2,2   | 2,2     | 10,6   | 7,5    | 5,4    | 5,4    | 3,3   | 3,3   | 3,3   | 6,5   | 6,5   | 9,7   | 4,4   |
|          |       | 0.084 | 0.106 | 0.092 | 117   | 0.111 | 0.083 | 0.101 | 0.118   | 0.112  | 0.084  | 0.094  | 0.111  | 0.09  | 0.101 | 0.112 | 0.105 | 0.119 | 0.114 | 0.083 |
| 90       |       |       | 4,2   | 3,2   | 3,2   | 5,3   | 7,4   | 2,2   | 2,2     | 8,5    | 12,7   | 5,4    | 5,4    | 3,3   | 3,3   | 3,3   | 3,3   | 6,5   | 6,5   | 9,7   |
|          |       |       | 0.097 | 0.085 | 0.119 | 0.099 | 0.095 | 0.093 | 0.109   | 0.108  | 0.114  | 0.083  | 0.099  | 0.082 | 0.092 | 0.102 | 0.113 | 0.105 | 0.119 | 0.113 |
| 95       |       |       | 4,2   | 7,3   | 3,2   | 5,3   | 7,4   | 2,2   | 2,2     | 2,2    | 10,6   | 14,8   | 5,4    | 5,4   | 3,3   | 3,3   | 3,3   | 3,3   | 6,5   | 6,5   |
|          |       |       | 0.089 | 100   | 0.11  | 0.089 | 0.084 | 0.086 | 0.102   | 0.117  | 0.08   | 0.117  | 0.088  | 0.103 | 0.084 | 0.094 | 0.103 | 0.113 | 0.106 | 0.118 |
| 100      | r,k   |       | 4,2   | 7,3   | 3,2   | 5,3   | 5,3   | 2,2   | 2,2     | 2,2    | 6,4    | 12,7   | 7,5    | 5,4   | 5,4   | 3,3   | 3,3   | 3,3   | 3,3   | 6,5   |
|          | α     |       | 0.082 | 0.09  | 0.102 | 0.08  | 0.109 | 0.08  | 0.095   | 0.11   | 0.118  | 0.109  | 0.086  | 0.093 | 0.08  | 0.086 | 0.095 | 0.104 | 0.114 | 0.106 |

- 43 Table A.5 contains values of the parameters *r* and *k* needed for the Quantile test calculated by
- 44 Gilbert and Simpson (Gilbert 1992) for certain combinations of *m* (the number of measurements
- 45 in the reference area) and *n* (the number of measurements in the survey unit). The value of  $\alpha$
- 46 listed is that obtained from simulation studies.

### 1 B. SOURCES OF BACKGROUND RADIOACTIVITY

#### 2 **B.1 Introduction**

Background radioactivity can complicate the disposition decision for M&E. Background radioactivity may be the result of environmental radioactivity, inherent radioactivity, instrument noise, or some combination of the three. Special consideration is given to issues associated with technologically enhanced naturally occurring radioactive materials (TENORM) and orphan sources as contributors to background. The planning team should consider these potential sources of background activity and determine what effect, if any, they may have on the design of the disposition survey.

10 Information on background radioactivity can be obtained from many sources, including:

- The Nuclear Regulatory Commission (NRC) provides information concerning
   background radioactivity in *Background as a Residual Radioactivity Criterion for Decommissioning* NUREG-1501 (NRC 1994).
- The United Nations Scientific Committee on the Effects of Atomic Radiation
   (UNSCEAR) has published a report on *Sources and Effects of Ionizing Radiation* (UNSCEAR 2000) and provides a searchable version of the report on the World Wide
   Web at www.unscear.org.
- The National Council on Radiation Protection and Measurements (NCRP) has
   published reports on *Exposure of the Population in the United States and Canada from Natural Background Radiation*, NCRP Report No. 94 (NCRP 1988a) and
   *Radiation Exposure of the U.S. Population from Consumer Products and Miscellaneous Sources*, NCRP Report No. 95 (NCRP 1988b).

#### 23 B.2 Environmental Radioactivity

Environmental radioactivity is radioactivity from the environment where the M&E is located.
There are three sources contributing to environmental radioactivity; terrestrial (Section B.2.1),
manmade (Section B.2.2), and cosmic and cosmogenic (Section B.2.3). Although background
radiation is present everywhere, the component radionuclide concentrations and distributions are

28 not constant. Certain materials have higher concentrations of background radiation, and varying

29 environmental and physical conditions can result in accumulations of background radiation.

30 Information on environmental radioactivity is usually available from historic measurements

31 identified during the IA.

If high levels of environmental radioactivity interfere with the disposition decision (e.g., action level less than environmental background, variability in environmental radioactivity determines level of survey effort), the planning team may consider moving the M&E being investigated to a location with less environmental radioactivity (see Sections 3.3.1.3 and 5.3). If the level of environmental radioactivity is unknown, it may be necessary to collect data during a preliminary survey (see Section 2.3) to provide this information.

#### 38 B.2.1 Terrestrial Radioactivity

The naturally occurring forms of radioactive elements incorporated into the Earth during its formation that is still present are referred to as "terrestrial radionuclides." The most significant terrestrial radionuclides include the uranium and thorium decay series, potassium-40 and rubidium-87. Virtually all materials found in nature contain some concentration of terrestrial radionuclides. Table B.1 lists average and typical ranges of concentrations of terrestrial radionuclides. Although the ranges in the table are typical, larger variations exist in certain areas (e.g., Colorado).

46 Bulk materials containing elevated concentrations of terrestrial radionuclides as well as

47 equipment used to handle or process these materials should be identified during the IA even if48 these materials and equipment were not impacted by site activities.

Radon is an element that occurs as a gas in nature. Isotopes of radon are members of both the
uranium and thorium natural decay series. These radon isotopes decay to produce additional
radioactive isotopes, which are collectively called radon progeny.

December 2006

| Material                     | Radium-226<br>(Bq/kg) <sup>a</sup>      | Uranium-238<br>(Bq/kg) <sup>a</sup> | Thorium-232<br>(Bq/kg) <sup>a</sup> | Potassium-40<br>(Bq/kg) <sup>a</sup> |
|------------------------------|-----------------------------------------|-------------------------------------|-------------------------------------|--------------------------------------|
| Soil, U.S.                   | 40 (8-160) <sup>b</sup>                 | 35 (4-140) <sup>b</sup>             | 35 (4-130) <sup>b</sup>             | 370 (100-700) <sup>b</sup>           |
| Phosphate Fertilizer         | 200 <sup>c</sup> - 100,000 <sup>d</sup> | 200-1,500 <sup>b</sup>              | 20 <sup>b</sup>                     |                                      |
| Concrete                     | (19-89) <sup>e</sup>                    | (19-89) <sup>f</sup>                | (15-120) <sup>f</sup>               | (260-1,100) <sup>f</sup>             |
| Concrete Block               | (41-780) <sup>e</sup>                   | (41-780) <sup>f</sup>               | (37-81) <sup>f</sup>                | (290-1,100) <sup>f</sup>             |
| Brick                        | (4-180) <sup>e</sup>                    | (4-180) <sup>f</sup>                | (1-140) <sup>f</sup>                | (7-1,200) <sup>f</sup>               |
| Coal Tar                     | (100-300) <sup>e</sup>                  | (100-300) <sup>b</sup>              |                                     |                                      |
| Fly Ash-Bottom Ash           | 200 <sup>e</sup>                        | 200 <sup>b</sup>                    | 200 <sup>b</sup>                    |                                      |
| Coal, U.S.                   |                                         | 18 (1-540) <sup>g</sup>             | 21 (2-320) <sup>g</sup>             | 52 (1-710) <sup>g</sup>              |
| Tile                         |                                         | (550-810) <sup>h</sup>              | 650 <sup>h</sup>                    |                                      |
| Porcelain, Glazed            |                                         | (180-37                             | 7,000) <sup>h, i</sup>              |                                      |
| Ceramic, Glazed <sup>b</sup> |                                         | (79-1,2                             | 00) <sup>h, i</sup>                 | 1                                    |

#### Table B.1 Typical Average Concentration Ranges of Terrestrial Radionuclides

53

а

To convert Bq/kg to pCi/g, multiply by 0.027.

54

b UNSCEAR, Sources and Effects of Ionizing Radiation (UNSCEAR 2000).

60 National Academy Press, p. 72 (NAS 1999).

- 61 e  $^{226}$ Ra is assumed to be in secular equilibrium with  $^{238}$ U.
- f Eicholz G.G., Clarke F.J., and Kahn, B., *Radiation Exposure From Building Materials*, in "Natural
  Radiation Environment III," U.S. Department of Energy CONF-780422 (Eicholz 1980).
- 64 g Beck H.L., Gogolak C.V., Miller K.M., and Lowder W.M., Perturbations on the Natural Radiation
- 65 Environment Due to the Utilization of Coal as an Energy Source, in "Natural Radiation Environment III,"
- 66 U.S. Department of Energy CONF-780422 (Beck 1980).
- h Hobbs T.G., *Radioactivity Measurements on Glazed Ceramic Surfaces*, J. Res. Natl. Inst. Stand. Technol.
  105, 275-283 (Hobbs 2000).
- 69 i Values reported as total radioactivity without identification of specific radionuclides.

c Evaluation of EPA's Guidelines for Technologically Enhanced Naturally Occurring Radioactive Materials
 (TENORM) (EPA 2000).

<sup>57</sup> d Evaluation of Guidelines for Technologically Enhanced Naturally Occurring Radioactive Materials

 <sup>(</sup>*TENORM*), Committee on Evaluation of EPA Guidelines for Exposure to Naturally Occurring Radioactive
 Materials Board on Radiation Effects Research Commission on Life Sciences National Research Council,

Radon emissions vary significantly over time based on a wide variety of factors. For example,
relatively small changes in the relative pressure between the source material and the atmosphere
(indoor or outdoor) can result in large changes in radon concentrations in the air. Soil moisture
content also has an affect on the radon emanation rate.

74 Radon progeny tend to become fixed to solid particles in the air. These particles can become 75 attached to surfaces as a result of electrostatic charge or gravitational settling. Air flow through 76 ventilation ducts can produce an electrostatic charge that will attract these particles. A decrease 77 in atmospheric pressure often precedes a rainstorm, which increases the radon emanation rate. 78 Immediately prior to an electrical storm, an electrostatic charge can build up on equipment 79 resulting in elevated radiation levels from radon progeny. Rainfall acts to scavenge these 80 particles from the air, potentially resulting in elevated dose rates and surface activities during and 81 immediately following rainfall.

<sup>210</sup>Pb is a decay product of <sup>222</sup>Rn and <sup>238</sup>U. The 22-year half-life provides opportunities for
buildup <sup>210</sup>Pb and progeny in sediments and low-lying areas. As mentioned previously, rain acts
to scavenge radon progeny from the air. Areas where rain collects and concentrates can result in
elevated levels of <sup>210</sup>Pb and progeny over time. In addition, lead is easily oxidized and can
become fixed to surfaces through corrosion processes. Rust or oxide films on equipment can be
indicators of locations with a potential for elevated background radioactivity.

88 B.2.2 Man-Made Radioactive Materials

Nuclear weapons testing and nuclear power reactors have produced large quantities of
 radionuclides through the fissioning of uranium and other heavy elements and the activation of
 various elements. Examples of man-made radionuclides that could be in the environment are
 <sup>137</sup>Cs, <sup>90</sup>Sr, and various isotopes of plutonium.

Prior to the 1963 Limited Test Ban Treaty, fallout from atmospheric nuclear tests distributed
large quantities of man-made radionuclides around the globe. Following the 1963 treaty most
nuclear weapons tests were conducted underground, although China and France continued
atmospheric testing of nuclear weapons into the late 1970s. In 1996 a Comprehensive Test Ban
Treaty was negotiated with the help of the United Nations. The Comprehensive Test Ban Treaty

**B-4** 

- has not been ratified by China or the United States and was broken by Pakistan and India in
- 99 1998. However, worldwide fallout concentrations have been declining since the mid 1960s.

100 In 1964 a Department of Defense weather satellite containing a radiation source failed to achieve 101 orbit. The Space Nuclear Auxiliary Power (SNAP) 9-A Radioisotopic Thermoelectric Generator 102 (RTG) burned up on re-entry and dispersed the nuclear inventory (primarily plutonium-238) into 103 the atmosphere. Incidents involving Soviet satellites with radioisotopes or nuclear reactors 104 occurred in 1969, 1973, 1978, and 1983. In April 1986 there was a non-nuclear steam explosion 105 and fire at the number four reactor at the nuclear power plant in Chernobyl in north-central 106 Ukraine. Large quantities of radioactive material were released into the environment as a result 107 of the catastrophe. The radionuclides from these incidents have been inhomogenously deposited

108 around the world.

109 Isolated pockets with elevated concentrations of man-made radionuclides can still be found. For 110 example, ventilation systems that were installed prior to 1963 collected fallout radionuclides. If 111 these systems are still in use and the ducts have not been thoroughly cleaned, there is a potential 112 for elevated background radiation. Another potential source of elevated background radiation 113 from man-made radionuclides is wood ash. Trees filter and store some airborne pollutants, including <sup>137</sup>Cs from fallout. When the wood is burned the <sup>137</sup>Cs is concentrated in the wood 114 115 ash. Materials or equipment associated with the ash could have elevated levels of background 116 radiation.

#### 117 B.2.3 Cosmic Radiation and Cosmogenic Radionuclides

Cosmic radiation consists of highly energetic particles that are believed to originate from phenomena such as solar flares and supernova explosions. The Earth's atmosphere serves as a shield for these particles, although on rare occasions a solar flare is strong enough to produce a significant radiation dose in the lower reaches of the atmosphere.

122 Cosmic radiation is also responsible for the production of radioactive elements called

123 cosmogenic radionuclides. These radionuclides are produced from collisions between the highly

124 energetic cosmic radiation with stable elements in the atmosphere. Cosmogenic radionuclides

125 include <sup>3</sup>H, <sup>7</sup>Be, <sup>14</sup>C, and <sup>22</sup>Na. Background concentrations of cosmic radiation and cosmogenic

126 radionuclides generally do not impact disposition surveys.

Appendix B

#### 127 B.3 Inherent Radioactivity

128 Inherent radioactivity, or intrinsic radioactivity, is radioactivity that is an integral part of the 129 M&E being investigated. For example, concrete is made from materials that contain terrestrial 130 radionuclides and is inherently radioactive. Some equipment is constructed from radioactive 131 components, such as electron tubes or night vision goggles containing thorium components. 132 Information on inherent radioactivity is usually obtained from process knowledge or historical 133 measurements identified during the IA. Manufacturers of equipment that incorporates 134 radioactive components can usually provide the radionuclide and the activity incorporated into 135 the equipment. Information on radionuclides and activity levels for other types of equipment or 136 bulk materials that are inherently radioactive is usually more generic. Table B.1 lists ranges of 137 terrestrial radionuclide concentrations in some common materials (e.g., concrete, soil, brick). 138 The wide range of radionuclide concentrations observed in these materials prevents establishing 139 any general rules of thumb, so it is usually necessary to obtain project-specific information. For 140 release scenarios, it is strongly recommended that all M&E be surveyed before it enters a 141 controlled area. This provides project-specific information on inherent radioactivity and 142 minimizes complications when designing the disposition survey. For interdiction scenarios, it is 143 important to understand the types of M&E being investigated and the potential for inherent 144 radioactivity. It may be necessary to establish an administrative action level that defines the 145 upper end of acceptable inherent radioactivity for different types of M&E (see Section 3.2).

#### 146 B.4 Instrument Background

147 Instrument background is a combination of radioactivity in the constituent materials of the 148 detector, ancillary equipment, and shielding, and electronic noise contributing to the instrument 149 response. Instruments designed to measure low levels of radioactivity are generally constructed 150 from materials with very low levels of inherent radioactivity to minimize instrument background. 151 The electronics in radiation instruments are also designed to minimize the signal-to-noise ratio, 152 also reducing instrument background. Instrument background becomes the primary contributor 153 to background only for radionuclide-specific measurements for radionuclides not contributing to environmental or inherent background (e.g., <sup>60</sup>Co in bulk soil measured by gamma 154 155 spectroscopy). Note that radiation from M&E can interact with instrument shielding to produce 156 secondary effects that may contribute to instrument background (e.g., Compton backscatter,

B-6

generation of secondary photons and characteristic X-rays, photoelectric absorption). Additional
information on instrument background is available in Chapter 20 of *Radiation Detection and*

159 Measurement (Knoll 1999).

### 160 B.5 Technologically Enhanced Naturally Occurring Radioactive Material

161 Technologically Enhanced Naturally Occurring Radioactive Material (TENORM) is any

162 naturally occurring material not subject to regulation under the Atomic Energy Act whose

163 radionuclide concentrations or potential for human exposure have been increased above levels

164 encountered in the natural state by human activities (NAS 1999). Some industrial processes

165 involving natural resources concentrate naturally occurring radionuclides, producing TENORM.

166 Much TENORM contains only trace amounts of radioactivity and is part of our everyday

167 landscape. Some TENORM, however, contains very high concentrations of radionuclides. The

168 majority of radionuclides in TENORM are found in the uranium and thorium natural decay

169 series. Potassium-40 is also associated with TENORM. Radium and radon are typically

170 measured as indicators for TENORM in the environment. TENORM is found in many industrial

171 waste streams (e.g., scrap metal, sludges, slags, fluids) and is being discovered in industries

traditionally not thought of as being affected by radiation. Examples of products and processesaffected by TENORM include:

| 174 | • | Uranium overburden and mine spoils                                                |
|-----|---|-----------------------------------------------------------------------------------|
| 175 | • | Phosphate industrial wastes                                                       |
| 176 | • | Phosphate fertilizers and potash                                                  |
| 177 | • | Coal ash, slag, cinders                                                           |
| 178 | • | Oil and gas production scale and sludge                                           |
| 179 | • | Sludge and other waste materials from treatment of drinking water and waste water |
| 180 | • | Metal mining and processing waste                                                 |
| 181 | • | Geothermal energy production waste                                                |
| 182 | • | Paper and pulp                                                                    |
| 183 | • | Scrap metal recycling                                                             |
| 184 | • | Slag from industrial processes (metal and non-metal)                              |
| 185 | • | Abrasive mineral sands                                                            |
| 186 | • | Cement production                                                                 |

Radon and radon progeny are concerns when dealing with TENORM. Radon-222 is a decay 187 product of <sup>238</sup>U. The 3.8-day half-life means that <sup>222</sup>Rn is capable of migrating through several 188 decimeters of soil or building materials and reaching the atmosphere before it decays. The 189 radioactive progeny of unsupported <sup>222</sup>Rn have short half-lives (e.g., 27 minutes for <sup>214</sup>Pb) and 190 usually decay to background levels within a few hours. <sup>220</sup>Rn, which has a 55-second half-life, is 191 a decay product of <sup>232</sup>Th. The short half-life limits the mobility of <sup>220</sup>Rn since it decays before it 192 can migrate to the atmosphere. However, <sup>232</sup>Th activity that is located on or very near the 193 surface can produce significant quantities of <sup>220</sup>Rn in the air. The radioactive progeny of 194 unsupported <sup>220</sup>Rn can result in elevated levels of surface radioactivity for materials and 195 equipment used or stored in these areas. The 10.6-hour half-life of <sup>212</sup>Pb means that this surface 196 197 radioactivity could take a week or longer to decay to background levels.

#### 198 **B.6 Orphan Sources**

Radiation sources are found in certain types of specialized industrial devices, such as those used for measuring the moisture content of soil and for measuring density or thickness of materials. Usually, a small quantity of the radioactive material is sealed in a metal casing and enclosed in a housing that prevents the escape of radiation. These sources present no health risk from radioactivity as long as the sources remain sealed, the housing remains intact, and the devices are handled and used properly.

205 If equipment containing a sealed source is disposed of improperly or sent for recycling as scrap 206 metal, the sealed source may be 'lost' and end up in a metal recycling facility or in the possession 207 of someone who is not licensed to handle the source. Specially licensed sources bear identifying 208 markings that can be used to trace these sources to their original owners. However, some 209 sources do not have these markings or the markings become obliterated. In these cases, the 210 sources are referred to as 'orphan sources' because no known owner can be identified. They are 211 one of the most frequently encountered sources of radioactivity in shipments received by scrap 212 metal facilities.

213 Scrap yards and disposal sites attempt to detect orphan sources and other contaminated metals by

214 screening incoming materials with sensitive radiation detectors before they can enter the

215 processing stream and cause contamination. Housings that make the sources safe also make

**B-8** 

- 216 detection difficult. Further, if the source is buried in a load of steel, the steel acts as further
- shielding and thus these sources may elude detection. Consequently, there is always a potential
- 218 for sources to become mixed within and impact scrap metal.

# 1 C. EXAMPLES OF COMMON RADIONUCLIDES

#### 2

### Table C.1 Examples of Common Radionuclides at Selected Types of Facilities

| Facility Type                          | Common Radionuclides                                                    |
|----------------------------------------|-------------------------------------------------------------------------|
| Accelerator/Cyclotron                  | <sup>22</sup> Na                                                        |
|                                        | Activation products (e.g., <sup>60</sup> Co)                            |
| Aircraft Manufacturing and Maintenance | <sup>3</sup> H (dials and gauges)                                       |
| Facility                               | Magnesium-thorium alloys                                                |
|                                        | Nickel-thorium alloys                                                   |
|                                        | <sup>137</sup> Pm (lighted dials and gauges)                            |
|                                        | <sup>226</sup> Ra and progeny (radium dials)                            |
|                                        | Depleted uranium                                                        |
| Cement Production Facility             | Thorium series radionuclides                                            |
|                                        | Uranium series radionuclides                                            |
| Ceramic Manufacturing Facility         | Thorium series radionuclides                                            |
|                                        | Uranium series radionuclides                                            |
| Fertilizer Plant                       | <sup>40</sup> K                                                         |
|                                        | Uranium series radionuclides                                            |
| Fuel Fabrication Facility              | <sup>99</sup> Tc (reprocessing only)                                    |
|                                        | Enriched uranium                                                        |
|                                        | Transuranics (e.g., <sup>237</sup> Np, <sup>239</sup> Pu) (reprocessing |
|                                        | only)                                                                   |
| Gaseous Diffusion Plant                | <sup>99</sup> Tc                                                        |
|                                        | Enriched uranium                                                        |
|                                        | Transuranics (e.g., <sup>237</sup> Np, <sup>239</sup> Pu)               |

| Facility Type                        | Common Radionuclides                  |
|--------------------------------------|---------------------------------------|
| Medical Imaging and Therapy Facility | <sup>60</sup> Co                      |
|                                      | <sup>90</sup> Sr                      |
|                                      | <sup>99m</sup> Tc                     |
|                                      | <sup>131</sup> I                      |
|                                      | <sup>137</sup> Cs                     |
|                                      | <sup>192</sup> Ir                     |
|                                      | <sup>201</sup> Tl                     |
|                                      | <sup>226</sup> Ra and progeny         |
|                                      | Depleted uranium collimators          |
| Metal Foundry                        | <sup>40</sup> K                       |
|                                      | <sup>60</sup> Co                      |
|                                      | <sup>137</sup> Cs                     |
|                                      | Thorium series radionuclides          |
|                                      | Uranium series radionuclides          |
| Munitions and Armament Manufacturing | <sup>3</sup> H (fire control devices) |
| and Testing Facility                 | <sup>226</sup> Ra and progeny         |
|                                      | Depleted uranium                      |
| Nuclear Medicine Laboratory          | <sup>99m</sup> Tc                     |
| or Pharmaceutical Laboratory         | <sup>131</sup> I                      |
|                                      | <sup>137</sup> Cs                     |
|                                      | <sup>192</sup> Ir                     |
|                                      | <sup>201</sup> Tl                     |
|                                      | <sup>226</sup> Ra and progeny         |

| Facility Type                            | Common Radionuclides                                                             |
|------------------------------------------|----------------------------------------------------------------------------------|
| Nuclear Power Reactor                    | Activation products (e.g., <sup>55</sup> Fe, <sup>60</sup> Co, <sup>63</sup> Ni) |
|                                          | Fission products (e.g., <sup>90</sup> Sr, <sup>137</sup> Cs)                     |
|                                          | Transuranics (e.g., <sup>237</sup> Np, <sup>239</sup> Pu)                        |
| Oil and Gas                              | <sup>226</sup> Ra and progeny                                                    |
| Optical Glass Facility                   | Thorium series radionuclides                                                     |
|                                          | Uranium series radionuclides                                                     |
| Paint and Pigment Manufacturing Facility | Thorium series radionuclides                                                     |
|                                          | Uranium series radionuclides                                                     |
| Paper and Pulp Facility                  | Thorium series radionuclides                                                     |
|                                          | Uranium series radionuclides                                                     |
| Radium Dial Painting                     | <sup>226</sup> Ra and progeny                                                    |
| Rare Earth Facility                      | <sup>40</sup> K                                                                  |
|                                          | Thorium series radionuclides                                                     |
|                                          | Uranium series radionuclides                                                     |
| R&D Facility with Broad Scope License    | <sup>3</sup> H                                                                   |
|                                          | $^{14}$ C                                                                        |

| Facility Type                  | Common Radionuclides             |
|--------------------------------|----------------------------------|
| Research Laboratory            | <sup>3</sup> H                   |
|                                | <sup>14</sup> C                  |
|                                | <sup>22</sup> Na                 |
|                                | <sup>24</sup> Na                 |
|                                | <sup>32</sup> P                  |
|                                | <sup>57</sup> Co                 |
|                                | <sup>63</sup> Ni                 |
|                                | <sup>123</sup> I                 |
|                                | <sup>125</sup> I                 |
| Scrap Metal Recycling Facility | <sup>60</sup> Co                 |
|                                | <sup>90</sup> Sr                 |
|                                | <sup>137</sup> Cs                |
|                                | <sup>226</sup> Ra and progeny    |
|                                | Thorium series radionuclides     |
|                                | Uranium series radionuclides     |
| Sealed Source Facility         | <sup>60</sup> Co                 |
|                                | <sup>90</sup> Sr                 |
|                                | <sup>137</sup> Cs                |
|                                | <sup>241</sup> Am                |
| Transuranic Facility           | <sup>241</sup> Am                |
|                                | <sup>238, 239, 240, 241</sup> Pu |

| Facility Type                       | Common Radionuclides                                 |
|-------------------------------------|------------------------------------------------------|
| Uranium Mill                        | <sup>238</sup> U                                     |
|                                     | <sup>230</sup> Th                                    |
|                                     | <sup>226</sup> Ra and progeny                        |
|                                     | Thorium series radionuclides                         |
|                                     | Uranium series radionuclides                         |
| Waste Water Treatment Facility      | Thorium series radionuclides                         |
|                                     | Uranium series radionuclides                         |
| Widely Distributed General Commerce | <sup>3</sup> H (exit signs)                          |
|                                     | <sup>40</sup> K (naturally-occurring)                |
|                                     | <sup>57</sup> Co (lead paint analyzer)               |
|                                     | <sup>60</sup> Co (radiography source)                |
|                                     | <sup>63</sup> Ni (chemical agent detectors)          |
|                                     | <sup>109</sup> Cd (lead paint analyzer)              |
|                                     | <sup>137</sup> Cs (soil moisture density gauge,      |
|                                     | liquid level gauge)                                  |
|                                     | <sup>192</sup> Ir (radiography source)               |
|                                     | <sup>226</sup> Ra (watch dials)                      |
|                                     | <sup>241</sup> Am (AmBe soil moisture density gauge, |
|                                     | smoke detectors)                                     |
|                                     | Orphan sources                                       |

# 1 D. INSTRUMENTATION AND MEASUREMENT TECHNIQUES

# 2 **D.1 Introduction**

| 3  | This appendix provides information on various field and laboratory equipment used to     |
|----|------------------------------------------------------------------------------------------|
| 4  | measure radiation levels and radioactive material concentrations. The descriptions       |
| 5  | provide information pertaining to the general types of available radiation detectors and |
| 6  | the ways in which those detectors are utilized for various circumstances. Similar        |
| 7  | information may be referenced from MARSSIM Appendix H, Description of Field              |
| 8  | Survey and Laboratory Analysis Equipment (MARSSIM 2002), and NUREG-1761                  |
| 9  | Appendix B, Advanced/Specialized Information (NRC 2002). The information in this         |
| 10 | appendix is specifically designed to assist the user in selecting the appropriate        |
| 11 | radiological instrumentation and measurement technique during the implementation         |
| 12 | phase of the Data Life Cycle (Chapter 5).                                                |
| 13 | The following topics will be discussed for each instrumentation and measurement          |
| 14 | technique combination:                                                                   |
| 15 | • Instruments – a description of the equipment and the typical detection                 |
| 16 | instrumentation it employs                                                               |
| 17 | • Temporal Issues – a synopsis of time constraints that may be encountered through       |
| 18 | use of the measurement technique                                                         |
| 19 | • Spatial Issues – limitations associated with the size and portability of the           |
| 20 | instrumentation as well as general difficulties that may arise pertaining to source-to-  |
| 21 | detector geometry                                                                        |
| 22 | • Radiation Types – applicability of the measurement technique for different types of    |
| 23 | ionizing radiation                                                                       |
| 24 | • Range – the associated energy ranges for the applicable types of ionizing radiation    |
| 25 | • Scale – typical sizes for the M&E applicable to the measurement technique              |

D-1

• Ruggedness – a summary of the durability of the instrumentation (note that this is
 frequently limited by the detector employed by the instrumentation; e.g., an
 instrument utilizing a plastic scintillator is inherently more durable than an
 instrument utilizing a sodium iodide crystal); suitable temperature ranges for proper
 operation of the instrumentation and measurement technique have been provided
 where applicable

#### 32 D.2 General Detection Instrumentation

This section summarizes the most common detector types used for the detection of
ionizing radiation in the field. This will discuss many of the detector types incorporated
into the measurement methods that are described in later sections of this chapter.

36 D.2.1 Gas-Filled Detectors

37 Gas-filled detectors are the most commonly-used radiation detectors and include gas-38 ionization chamber detectors, gas-flow proportional detectors, and Geiger-Muller (GM) 39 detectors. These detectors can be designed to detect alpha, beta, photon, and neutron 40 radiation. They generally consist of a wire passing through the center of a gas-filled 41 chamber with metal walls, which can be penetrated by photons and high-energy beta 42 particles. Some chambers are fitted with mylar windows to allow penetration by alpha 43 and low-energy beta radiation. A voltage source is connected to the detector with the 44 positive terminal connected to the wire and the negative terminal connected to the 45 chamber casing to generate an electric field, with the wire serving as the anode, and the 46 chamber casing serving as the cathode. Radiation ionizes the gas as it enters the 47 chamber, creating free electrons and positively-charged ions. The number of electrons 48 and positively-charged ions created is related to the properties of the incident radiation 49 type (alpha particles produce many ion pairs in a short distance, beta particles produce 50 fewer ion pairs due to their smaller size, and photons produce relatively few ion pairs as 51 they are uncharged and interact with the gas significantly less than alpha and beta 52 radiation). The anode attracts the free electrons while the cathode attracts the positively 53 charged ions. The reactions between these ions and free electrons with either the anode 54 or cathode produce disruptions in the electric field. The voltage applied to the chamber

can be separated into different voltage ranges that distinguish the types of gas-filled
detectors described below. The different types of gas-filled detectors are described in
ascending order of applied voltage.

#### 58 D.2.1.1 Ionization Chamber Detectors

59 Ionization chamber detectors consist of a gas-filled chamber operated at the lowest voltage range of all gas-filled detectors.<sup>1</sup> Ionization detectors utilize enough voltage to 60 61 provide the ions with sufficient velocity to reach the anode or cathode. The signal pulse 62 heights produced in ionization chamber detectors is small and can be discerned by the 63 external circuit to differentiate between different types of radiation. These detectors 64 provide true measurement data of energy deposited proportional to the charge produced in air, unlike gas-flow proportional and GM detectors which are detection devices. These 65 66 detectors are generally designed to collect cumulative beta and photon radiation without 67 amplification and many have a beta shield to help distinguish between these radiation 68 types. These properties make ionization detectors excellent choices for measuring 69 exposure rates from photon emission radiation in roentgens. These detectors can be 70 deployed for an established period of time to collect data in a passive manner for 71 disposition surveys. Ionization chamber detectors may assist in collecting measurements 72 in inaccessible areas due to their availability in small sizes.

73 Another form of the ionization chamber detector is the pressurized ion chamber (PIC).

As with other ionization chamber detectors, the PIC may be applied for M&E disposition

surveys when a exposure-based action level is used. The added benefit of using PICs is

that they can provide more accurate dose measurements because they compensate for the

various levels of photon energies as opposed to other exposure rate meters (e.g., micro-

rem meter), which are calibrated to a <sup>137</sup>Cs source. PICs can be used to cross-calibrate

79 other exposure rate detectors applicable for surveying M&E, allowing the user to

<sup>&</sup>lt;sup>1</sup> At voltages below the ionization chamber voltage range, ions will recombine before they can reach either the cathode or anode and do not produce a discernable disruption to the electric field.

- 80 compensate for different energy levels and reduce or eliminate the uncertainty of
- 81 underestimating or overestimating the exposure rate measurements.
- 82 D.2.1.2 Gas-Flow Proportional Detectors

83 The voltage applied in gas-flow proportional detectors is the next range higher than 84 ionization chamber detectors, and is sufficient to create ions with enough kinetic energy 85 to create new ion pairs, called secondary ions. The quantity of secondary ions increases 86 proportionally with the applied voltage, in what is known as the gas amplification factor. 87 The signal pulse heights produced can be discerned by the external circuit to differentiate 88 between different types of radiation. Gas-flow proportional detectors are generally used 89 to detect alpha and beta radiation. Systems also detect photon radiation, but the detection 90 efficiency for photon emissions is considerably lower than the relative efficiencies for 91 alpha and beta activity. Physical probe areas for these types of detectors vary in size from approximately  $100 \text{ cm}^2$  up to  $600 \text{ cm}^2$ . The detector cavity in these instruments is 92 93 filled with P-10 gas which is an argon-methane mixture (90% argon and 10% methane). 94 Ionizing radiation enters this gas-filled cavity through an aluminized mylar window. 95 Additional mylar shielding may be used to block alpha radiation; a lower voltage setting 96 may be used to detect pure alpha activity (NRC 1998b).

97 D.2.1.3 Geiger-Mueller Detectors

98 GM detectors operate in the voltage range above the proportional range and the limited proportional range.<sup>2</sup> This range is characterized by extensive gas amplification that 99 100 results in what is referred to as an "avalanche" of ion and electron production. This mass 101 production of electrons spreads throughout the entire chamber, which precludes the 102 ability to distinguish between different kinds of radiation because all of the signals 103 produced are the same size. GM detectors are most commonly used for the detection of 104 beta activity, though they may also detect both alpha and photon radiation. GM detectors 105 have relatively short response and dead times and are sensitive enough to broad

<sup>&</sup>lt;sup>2</sup> The limited proportional range produces secondary ion pairs but does not produce reactions helpful for radiation detection, because the gas amplification factor is no longer constant.

106 detectable energy ranges for alpha, beta, photon, and neutron emissions (though they 107 cannot distinguish which type of radiation produces input signals) to allow them to be 108 used for surveying M&E with minimal process knowledge.<sup>3</sup>

109 GM detectors are commonly divided into three classes: "pancake", "end-window", and 110 "side-wall" detectors. GM pancake detectors (commonly referred to as "friskers") have wide diameter, thin mica windows (approximately 15  $\text{cm}^2$  window area) that are large 111 112 enough to allow them to be used to survey many types of M&E. Although GM pancake 113 detectors are referenced beta and gamma detectors, the user should consider that their 114 beta detection efficiency far exceeds their gamma detection efficiency. The end-window 115 detector uses a smaller, thin mica window and is designed to allow beta and most alpha 116 particles to enter the detector unimpeded for concurrent alpha and beta detection. The 117 side-wall detector is designed to discriminate between beta and gamma radiation, and 118 features a door that can be slid or rotated closed to shield the detector from beta 119 emissions for the sole detection of photons. These detectors require calibration to detect 120 for beta and gamma radiation separately. Energy-compensated GM detectors may also 121 be cross-calibrated for assessment of exposure rates.

122 **D.2.2** 

**Scintillation Detectors** 

123 Scintillation detectors (sometimes referred to as "scintillators") consist of scintillation 124 media that emits a light "output" called a scintillation pulse when it interacts with 125 ionizing radiation. Scintillators emit low-energy photons (usually in the visible light 126 range) when struck by high-energy charged particles; interactions with external photons 127 cause scintillators to emit charged particles internally, which in turn interact with the 128 crystal to emit low-energy photons. In either case, the visible light emitted (i.e., the low-129 energy photons) are converted into electrical signals by photomultiplier tubes and

130 recorded by a digital readout device. The amount of light emitted is generally

<sup>&</sup>lt;sup>3</sup> GM detectors may be designed and calibrated to detect alpha, beta, photon, and neutron radiation, though they are much better-suited for the detection of charged particles (i.e., alpha and beta particles) than neutral particles (i.e., photons and neutrons).

proportional to the amount of energy deposited, allowing for energy discrimination andquantification of source radionuclides in some applications.

133 D.2.2.1 Zinc Sulfide Scintillation Detectors

134 Zinc sulfide detector crystals are only available as a polycrystalline powder that are 135 arranged in a thin layer of silver-activated zinc sulfide (ZnS(Ag)) as a coating or 136 suspended within a layer of plastic scintillation material. The use of these thin layers 137 makes them inherently-dispositioned for the detection of high linear energy transfer 138 (LET) radiation (radiation associated with alpha particles or other heavy ions). These 139 detectors use an aluminized mylar window to prevent ambient light from activating the 140 photomultiplier tube (Knoll 1999). The light pulses produced by the scintillation crystals 141 are amplified by a photomultiplier tube, converted to electrical signals, and counted on a 142 digital scaler/ratemeter. Low LET radiations (particularly beta emissions) are detected at 143 much lower detection efficiencies than alpha emissions and pulse characteristics may be 144 used to discriminate beta detections from alpha detections.

145 D.2.2.2 Sodium Iodide Scintillation Detectors

146 Sodium iodide detectors are well-suited for detection of photon radiation. Energy-147 compensated sodium iodide detectors may also be cross-calibrated for assessment of 148 exposure rates. Unlike ZnS(Ag), sodium iodide crystals can be grown relatively large 149 and machined into varying shapes and sizes. Sodium iodide crystals are activated with 150 trace amounts of thallium (hence the abbreviation NaI(Tl)), the key ingredient to the 151 crystal's excellent light yield (Knoll, 1999). These instruments most often have upper-152 and lower-energy discriminator circuits and when used correctly as a single-channel 153 analyzer, can provide information on the photon energy and identify the source 154 radionuclides. Sodium iodide detectors can be used with handheld instruments or large 155 stationary radiation monitors.

156 D.2.2.3 Cesium Iodide Scintillation Detectors

157 Cesium iodide detectors are generally similar to sodium iodide detectors. Like NaI(Tl),

158 cesium iodide may be activated with thallium (CsI(Tl)) or sodium (CsI(Na)). Cesium

#### MARSAME

D-6

159 iodide is more resistant to shock and vibration damage than NaI, and when cut into thin 160 sheets it features malleable properties allowing it to be bent into various shapes. CsI(Tl) 161 has variable decay times for various exciting particles, allowing it to help differentiate 162 between different types of ionizing radiation. A disadvantage of CsI scintillation 163 detectors is due to the fact that the scintillation emission wavelengths for CsI are longer 164 than those produced by sodium iodide crystals; since almost all photomultiplier tubes are 165 designed for NaI, there are optical incompatibilities that result in decreased intrinsic 166 efficiencies for CsI detectors. Additionally, CsI scintillation detectors feature relatively 167 long response and decay times for luminescent states in response to ionizing radiation 168 (Knoll 1999).

169 D.2.2.4 Plastic Scintillation Detectors

Plastic scintillators are composed of organic scintillation material that is dissolved in a solvent and subsequently hardened into a solid plastic. Modifications to the material and specific packaging allow plastic scintillators to be used for detecting alpha, beta, photon, or neutron radiation. While plastic scintillators lack the energy resolution of sodium iodide and some other gamma scintillation detector types, their relatively low cost and ease of manufacturing into almost any desired shape and size enables them to offer versatile solutions to atypical radiation detection needs (Knoll 1999).

177 D.2.3 Solid State Detectors

178 Solid state detection is based on ionization reactions within detector crystals composed of 179 an electron-rich (n-type or electron conductor) sector and an electron-deficient (p-type or 180 hole conductor) sector. Reverse-bias voltage is applied to the detector crystal; forming a 181 central region absent of free charge (this is termed the depleted region). When a particle 182 enters this region, it interacts with the crystal structure to form hole-electron pairs. These 183 holes and electrons are swept out of the depletion region to the positive and negative 184 electrodes by the electric field, and the magnitude of the resultant pulse in the external 185 circuit is directly proportional to the energy lost by the ionizing radiation in the depleted 186 region.

MARSAME

December 2006

Solid state detection systems typically employ silicon or germanium crystals<sup>4</sup> and utilize 187 188 semiconductor technology (i.e., a substance whose electrical conductivity falls between 189 that of a metal and that of an insulator, and whose conductivity increases with decreasing 190 temperature and with the presence of impurities). Semiconductor detectors are cooled to 191 extreme temperatures to utilize the crystal material's insulating properties to prevent 192 thermal generation of noise. The use of semiconductor technology can achieve energy 193 resolutions, spatial resolutions, and signal-to-noise ratios superior to those of scintillation 194 detection systems.

#### 195 **D.3 Counting Electronics**

Instrumentation requires a device to accumulate and record the input signals from the detector over a fixed period of time. These devices are usually electronic, and utilize scalers or rate-meters to display results representing the number of interaction events (between the detector and radionuclide emissions) within a period of time (e.g., counts per minute). A scaler represents the total number of interactions within a fixed period of time, while a rate-meter provides information that varies based on a short-term average of the rate of interactions.

Scalers represent the simpler of these two counting approaches, because they record a single count each time an input signal is received from the detector. Scaling circuits are typically designed with scalers to allow the input signals to be cut by factors of 10, 100, or 1,000 to allow the input signals to be counted directly by electromechanical registers when counting areas with elevated radioactivity. Scalers are generally used when taking in situ measurements and are used to determine average activities.

209 Contemporary rate-meters utilize analog-to-digital converters to sample the pulse

- amplitude of the input signal received from the detector and convert it to a series of
- 211 digital values. These digital values may then be manipulated using digital filters (or
- shapers) to average or "smooth" the data displayed. The counting-averaging technique

<sup>&</sup>lt;sup>4</sup> Solid state detection systems may also utilize crystals composed of sodium iodide, cesium iodide, or cadmium zinc telluride in non-semiconductor applications.
213 used by rate-meters may be more helpful than scalers in identifying elevated activity. 214 When using scalers in performing scanning surveys to locate areas of elevated activity, 215 small areas of elevated activity may appear as very quick "blips" that are difficult to 216 discern, while rate-meters continue to display heightened count rates once the detector 217 has moved past the elevated activity, and display "ramped up" count rates immediately 218 preceding the elevated activity as well. Rate-meters have the inherent limitation in that 219 the use of their counting electronics varies the signals displayed by the meter since they 220 represent a short-term average of the event rate. It is conceivable that very small areas of 221 elevated activity (e.g., particle) might have their true activity concentrations "diluted" by 222 the averaging of rate-meter counting electronics.

## 223 D.4 Hand-Held Instruments

This section discusses hand-held instruments, which may be used for in situmeasurements or scanning surveys.

## 226 **D.4.1** Instruments

In situ measurements with hand-held instruments are typically conducted using the detector types described in Section D.2. These typically are composed of a detection probe (utilizing a single detector) and an electronic instrument to provide power to the detector and to interpret data from the detector to provide a measurement display.

The most common types of hand-held detector probes are GM detectors, ZnS(Ag) alpha/beta scintillation detectors, and NaI(Tl) photon scintillation detectors. There are instances of gas-flow proportional detectors as hand-held instruments, though these are not as common since these detectors operate using a continuous flow of P-10 gas, and the accessories associated with the gas (e.g., compressed gas cylinders, gauges, tubing) make them less portable for use in the field.

## 237 D.4.2 Temporal Issues

Hand-held instruments generally have short, simple equipment set-ups requiring minimal
time, often less than ten minutes. In situ measurement count times typically range from
30 seconds to two minutes. Longer count times may be utilized to increase resolution

MARSAME

December 2006

- and provide lower minimum detectable limits. Typical scanning speeds are
- approximately 2.5 centimeters per second. Slower scanning speeds will aid in providing
- 243 lower minimum detectable concentrations.

# 244 D.4.3 Spatial Issues

245 Detectors of hand-held instruments are typically small and portable, having little trouble 246 fitting into and measuring most M&E. Spatial limitations are usually based on the 247 physical size of the probe itself. The user must be wary of curved or irregular surfaces of 248 M&E being surveyed. Detector probes generally have flat faces and incongruities 249 between the face of the detector and the M&E being surveyed have an associated 250 uncertainty. ZnS scintillation and gas-flow proportional detectors are known to have 251 variations in efficiency of up to 10% across the face of the detector. Therefore, the 252 calibration source used should have an area at least the size of the active probe area.

# 253 **D.4.4 Radiation Types**

Assortments of hand-held instruments are available for the detection of alpha, beta,
photon, and neutron radiations. Table D.1 illustrates the potential applications for the
most common types of hand-held instruments.

# 257 **D.4.5 Range**

The ranges of detectable energy using hand-held instruments are dependent upon the type of instrument selected and type of radiation. Some typical detectable energy ranges for common hand-held instruments are listed above in Table D.1. More detailed information pertaining to the ranges of detectable energy using hand-held instruments are available in the European Commission for Nuclear Safety and the Environment Report 17624

263 (EC 1998).

|                                                                 |       |      |        |         | Detectable Energy Range |                      |
|-----------------------------------------------------------------|-------|------|--------|---------|-------------------------|----------------------|
|                                                                 | Alpha | Beta | Photon | Neutron | Low End<br>Boundary     | High End<br>Boundary |
| Ionization chamber detectors                                    | NA    | FAIR | GOOD   | NA      | 40-60 keV               | 1.3-3 MeV            |
| Gas-flow proportional detectors                                 | GOOD  | GOOD | POOR   | POOR    | 5-50 keV                | 8-9 MeV              |
| Geiger-Muller detectors                                         | FAIR  | GOOD | POOR   | POOR    | 30-60 keV               | 1-2 MeV              |
| ZnS(Ag) scintillation<br>detectors                              | GOOD  | POOR | NA     | NA      | 30-50 keV               | 8-9 MeV              |
| NaI(Tl) scintillation detectors                                 | NA    | POOR | GOOD   | NA      | 40-60 keV               | 1.3-3 MeV            |
| NaI(Tl) scintillation detectors<br>(thin detector, thin window) | NA    | FAIR | GOOD   | NA      | 10 keV                  | 60-200 keV           |
| CsI(Tl) scintillation detectors                                 | NA    | POOR | GOOD   | NA      | 40-60 keV               | 1.3-3 MeV            |
| Plastic scintillation detectors                                 | NA    | FAIR | GOOD   | NA      | 40-60 keV               | 1.3-3 MeV            |
| BF <sub>3</sub> proportional detectors <sup>5</sup>             | NA    | NA   | NA     | GOOD    | 0.025 eV                | 100 MeV              |
| <sup>3</sup> He proportional detectors <sup>5</sup>             | NA    | NA   | POOR   | GOOD    | 0.025 eV                | 100 MeV              |

## Table D.1 Potential Applications for Common Hand-Held Instruments

Notes:

GOOD The instrument is well-suited for detecting this type of radiation

FAIR The instrument can adequately detect this type of radiation

POOR The instrument may be poorly-suited for detecting this type of radiation

NA The instrument cannot detect this type of radiation

# 265 **D.4.6 Scale**

266 There is no definitive limit to the size of an object to be surveyed using hand-held

267 instruments. Hand-held instruments may generally be used to survey M&E of any size;

268 constraints are only placed by the practical sizing of M&E related to the sensitive area of

the probe. Limitations may also be derived from the physical size of the detector probes

 $<sup>^{5}</sup>$  The use of moderators enables the detection of high-energy fast neutrons. Either BF<sub>3</sub> or  $^{3}$ He gas proportional detectors may be used for the detection of fast neutrons, but  $^{3}$ He are much more efficient in performing this function. BF<sub>3</sub> detectors discriminate against gamma radiation more effectively than  $^{3}$ He detectors.

| 271 | surface areas of approximately 175 to $200 \text{ cm}^2$ . Detection probes larger than this may be                    |
|-----|------------------------------------------------------------------------------------------------------------------------|
| 272 | of limited use with hand-held instruments.                                                                             |
| 273 | D.4.7 Ruggedness                                                                                                       |
| 274 | All varieties of hand-held instruments discussed here are typically calibrated for use in                              |
| 275 | temperatures with lower ranges from -30 $^\circ$ to -20 $^\circ C$ and upper ranges from 50 $^\circ$ to 60 $^\circ C.$ |
| 276 | The durability of a hand-held instrument depends largely upon the detection media                                      |
| 277 | (crystals, such as sodium iodide and germanium crystals are fragile and vulnerable to                                  |
| 278 | mechanical and thermal shock) and the presence of a mylar (or similar material) window:                                |
| 279 | • Ionization chamber detectors – ionization chamber detectors are susceptible to                                       |
| 280 | physical damage and may provide inaccurate data (including false positives) if                                         |
| 281 | exposed to mechanical shock.                                                                                           |
| 282 | • Gas-flow proportional detectors – detection gas used with gas-flow proportional                                      |
| 283 | detectors may leak from seals such that these detectors are usually operated in the                                    |
| 284 | continuous gas flow mode; the use of flow meter gauges to continuously monitor                                         |
| 285 | the gas flow rate is recommended along with frequent quality control checks to                                         |
| 286 | ensure the detector still meets the required sensitivity; gas-flow proportional                                        |
| 287 | detectors may also use fragile mylar windows to contain the detection gases,                                           |
| 288 | which renders the detectors vulnerable to puncturing and mechanical shock.                                             |
| 289 | • Geiger-Muller detectors – GM tubes typically use fragile mylar windows to                                            |
| 290 | contain the detection gases; the presence of a mylar window renders the detector                                       |
| 291 | vulnerable to puncturing and mechanical shock.                                                                         |
| 292 | • ZnS(Ag) scintillation detectors – zinc sulfide is utilized as thin-layer                                             |
| 293 | polycrystalline powder in detectors and are noted for being vulnerable to                                              |
| 294 | mechanical shock; zinc sulfide detectors may use fragile mylar windows, in which                                       |
| 295 | case the detector is vulnerable to puncturing and mechanical shock.                                                    |
| 296 | • NaI(Tl) scintillation detectors – sodium iodide crystals are relatively fragile and                                  |
| 297 | can be damaged through mechanical shock; sodium iodide is also highly                                                  |

used for surveying. The largest hand-held detector probes feature effective detection

270

D-12

- hydroscopic such that the crystals must remain environmentally sealed within thedetector housing.
- **Plastic Scintillation Detectors** plastic scintillators are typically robust and
- 301302

# **D.5** Volumetric Counters (Drum, Box, Barrel, Four Pi Counters)

resistant to damage from mechanical and thermal shock.

303 The term Box Counter is a generic description for a radiation measurement system that 304 typically involves large area, four pi ( $4\pi$ ) radiation detectors and includes the following 305 industry nomenclature: tool counters, active waste monitors, surface activity 306 measurement systems, and bag/barrel/drum monitors. Box counting systems are most 307 frequently used for conducting in situ surveys of M&E that is utilized in radiologically-308 controlled areas. These devices are best-suited for performing gross activity screening measurements on Class 2 and Class 3 M&E (NRC 2002). Typical items to be surveyed 309 310 using box counters are hand tools, small pieces of debris, bags of trash, and waste barrels. 311 Larger variations of box counting systems can count objects up to a few cubic meters in 312 size.

### 313 D.5.1 Instruments

314 Box counting systems typically consist of a counting chamber, an array of detectors 315 configured to provide a  $4\pi$  counting geometry, and microprocessor-controlled electronics 316 that allow programming of system parameters and data-logging. Systems typically 317 survey materials for photon radiation and usually incorporate a shielded counting 318 chamber and scintillation detectors (plastic scintillators or sodium iodide scintillation 319 detectors). These systems most commonly utilize four or six detectors, which are 320 situated on the top, bottom, and sides of the shielded counting chamber (Figure D.1). 321 Some systems monitor M&E for beta activity, using a basic design similar to photon 322 radiation detection systems, but utilizing gas-flow proportional counters. In rare cases, 323 neutron detection has been used for criticality controls and counter-proliferation 324 screening.



# 325

326

Figure D.1 Example Volumetric Counter (Thermo 2005)

Box counting systems for alpha activity feature a substantial departure in design from
beta/gamma detection systems. Alpha activity systems do not require heavy shielding to
filter out ambient sources of radiation. These devices utilize air filters to remove dust and
particulates from air introduced into counting chambers that incorporate airtight seals.

Filtered air introduced into the counting chamber interacts with any surface alpha activityassociated with the M&E.

Each alpha interaction with a surrounding air molecule produces an ion pair. These ion pairs are produced in proportion to the alpha activity per unit path length. This air (i.e., the ion pairs in the air) is then counted using an ion detector for quantification of the specific activity. The specific activity of the air in the counting chamber provides a total surface activity quantification for the M&E (BIL 2005).

## 338 D.5.2 Temporal Issues

339 Typically, box counting systems require approximately one to 100 seconds to conduct a340 measurement (Thermo 2005). The count times are dependent on a number of factors to

#### MARSAME

- include required measurement sensitivity and background count rates with accompanying
- 342 subtraction algorithms. The count times for box counting are typically considered
- 343 relatively short for most disposition surveys.

## 344 D.5.3 Spatial Issues

Since box counters typically average activity over the volume or mass of the M&E, the spatial distribution of radioactivity may be a significant limitation on the use of this measurement technique. The design of box counting systems is not suited to the identification of localized elevated areas, and therefore may not be the ideal choice when

349 the disposition criteria is not based on average or total activity.

350 Some systems incorporate a turntable inside the counting chamber to improve

351 measurement of difficult-to-measure areas or for heterogeneously distributed

352 radioactivity. When practical, performing counts on objects in two different orientations

353 (i.e., by rotating the M&E 90 or 180 degrees and performing a subsequent count) will

354 yield more thorough and defensible data.

Proper use of box counters includes segregating the M&E to be surveyed and promoting
 accurate measurements through uniform placement of items to be surveyed in the

357 counting chamber. For example, a single wrench placed on its side in a box counter has

358 different geometric implications from a tool of similar size standing up inside the

359 counting chamber. Counting jigs for sources and M&E to be surveyed are frequently

360 employed to facilitate consistent, ideal counting positions between the M&E and the

361 counting chamber detector array.

# 362 D.5.4 Radiation Types

Box counting systems are intrinsically best-suited for the detection of moderate- to highenergy photon radiation. As described in Section D.5.1, specific systems may be designed for the detection of low-energy photon, beta, alpha, and in some cases neutron radiation. For proper calibration and utilization of box counters, it is often necessary to establish the radiation types and anticipated energy ranges prior to measurement.

### 368 D.5.5 Range

369 Photon radiation can typically be measured within a detectable energy range of 40 to 60 370 keV up to 1.3 to 3 MeV. For example, typical box counters positioned at radiological 371 control area exit points are configured to alarm at a set point of 5,000 dpm total activity. 372 The precise count time is adjusted automatically by setting the predetermined count rate 373 to limit the error. Measurement times will range from 5 to 45 seconds in order to 374 complete counts of this kind, depending on current background conditions (Thermo 375 2005). Lower detection capabilities are achievable by increasing count times or 376 incorporating background reduction methodologies.

## 377 **D.5.6 Scale**

378 Size limitations pertaining to the M&E to be surveyed are inherently linked to the 379 physical size of the counting chamber. Smaller box counting systems have a counting 380 chamber of less than 0.028 cubic meters (approximately one cubic foot) and are often 381 used for tools and other frequently-used small items. The maximum size of box counters 382 is typically driven by the logistics of managing the M&E to be measured, and this volume 383 is commonly limited to a 55-gallon waste drum. Some box counting systems allow 384 counts to be performed on oversized items protruding from the counting chamber with 385 the door open.

## 386 D.5.7 Ruggedness

Many volumetric counter models feature stainless steel construction with plastic
scintillation detectors and window-less designs, which translates to a rugged instrument
that is resistant to mechanical shock.

## **390 D.6 Conveyorized Survey Monitoring Systems**

391 Conveyorized survey monitoring systems automate the routine scanning of M&E.

392 Conveyorized survey monitoring systems have been designed to measure materials such

as soil, clothing (laundry monitors), copper chop (small pieces of copper), rubble, and

debris. Systems range from small monitoring systems comprised of a single belt that

395 passes materials through a detector array, to elaborate multi-belt systems capable of

396 measuring and segregating material while removing extraneously-large items. The latter 397 type comprises systems that are known as segmented gate systems. These automated 398 scanning systems segregate materials by activity by directing material that exceeds an 399 established activity level onto a separate conveyor. Simpler conveyorized survey 400 monitoring systems typically feature an alarm/shut-down feature that halts the conveyor 401 motor and allows for manual removal of materials that have exceeded the established 402 activity level.

## 403 **D.6.1 Instruments**

404 A typical conveyorized survey monitoring system consists of a motorized conveyor belt 405 that passes materials through an array of detectors, supporting measurement electronics, 406 and an automated data-logging system (Figure D.2). Systems typically survey materials 407 for photon radiation and usually incorporate scintillation detectors (plastic scintillators or 408 sodium iodide scintillation detectors) or high-purity germanium detectors. Scintillation 409 detector arrays are often chosen for gross gamma activity screening. Conveyorized 410 survey monitoring systems designed to detect radionuclide mixtures with a high degree of 411 process knowledge work best using plastic scintillators, while systems categorizing 412 material mixtures where the radionuclide concentrations are variable are better-suited to 413 the use of sodium iodide scintillation detectors. Conveyorized survey monitoring 414 systems designed for material mixtures where the radionuclide concentrations are 415 unknown may be suitable for more expensive and maintenance-intensive high-purity 416 germanium detector arrays, which will allow for quantitative measurement of complex 417 photon energy spectra. An alternative method for screening materials for different 418 photon energy regions of interest is to incorporate sodium iodide detector arrays with 419 crystals of varying thickness to target multiple photon energies. Systems may also be 420 fitted with gas flow proportional counters for the detection of alpha and beta emissions. 421 Laundry conveyorized survey monitoring systems are typically designed for the detection 422 of alpha and beta radiation, as the nature of clothes allows the survey media to be 423 compressed, allowing the detector arrays to be close to or in contact with the survey 424 media.



# 425

## 426 Figure D.2 Example Conveyorized Survey Monitoring System (Laurus 2001)

## 427 D.6.2 Temporal Issues

Typically, conveyorized survey monitoring systems require approximately one to six seconds to count a given field of detection (Novelec 2001a). Systems are designed to provide belt speeds ranging from 0.75 meters up to 10 meters (2.5 to 33 feet) per minute to accommodate the necessary response time for detection instrumentation (Thermo 2006; Eberline 2004). This yields processing times of 15 to 45 metric tons (16 to 50 tons) of material per hour for soil or construction demolition-type material conveyorized survey monitoring systems (NRC 2002).

### 435 **D.6.3 Spatial Issues**

436 The M&E that are typically surveyed by conveyorized survey monitoring systems may 437 contain difficult-to-measure areas. Most systems employ the detector arrays in a 438 staggered, off-set configuration, which allows the sensitive areas of the detectors to 439 overlap with respect to the direction of movement. This off-set configuration helps to 440 eliminate blind spots (i.e., locations where activity may be present but cannot be detected 441 because the radiation cannot reach the detectors). Some systems are designed 442 specifically for materials of relatively small particles of uniform size (e.g., soil), while 443 others have been designed to accommodate heterogeneous materials like rubble and 444 debris.

MARSAME

December 2006

445 The data logging system accepts the signal pulses from the detector systems and stores 446 the pulse data in counting scalers. The recorded values are continuously compared with 447 pre-set alarm values corresponding to the selected action level(s). The detectors 448 incorporate integral amplifiers which are routed to a PC containing multi-channel scaler 449 hardware. The multi-channel scaler hardware allows data to be collected in a series of 450 short, discrete scaler channels known as "time bins". The count time for each time bin is 451 selected as a function of the speed of the conveyor belt. The time bin length is frequently 452 set up to be half the length of "dwell time," which is the time the material aliquot to be 453 surveyed spends within the detection field (Miller 2000).

The approach cited in the paragraph above ensures that activity present within the survey unit will be in full view of the detector for one complete time bin. Data collection is optimized by performing the measurement when the activity is concentrated (i.e., within an area of elevated activity) as well as when the activity is approximately homogenouslydistributed within a given material aliquot.

### 459 **D.6.4 Radiation Types**

Conveyorized survey monitoring systems are generally best-suited for the detection of
photon radiation. Specific systems may be tailored for the detection of beta emissions of
moderate energy and even alpha radiation by employing gas flow proportional counter
detector arrays.

## 464 **D.6.5 Range**

Photon radiation can typically be measured with a detectable energy range from 50 keV
up to 2 MeV. Conveyorized survey monitoring systems equipped to measure alpha and
beta emissions can typically measure from 100 keV up to 6 MeV.

### 468 **D.6.6 Scale**

469 Most conveyorized survey monitoring systems are designed for soils or laundry, both of

470 which are compressible media. Applicable sample/material heights range from 2 cm to

471 12.5 cm (Life Safety 2005).

### 472 **D.6.7 Ruggedness**

473 Conveyorized survey monitoring systems have typical operating ranges from -20° C to 474 50° C. Conveyorized survey monitoring systems are often constructed from steel and 475 with plastic scintillation detectors and windowless designs, which makes them generally 476 resistant to damage from extraneous pieces of debris during scanning. Mechanical shock 477 is not a typical concern for conveyorized survey monitoring systems because there is 478 little need for moving these systems. For this reason conveyorized survey monitoring 479 systems are seldom transported from one location to another.

# 480 **D.7** In Situ Gamma Spectroscopy

481 In situ gamma spectroscopy (ISGS) systems combine the peak resolution capabilities of 482 laboratory methods with instrumentation that is portable and rugged enough to be used in 483 field conditions. These solid state systems can perform quantitative, multi-channel 484 analysis of gamma-emitting isotopes in both solid and liquid media over areas as large as 485 100 m<sup>2</sup>, enabling spectrographic analysis of M&E that assists the user in identifying 486 constituent radionuclides and differentiating them from background radiation. ISGS 487 system measurements can also provide thorough coverage within broad survey areas, 488 minimizing the risk of failing to detect isolated areas of elevated radioactivity that could 489 potentially be missed when collecting discrete samples.

### 490 **D.7.1 Instruments**

491 ISGS systems consist of a semiconductor detector, a cryostat, a multi-channel analyzer

492 (MCA) electronics package that provides amplification and analysis of the energy pulse

- 493 heights, and a computer system for data collection and analysis. Semiconductor detection
- 494 systems typically employ a cryostat and a Dewar filled with liquid nitrogen (-196 °C).
- 495 The cryostat transmits the cold temperature of the liquid nitrogen to the detector crystal,
- 496 creating the extreme cold environment necessary for correct operation of the high-
- 497 resolution semiconductor diode. ISGS systems may have electronic coolers as well.
- 498 ISGS systems use detectors referred to as N- and P-type detectors. N-type detectors
- 499 contain small amounts of elements with five electrons in their outer electron shell (e.g.,

#### MARSAME

phosphorus, arsenic) within the germanium crystal (the inclusion of these elements within the germanium crystal is called "doping"). These result in free, unbonded electrons in the crystalline structure, providing a small negative current. P-type detectors utilize elements with less than four electrons in their outer electron shell (e.g., lithium, boron, gallium) are also used in doping to create electron holes, providing a small positive current. Use of these two varieties of doped germanium crystals provide different detection properties described below in Section D.7.5.

## 507 D.7.2 Temporal Issues

508 Setup for ISGS semiconductor systems may require one full day. The systems often 509 require one hour to set up physically, six to eight hours for the semiconductor to reach the 510 appropriate temperature operating range after the addition of liquid nitrogen, and quality control measurements may require another hour.<sup>6</sup> Count times using ISGS 511 512 semiconductor systems tend to be longer than those associated with simpler detector 513 systems for conducting static measurements, though this may be off-set by enlarging the 514 field-of-view. A measurement time of several minutes is common, depending on the 515 intensity of the targeted gamma energies and the presence of attenuating materials. 516 Count times can be shortened by reducing the distance between the area being surveyed

517 and the detector to improve the gamma incidence efficiency or by using a larger detector.

518 Each option will ultimately help the detection system see more gamma radiation in a

519 shorter time. Yet either approach creates greater uncertainty associated with the source-

520 to-detector geometry. A slight placement error (e.g., a 0.5 cm placement error) will result

521 in significantly higher quantification error at a distance of one centimeter than at a

522 distance of 10 centimeters. Additionally, this technique for decreasing count times

523 promotes an effect called cascade summing, a phenomena affecting detection of gamma

- 524 radiation from radionuclides that emit multiple gamma photons in a single decay event
- 525 (e.g., <sup>60</sup>Co, which yields gamma particles of 1.17 and 1.33 MeV). If both incident
- 526 gammas deposit their energy in a relatively short period of time (i.e., when compared to

<sup>&</sup>lt;sup>6</sup> It is important not to move the apparatus prematurely, as failure to allow the ISGS system to cool and equilibrate to its proper operating temperatures as may cause damage to the semiconductor detector.

- 527 the detector response time and/or the resolving time for the associated electronics),
- 528 limitations of the detection system may prevent these individual photons from being
- 529 distinguished (Knoll 1999).

## 530 D.7.3 Spatial Issues

531 ISGS semiconductor systems require calibration for their intended use. While ISGS 532 semiconductor systems can be calibrated using traditional prepared radioactive sources, 533 some ISGS systems have software that enables the user to calculate efficiencies by 534 entering parameters such as elemental composition, density, stand-off distance, and 535 physical dimensions. Supplied geometry templates assist in generating calibration curves 536 that can be applied to multiple collected spectra. The high resolution of these systems 537 coupled with advanced electronic controls for system parameters allows them to 538 overcome issues related to source-to-detector geometry and produce quantitative 539 concentrations of multiple radionuclides in a variety of media (e.g., soil, water, air 540 filters). Because ISGS systems integrate all radioactivity within their field-of-view, lead 541 shielding and collimation may be required to "focus" the field-of-view on a specified

542 target for some applications.

## 543 **D.7.4 Radiation Types**

544 ISGS systems can accurately identify and quantify only photon-emitting radionuclides.

## 545 **D.7.5 Range**

546 ISGS systems can identify and quantify low-energy gamma emitters (50 keV with P-type

- 547 detectors, 10 keV with N-type detectors) and high-energy gamma emitters (ISGS systems
- 548 can be configured to detect gamma emissions upwards of 2.0 MeV). Specially-designed
- 549 germanium detectors that exhibit very little deterioration in resolution as a function of
- 550 count rate use N-type detectors or planar crystals with a very thin beryllium window for
- the measurement of photons in the energy range 5 to 80 keV.

### 552 **D.7.6 Scale**

These systems therefore offer functional quantitative abilities to analyze small objects (e.g., samples) for radionuclides. They can also effectively detect radioactivity over areas as large as  $100 \text{ m}^2$  or more (Canberra 2005a). With the use of an appropriate dewar, the detector may be used in a vertical orientation to determine gamma isotope concentrations in the ground surface and shallow subsurface.

### 558 **D.7.7 Ruggedness**

ISGS semiconductor systems are fragile, because the extremely low temperatures utilized by the cryostat render portions of the system brittle and susceptible to damage if not handled with care. Some ISGS systems are constructed of more rugged materials and their durability is comparable to most hand-held instruments.

## 563 D.8 Hand-Held Radionuclide Identifiers

564 Hand-held radionuclide identifiers represent a relatively new addition to the radiation 565 detection market, merging the portability of hand-held instruments with some of the 566 analytical capabilities of ISGS systems. Hand-held radionuclide identifiers also feature 567 data logging and storage capabilities (including user-definable radionuclide libraries) and 568 the ability to transfer data to external devices. These devices are most commonly used 569 for nuclear non-proliferation, where immediate isotope identification is more critical than 570 low-activity detection sensitivity. Design parameters for hand-held radionuclide 571 identifiers required by ANSI N42.34 (ANSI 2003) are user-friendly controls and intuitive 572 menu structuring for routine modes of operation, enabling users without health physics 573 backgrounds (e.g., emergency response personnel) to complete basic exposure rate or 574 radionuclide identification surveys. These units also feature restricted "expert" survey 575 modes of operation to collect activity concentration data for more advanced applications, 576 including disposition surveys.

### 577 D.8.1 Instruments

Hand-held radionuclide identifiers consist of two general types: integrated systems and
modular systems. The integrated systems have the detector and electronics contained in a

#### MARSAME

December 2006

- 580 single package; modular systems separate the detector from the electronics. These
- 581 spectrometers employ small scintillators, typically NaI(Tl) or CsI(Tl), or room
- temperature solid semiconductors, such as cadmium zinc telluride (CZT), linked to multi-
- 583 channel analyzers and internal radionuclide libraries to enable gamma-emitting
- 584 radionuclide identification.

### 585 **D.8.2 Temporal Issues**

586 Hand-held radionuclide identifiers require minimal time to set up.<sup>7</sup> Depending upon the 587 conditions in which data is being collected (i.e., climatic, environmental, the presence of 588 sources of radiological interference), it may require seconds to several minutes for the 589 unit to stabilize the input signals from the field of radiation and properly identify the 590 radionuclides.

# 591 **D.8.3 Spatial Issues**

592 Detectors of hand-held radionuclide identifiers are typically small and portable. Spatial 593 limitations are usually based on the physical size of the probe itself, and whether the 594 probe is coupled internally within the casing or externally via an extension cord.

## 595 **D.8.4 Radiation Types**

Hand-held radionuclide identifiers are most commonly used for the detection of photonradiation, although many devices have capabilities for detecting neutron and beta

- 598 emissions (the detection of neutron radiation requires a different probe from the photon
- 599 radiation probe).

### 600 D.8.5 Range

- 601 Photon radiation can typically be measured within a detectable energy range of 10 to 30
- 602 keV up to 2.5 to 3 MeV. Neutron radiation can typically be measured within a detectable
- 603 energy range of 0.02 eV up to 100 MeV.

 $<sup>^7</sup>$  The use of multi-point calibrations may add an estimated one to two hours to the time required for instrument set up.

### 604 **D.8.6 Scale**

There is no definitive limit to the size of an object to be surveyed using hand-held

606 radionuclide identifiers. Hand-held radionuclide identifiers may generally be used to

607 survey M&E of any size; constraints are only placed by the practical sizing of M&E

608 related to the sensitive area of the probe.

## 609 D.8.7 Ruggedness

610 All varieties of hand-held radionuclide identifiers discussed here are typically calibrated

611 for use in temperatures from -20 °C to 50 °C and feature seals or gaskets to prevent water

612 ingress from rain, condensing moisture, or high humidity. Most hand-held radionuclide

613 identifiers have a limited resistance to shock, though the durability of an instrument

614 depends largely upon the detection media (e.g., NaI(Tl) crystals are fragile and

615 vulnerable to mechanical and thermal shock).

# 616 **D.9 Portal Monitors**

617 Portal monitors screen access points to controlled areas, and are designed for detecting
618 radioactivity above background. These systems are used for interdiction-type surveys,
619 and generally do not provide radionuclide identification. Portal monitors are primarily
620 designed to monitor activity on vehicles.

Historically, portal monitors have been used to detect radioactive materials at entrance
points to scrap metal facilities and solid waste landfills, and radiological control area exit
points within nuclear facilities to screen for the inadvertent disposal of radionuclides.
The proximity of other items to be surveyed containing high concentrations of activity
may influence the variability of the instrument background, because portal monitors
survey activity by detecting small variations in ambient radiation (NRC 2002).

### 627 **D.9.1 Instruments**

628 Portal monitors can easily be arranged in various geometries that maximize their

629 efficiencies. Most national and international standards, for example ANSI 42.35 (ANSI

630 2004) require both gamma- and neutron-detecting capabilities, but gamma-only versions

are available. Portal monitors typically use large-area polyvinyl toluene scintillators (a

632 form of plastic scintillators) to detect photon radiation and <sup>3</sup>He proportional tubes to

633 detect neutrons.<sup>8</sup> Individual detectors may be cylindrical or flat. The detectors are

634 usually arranged to form a detection field between two detectors, and items to be

- 635 surveyed pass through the detection field (i.e., between the detectors) as shown in
- 636 Figure D.3.

The system usually consists of one or more detector array(s), an occupancy sensor, a
control box, and a monitoring PC. The control box and monitoring PC store and analyze
alarm and occupancy data, store and analyze all gamma and neutron survey data, and
may even send data through an integrated internet connection. The monitoring PC also
manages software that operates multiple arrangements of detector arrays as well as third
party instruments. For example, security cameras can take high-resolution images of
objects that exceed a radiation screening level (Novelec 2001b).

## 644 D.9.2 Temporal Issues

645 Count or integration times are very short, typically just a few seconds (NRC 2002). Set-646 up time in the field is variable, since temporary systems may require two hours to one

half-day to set up, while permanent systems may require one week to install. For

648 vehicular portal monitor systems, objects may typically pass through the field of

detection at speeds of 8 to 9.5 kilometers per hour (Canberra 2005b). Most systems use

650 speed correction algorithms to minimize the effects of variations in dwell time (i.e., the

time a given area to be surveyed spends within the detection field).

# 652 D.9.3 Spatial Issues

653 There are a large number of factors that affect portal monitor performance. The isotopic

654 content of a radioactive material can determine the ease of detection. For example, high-

655 enriched uranium (HEU) is easier to detect in a gamma portal than low-enriched uranium

(LEU) or natural uranium because of the larger gamma emission rate from  $^{235}U$ .

<sup>&</sup>lt;sup>8</sup> Neutron detectors use materials that detect thermal neutrons, which may be fast neutrons that are thermalized for detection through the use of moderators.



# 657

658

Figure D.3 Example Portal Monitor (Canberra 2005b)

659 The chemical composition of a material is also important; background levels of 660 radioactivity must also be considered. Neutron portals are an effective method for 661 detecting plutonium in areas with large gamma backgrounds. The surface area and size 662 of the detectors and distance between the detectors all affect the geometry and response 663 of the system. In a large area system set-up, the closer together the detector arrays are, 664 the better the geometric efficiencies are going to be. Finally, for each system there is a 665 maximum passage speed through the portal that gives a counting time necessary to meet 666 the required detection sensitivity.

667 **D.9.4 Radiation Types** 

668 Portal monitors typically detect gamma radiation and can also be equipped to detect

- 669 neutron radiation. Gamma portals often use integrated metal detectors to provide an
- 670 indication of suspicious metal containers that could be used to shield radioactive
- 671 materials. If the gamma radiation is not shielded adequately, the detector's alarm will

MARSAME

sound. Portal monitors can detect radioactive material even if it is shielded with amaterial with a high atomic number, like lead.

### 674 **D.9.5 Range**

675 Photon radiation can typically be measured within a detectable energy range of 60 keV

676 up to 2.6 MeV. Neutron radiation can typically be measured within a detectable energy

range of 0.025 eV up to 100 MeV. Required detection sensitivities for gamma and

- 678 neutron sources are described in ANSI 42.35, Table 3 (ANSI 2004). Portal monitors
- provide gross counts and cannot compute quantitative measurements (e.g., activity perunit mass).

### 681 **D.9.6 Scale**

Most systems are designed to monitor items ranging in size from bicycles and other small
vehicles to tractor trailers, railroad cars, and even passenger airplanes (Canberra 2005b).
The width of the detection field (i.e., space between the detector arrays) can usually be
modified.

### 686 D.9.7 Ruggedness

687 Portal monitors have typical operating ranges from -20 ° to 55 °C, and some systems may

be functional in temperatures as low as -40 °C according to ANSI 42.35 (ANSI 2004).

689 Portal monitors are usually designed with weatherproofing to withstand prolonged

690 outdoor use and exposure to the elements.

# 691 **D.10 Sample with Laboratory Analysis**

692 Laboratory analysis allows for more controlled conditions and more complex, less rugged

- 693 instruments to provide lower detections limits and greater delineation between
- radionuclides than any measurement method that may be utilized in a field setting. For
- this reason, laboratory analyses are often applied as quality assurance measures to
- 696 validate sample data collected using field equipment.

### 697 D.10.1 Instruments

This section provides a brief overview of instruments used for radiological analyses in a
laboratory setting. For additional detail on these instruments, please refer to the
accompanying section references in MARLAP.

701 D.10.1.1 Instruments for the Detection of Alpha Radiation

• Alpha Spectroscopy with Multi-Channel Analyzer

This system consists of an alpha detector housed in an evacuated counting chamber, a bias supply, amplifier, analog-to-digital converter, multi-channel analyzer, and computer. Samples are placed at a fixed distance from the solid state partially-implanted silica for analysis, and the multi-channel analyzer yields an energy spectrum that can be used to both identify and quantify the radionuclides. The overall properties of the instrumentation allow for excellent peak resolution, although this technique often requires a complex chemical separation to obtain the best results.

• Gas-Flow Proportional Counter

The system consists of a gas-flow detector, supporting electronics, and an optional guard detector for reducing the background count rate. A thin window can be placed between the gas-flow detector and sample to protect the detector from contamination, or the sample can be placed directly into the detector. This system does not typically provide data useful for identifying radionuclides unless it is preceded by nuclide-specific chemical separations.

• Liquid Scintillation Spectrometry

Typically, samples will be subjected to chemical separations and the resulting materials placed in a vial with a scintillation cocktail. When the alpha particle energy is absorbed by the cocktail, light pulses are emitted, which are detected by photomultiplier tubes. One pulse of light is emitted for each alpha particle absorbed. The intensity of light emitted is related to the energy of the alpha. This system can provide data useful for identifying radionuclides if the system is coupled to a multi-channel analyzer.

#### MARSAME

• Low-Resolution Alpha Spectrometry

725 The system consists of a small sample chamber, mechanical pump, two-inch diameter 726 silicon detector, multi-channel analyzer, readout module, and a computer. Unlike alpha 727 spectroscopy with multi-channel analyzer, this method allows the technician to load 728 samples for analysis without drying since the presence of moisture generally has 729 negligible effects on the results. This method is therefore estimated to substantially 730 reduce the time for analysis. However, the low resolution may limit the ability to identify 731 individual radionuclides in a sample containing multiple radionuclides and thus may limit 732 the applicability of this method (Meyer 1995).

• Alpha Scintillation Detector

This system is used primarily for the quantification of <sup>226</sup>Ra by the emanation and
detection of <sup>222</sup>Rn gas. The system consists of a bubbler system with gas transfer
apparatus, a vacuum flask lined with scintillating material called a Lucas Cell,<sup>9</sup> a
photomultiplier tube, bias supply, and a scaler to record the count data.

738 D.10.1.2 Instruments for the Detection of Beta Radiation

• Gas-Flow Proportional Counter

The system consists of a gas-flow detector, supporting electronics, and an optional guard detector for reducing the background count rate. A thin window can be placed between the gas-flow detector and sample to protect the detector from non-fixed activity, or the sample can be placed directly into the detector. This technique does not provide data useful for identifying individual radionuclides unless it is preceded by nuclide-specific chemical separations.

<sup>&</sup>lt;sup>9</sup> One end of a Lucas cell is covered with a transparent window for coupling to a photomultiplier tube and the remaining inside walls are coated with zinc sulfide.

• Liquid Scintillation Spectrometry

Typically, samples will be subjected to chemical separations and the resulting materials placed in a vial with a scintillation cocktail. When the beta particle energy is absorbed by the cocktail, light pulses are emitted, which are detected by photomultiplier tubes. One pulse of light is emitted for each beta particle absorbed. The intensity of light emitted is related to the energy of the beta. This system can provide data useful for identifying radionuclides if the system is coupled to a multi-channel analyzer. This system must be allowed to darken (i.e., equilibrate to a dark environment) prior to measurement.

754 D.10.1.3 Instruments for the Detection of Gamma or X-Radiation

755

High-Purity Germanium Detector with Multi-Channel Analyzer

This system consists of a germanium detector connected to a cryostat (either mechanical or a dewar of liquid nitrogen), high voltage power supply, spectroscopy grade amplifier, analog to digital converter, and a multi-channel analyzer. This system has high resolution for peak energies and is capable of identifying and quantifying individual gamma peaks in complex spectra. It is particularly useful when a sample may contain multiple gamma-emitting radionuclides and it is necessary to both identify and quantify all nuclides present.

763

•

Sodium Iodide Detector with Multi-Channel Analyzer

This system consists of a sodium iodide detector, a high voltage power supply, an
amplifier, an analog to digital converter, and a multi-channel analyzer. This system has
relatively poor energy resolution and is not effective for identifying and quantifying
individual gamma peaks in complex spectra. It is most useful when only a small number
of gamma-emitting nuclides are present or when a gross-gamma measurement is
adequate.

770 D.10.2 Temporal Issues

Laboratory analysis is usually controlled by the turnaround time involved in preparingand accurately measuring the collected samples. The sample matrix impacts the

- preparation time, since soils and bulk chemicals typically require more extensive
- preparation than liquids or smears. Table D.2 describes the typical preparation and
- counting times associated with the various analytical instruments and methods described
- in Section D.10.1. Additional issues that may result in extended time for sample
- preparation and analysis are described in MARLAP.
- 778

# Table D.2 Typical Preparation and Counting Times

|                                                                         | Typical Preparation Time                                | Typical Counting Time |
|-------------------------------------------------------------------------|---------------------------------------------------------|-----------------------|
| Alpha Spectroscopy with Multi-<br>Channel Analyzer                      | 1 to 7 days                                             | 100 to 1,000 minutes  |
| Gas-Flow Proportional Counter                                           | hours to days                                           | 10 to 1,000 minutes   |
| Liquid Scintillation Spectrometer                                       | Minutes, <sup>10</sup><br>hours to 2 days <sup>11</sup> | >60 to 300 minutes    |
| Low-Resolution Alpha<br>Spectroscopy                                    | minutes (DOE, 1995)                                     | 10 to 1,000 minutes   |
| High-Purity Germanium (HPGe)<br>Detector with Multi-Channel<br>Analyzer | minutes to 1 day                                        | 10 to 1,000 minutes   |
| Sodium Iodide (NaI) Detector with<br>Multi-Channel Analyzer             | minutes to 1 day                                        | 1 to 1,000 minutes    |
| Alpha Scintillation Detector                                            | 1 to 4 days;<br>4 to 28 days <sup>12</sup>              | 10 to 200 minutes     |

# 779 **D.10.3 Spatial Issues**

- 780 This section addresses issues related to detector-M&E geometry and provides
- information on the range of impacts resulting from dissenting geometries between the
- 782 calibration source and the measured sample. Other topics may include detector
- 783 dimensions and problems positioning instruments.

<sup>&</sup>lt;sup>10</sup> Minimal preparation times are possible if the sample does not require concentration prior to being added to the liquid scintillation cocktail vial.

<sup>&</sup>lt;sup>11</sup> Longer preparation times are necessary for speciation of low-energy beta emitters.

<sup>&</sup>lt;sup>12</sup> Longer count times represent the necessary time for in-growth of <sup>222</sup>Rn for <sup>226</sup>Ra analyses.

784 D.10.3.1 Alpha Spectroscopy with Multi-Channel Analyzer

785 Sample geometry (lateral positioning on a detector shelf) in some detectors may be a

small source of additional uncertainty. Uncertainty in the preparation of the actual

calibration standards as well as the applicability of the calibration standards to the sample

- analysis should also be considered.
- 789 D.10.3.2 Gas-Flow Proportional Counter

Figure 790 Even deposition of sample material on the planchette is critical to the analytical process.

In some analyses, ringed planchettes may aid in the even deposition of sample material.

An uneven deposition may result in an incorrect mass-attenuation correction as well as

introducing a position-dependent bias to the analysis. The latter situation arises from the

fact that gas-flow proportional counters are not radially-symmetric, so rotation of an

unevenly deposited sample by 45 degrees may drastically change the instrument

response.

797 D.10.3.3 Liquid Scintillation Spectrometer

For gross counting, samples (e.g., smears and filters) can be placed directly into a liquid

scintillation counter (LSC) vial with liquid scintillation cocktail, and counted with no

800 preparation. There are samples with more complicated matrices that require chemical

801 separation prior to being placed and counted in LSC vials. Calibration sources are also

802 kept and counted in these vials, so the geometry of the source and the sample compared

- 803 to the detector are generally similar.
- 804 D.10.3.4 Low-Resolution Alpha Spectroscopy

805 Sample geometry (lateral positioning on a detector shelf) in some detectors may be a

small source of additional uncertainty. Uncertainty in the preparation of the actual

807 calibration standards as well as the applicability of the calibration standards to the sample

analysis should be considered.

# 809 D.10.3.5 High-Purity Germanium Detector with Multi-Channel Analyzer

810 Geometry considerations are most important for spectroscopic gamma analyses. Sample 811 positioning on the detector may significantly affect the analytical results, depending on 812 the size and shape of the germanium crystal. Moreover, the instrument is calibrated with 813 a source that should be the same physical size, shape, and weight as the samples to be 814 analyzed.<sup>13</sup> Discrepancies between the volume or density of the sample and the source 815 introduce additional uncertainty to the analytical results.

- 816 Sample homogeneity is a critical factor in gamma spectroscopy analyses, particularly
- 817 with relatively large samples. For example, sediment settling during the course of
- analysis of a turbid aqueous sample will result in a high bias from any activity contained
- 819 in the solid fraction. Likewise, the positioning of areas containing elevated activity in a
- solid sample will create a bias in the overall sample activity (the activity will be
- disproportionately high if the particle is located at the bottom of the sample, and the
- 822 activity will be disproportionately low if it is located at the top of the sample).
- 823 D.10.3.6 Sodium Iodide Detector with Multi-Channel Analyzer
- 824 The spatial considerations for NaI detectors are the same as those listed above for high-
- 825 purity germanium detectors.
- 826 D.10.3.7 Alpha Scintillation Detectors
- 827 Accurate sample analysis depends heavily on the complete dissolution of the <sup>226</sup>Ra or
- 828 other radionuclides of interest in the bubbler solution. Adequate sample preparation will
- help ensure that spatial issues do not influence results, as the apparatus itself minimizes
- any other potential geometry-related sources of error or uncertainty.

<sup>&</sup>lt;sup>13</sup> Some software packages allow a single calibration geometry to be modeled to assimilate the properties of other geometries.

# 831 D.10.4 Radiation Types

- Table D.3 describes the types of radiation that each laboratory instrument and method can
- 833 measure.

|                                                                  | Alpha | Beta               | Photon | Neutron | Differentiate<br>Radiation Types | Identify Specific<br>Radionuclides |
|------------------------------------------------------------------|-------|--------------------|--------|---------|----------------------------------|------------------------------------|
| Alpha Spectrometry with a<br>Multi-Channel Analyzer              | GOOD  | NA                 | NA     | NA      | NA                               | GOOD                               |
| Gas-Flow Proportional Counter                                    | GOOD  | GOOD               | POOR   | NA      | FAIR                             | POOR                               |
| Liquid Scintillation<br>Spectrometer                             | POOR  | GOOD <sup>14</sup> | POOR   | NA      | FAIR                             | FAIR                               |
| Low-Resolution Alpha<br>Spectroscopy                             | GOOD  | NA                 | NA     | NA      | NA                               | FAIR <sup>15</sup>                 |
| High-Purity Germanium<br>Detector with Multi-Channel<br>Analyzer | NA    | NA                 | GOOD   | NA      | NA                               | GOOD                               |
| Sodium Iodide Detector with<br>Multi-Channel Analyzer            | NA    | NA                 | GOOD   | NA      | NA                               | FAIR                               |
| Alpha Scintillation Detector                                     | GOOD  | NA                 | NA     | NA      | NA                               | FAIR                               |

| 834 | Table D.3 | <b>Radiation</b> | Applications | for Laborat | tory Instrumen | ts and Methods |
|-----|-----------|------------------|--------------|-------------|----------------|----------------|
|     |           |                  | 11           |             | •              |                |

Notes:

GOOD The instrumentation and measurement technique is well-suited for this application

FAIR The instrumentation and measurement technique can adequately perform this application

POOR The instrumentation and measurement technique may be poorly-suited for this application

NA The instrumentation and measurement technique cannot perform this application

# 835 **D.10.5 Range**

- All of the instrumentation discussed here has physical limitations as to the amount of
- 837 activity that can be analyzed. This limitation arises primarily from the ability of the
- 838 detector to recover after an ionizing event, and the speed with which the component

<sup>&</sup>lt;sup>14</sup> This system is designed for the detection of low-energy beta particles.

<sup>&</sup>lt;sup>15</sup> The low resolution may limit the ability to identify individual radionuclides in a sample containing multiple radionuclides.

electronics can process the data. Typically, a count rate on the order of  $10^6$  counts per

840 second taxes the physical limitations of most detectors. Other practical considerations,

841 (such as the potential to impact the detector with non-fixed activity) often override the

842 physical limitations of the counting system.

843 There are energy range limitations as well. For example: window proportional counters

are poor choices for very low energy beta emitters; some gamma spectrometers have poor

845 efficiencies at low energies; and some systems are not calibrated for high-energy

gammas. Table D.4 describes the energy range that each instrument and method can be

used to determine, and the maximum activity per sample that the method can be used to

- 848 count.<sup>16</sup>
- 849

|                                                                         | Energy Range                                                            | Maximum Activity     |
|-------------------------------------------------------------------------|-------------------------------------------------------------------------|----------------------|
| Alpha Spectrometry with Multi-<br>Channel Analyzer                      | 3 to 8 MeV                                                              | <10 Bq (<270 pCi)    |
| Gas-Flow Proportional Counter                                           | 3 to 8 MeV (α)<br>100 to 2,000 keV (β)                                  | 35 Bq (946 pCi)      |
| Liquid Scintillation Spectrometer                                       | >3 Mev<br>15 to 2,500 keV (β);<br>>1.5 MeV (β) <sup>17</sup>            | 100,000 Bq (2.7 μCi) |
| Low-Resolution Alpha<br>Spectrometry                                    | 3 to 8 MeV (α)                                                          | <10 Bq (<270 pCi)    |
| High-Purity Germanium (HPGe)<br>Detector with Multi-Channel<br>Analyzer | 50 to >2,000 keV (P-type<br>detector);<br>5 to 80 keV (N-type detector) | 370 Bq (10,000 pCi)  |
| Sodium Iodide (NaI) Detector with<br>Multi-Channel Analyzer             | >80 to 2,000 keV                                                        | 370 Bq (10,000 pCi)  |
| Alpha Scintillation Detector                                            | All $\alpha$ emission energies                                          | <10 Bq (<270 pCi)    |

## Table D.4 Typical Energy Ranges and Maximum Activities

<sup>&</sup>lt;sup>16</sup> David Burns, Paragon Analytics, Inc., private communication with Nick Berliner, Cabrera Services, Inc., March 2005.

<sup>&</sup>lt;sup>17</sup> Very high-energy beta emitters may be counted using liquid scintillation equipment without liquid scintillation cocktails by the use of the Cerenkov light pulse emitted as high energy charged particles move through water or similar substances.

# 850 **D.10.6 Scale**

- 851 There is no minimum sample size required for a given analysis. Smaller sample sizes
- will necessarily result in elevated detection limits. Minimum sample sizes (e.g., 0.1
- gram) may be specified in order to ensure that the sample is reasonably representative
- given the degree of homogenization achieved in the laboratory. Typical liquid and solid
- sample sizes are noted in Table D.5.

856

# Table D.5 Typical Liquid and Solid Sample Sizes

|                                                                         | Typical Liquid<br>Sample Size          | Typical Solid<br>Sample Size    |
|-------------------------------------------------------------------------|----------------------------------------|---------------------------------|
| Alpha Spectrometry with Multi-<br>Channel Analyzer                      | 1 liter                                | 2 grams; 50 grams <sup>18</sup> |
| Gas-Flow Proportional Counter                                           | 1 liter                                | 2 grams                         |
| Liquid Scintillation Spectrometer                                       | <10 milliliters; 1 liter <sup>19</sup> | <0.5 grams; 500 grams           |
| Low-Resolution Alpha<br>Spectrometry                                    | 1 liter                                | 2 grams; 50 grams <sup>17</sup> |
| High-Purity Germanium (HPGe)<br>Detector with Multi-Channel<br>Analyzer | 4 liters                               | 1 kilogram                      |
| Sodium Iodide (NaI) Detector with<br>Multi-Channel Analyzer             | 4 liters                               | 1 kilogram                      |
| Alpha Scintillation Detector                                            | 1 liter                                | 2 grams                         |

# 857 **D.10.7 Ruggedness**

- 858 Ruggedness does not hold relevance to laboratory analyses, because they are performed
- in a controlled environment that precludes the instrumentation from being exposed to
- 860 conditions requiring durability.

<sup>&</sup>lt;sup>18</sup> The use of sample digestion processes allows the processing of larger sample masses.

<sup>&</sup>lt;sup>19</sup> Direct depositing of sample material into the scintillation cocktail limits the sample size to the smaller samples sizes noted; prepared analyses may use substantially larger sample quantities as noted (this applies to both liquid and solid sample matrices).

# 1 E. DISPOSITION CRITERIA

# 2 E.1 Department of Energy

3 Disposition criteria specified by DOE regulations and orders are found in the Code of Federal 4 Regulations, Title 10 (especially 10 CFR 835, Occupational Radiation Protection) and in 5 applicable DOE Orders (especially DOE Order 5400.5, Radiation Protection of the Public and 6 the Environment). The DOE regulations and orders govern the conduct of DOE employees and 7 contractors in the operation of DOE facilities and in the disposition of real property (e.g., 8 buildings and land) and non-real property ("personal property" such as materials, equipment, 9 materials in containers, clothing, etc.). The DOE Order requirements are applicable to DOE 10 activities only and are enforceable as contractual provisions in most DOE contracts and DOE 11 rules are enforceable under 10 CFR Part 820. The following list of DOE requirements is not 12 exhaustive. In addition, a listing of some non-mandatory guidance documents is also provided.

13 E.1.1 10 CFR 835 (non-exhaustive excerpts)

14 E.1.1.1 § 835.405 Receipt of Packages Containing Radioactive Material

(a) If packages containing quantities of radioactive material in excess of a Type A quantity (as
defined at 10 CFR 71.4) are expected to be received from radioactive material transportation,
arrangements shall be made to either:

- 18 (1) Take possession of the package when the carrier offers it for delivery; or
- 19 (2) Receive notification as soon as practicable after arrival of the package at the carrier's
- 20 terminal and to take possession of the package expeditiously after receiving such notification.
- 21 (b) Upon receipt from radioactive material transportation, external surfaces of packages known
- 22 to contain radioactive material shall be monitored if the package:
- (1) Is labeled with a Radioactive White I, Yellow II, or Yellow III label (as specified at 49 CFR
  172.403 and 172.436–440); or
- 25 (2) Has been transported as low specific activity material (as defined at 10 CFR 71.4) on an
- 26 exclusive use vehicle (as defined at 10 CFR 71.4); or

- 27 (3) Has evidence of degradation, such as packages that are crushed, wet, or damaged.
- 28 (c) The monitoring required by paragraph (b) of this section shall include:
- 29 (1) Measurements of removable contamination levels, unless the package contains only special
- 30 form (as defined at 10 CFR 71.4) or gaseous radioactive material; and
- 31 (2) Measurements of the radiation levels, unless the package contains less than a Type A
- 32 quantity (as defined at 10 CFR 71.4) of radioactive material.
- 33 (d) The monitoring required by paragraph (b) of this section shall be completed as soon as
- 34 practicable following receipt of the package, but not later than 8 hours after the beginning of the
- 35 working day following receipt of the package.
- 36 E.1.1.2 § 835.605 Labeling items and containers
- 37 Except as provided at § 835.606, each item or container of radioactive material shall bear a
- 38 durable, clearly visible label bearing the standard radiation warning trefoil and the words
- 39 "Caution, Radioactive Material" or "Danger, Radioactive Material." The label shall also provide
- 40 sufficient information to permit individuals handling, using, or working in the vicinity of the
- 41 items or containers to take precautions to avoid or control exposures.
- 42 E.1.1.3 § 835.606 Exceptions to labeling requirements
- 43 (a) Items and containers may be excepted from the radioactive material labeling requirements of44 § 835.605 when:
- 45 (1) Used, handled, or stored in areas posted and controlled in accordance with this subpart and
- 46 sufficient information is provided to permit individuals to take precautions to avoid or control
- 47 exposures; or
- 48 (2) The quantity of radioactive material is less than one tenth of the values specified in appendix49 E of this part; or
- 50 (3) Packaged, labeled, and marked in accordance with the regulations of the Department of
- 51 Transportation or DOE Orders governing radioactive material transportation; or

(4) Inaccessible, or accessible only to individuals authorized to handle or use them, or to work inthe vicinity; or

54 (5) Installed in manufacturing, process, or other equipment, such as reactor components, piping,55 and tanks; or

56 (6) The radioactive material consists solely of nuclear weapons or their components.

(b) Radioactive material labels applied to sealed radioactive sources may be excepted from thecolor specifications of § 835.601(a).

59 E.1.1.4 § 835.1101 Control of material and equipment

(a) Except as provided in paragraphs (b) and (c) of this section, material and equipment in
contamination areas, high contamination areas, and airborne radioactivity areas shall not be
released to a controlled area if:

63 (1) Removable surface contamination levels on accessible surfaces exceed the removable
 64 surface contamination values specified in appendix D of this part; or

(2) Prior use suggests that the removable surface contamination levels on inaccessible surfaces
 are likely to exceed the removable surface contamination values specified in appendix D of this
 part.

68 (b) Material and equipment exceeding the removable surface contamination values specified in

69 appendix D of this part may be conditionally released for movement on-site from one

70 radiological area for immediate placement in another radiological area only if appropriate

monitoring is performed and appropriate controls for the movement are established andexercised.

(c) Material and equipment with fixed contamination levels that exceed the total contamination
 values specified in appendix D of this part may be released for use in controlled areas outside of
 radiological areas only under the following conditions:

76 (1) Removable surface contamination levels are below the removable surface contamination

values specified in appendix D of this part; and (2) The material or equipment is routinely

78 monitored and clearly marked or labeled to alert personnel of the contaminated status.

Appendix E

79 E.1.1.5 § 835.1102 Control of areas

(a) Appropriate controls shall be maintained and verified which prevent the inadvertent transfer
 of removable contamination to locations outside of radiological areas under normal operating
 conditions.

(b) Any area in which contamination levels exceed the values specified in appendix D of this
part shall be controlled in a manner commensurate with the physical and chemical characteristics
of the contaminant, the radionuclides present, and the fixed and removable surface contamination
levels.

87 (c) Areas accessible to individuals where the measured total surface contamination levels

88 exceed, but the removable surface contamination levels are less than, corresponding surface

89 contamination values specified in appendix D of this part, shall be controlled as follows when

90 located outside of radiological areas:

(1) The area shall be routinely monitored to ensure the removable surface contamination level
 remains below the removable surface contamination values specified in appendix D of this part;
 and

94 (2) The area shall be conspicuously marked to warn individuals of the contaminated status.

95 (d) Individuals exiting contamination, high contamination, or airborne radioactivity areas shall96 be monitored, as appropriate, for the presence of surface contamination.

97 (e) Protective clothing shall be required for entry to areas in which removable contamination
98 exists at levels exceeding the removable surface contamination values specified in appendix D of
99 this part.

# 100 E.1.2 Appendix D to Part 835 – Surface Contamination Values

101 The data presented in appendix D are to be used in identifying the need for posting of

102 contamination and high contamination areas in accordance with § 835.603(e) and (f) and

103 identifying the need for surface contamination monitoring and control in accordance with §§

104 835.1101 and 835.1102.

#### Table E.1 Surface Contamination Values<sup>1</sup> in dpm/100 cm<sup>2</sup> as Reported in Appendix D to 105 106 Part 835

| Radionuclide                                                                                                                                      | Removable <sup>2,4</sup> | Total (Fixed+<br>Removable) <sup>2,3</sup> |
|---------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------|--------------------------------------------|
| U-nat, U-235, U-238, and associated decay products                                                                                                | 1,000 <sup>7</sup>       | 5,000 <sup>7</sup>                         |
| Transuranics, Ra-226, Ra-228, Th-230, Th-228, Pa-231, Ac-<br>227, I-125, I-129                                                                    | 20                       | 500                                        |
| Th-nat, Th-232, Sr-90, Ra-223, Ra-224, U-232, I-126, I-131, I-133                                                                                 | 200                      | 1,000                                      |
| Beta-gamma emitters (nuclides with decay modes other than alpha emission or spontaneous fission) except Sr-90 and others noted above <sup>5</sup> | 1,000                    | 5,000                                      |
| Tritium and tritiated compounds <sup>6</sup>                                                                                                      | 10,000                   | N/A                                        |

<sup>1</sup> The values in this appendix, with the exception noted in footnote 5, apply to radioactive contamination deposited on, but not incorporated into the interior or matrix of, the contaminated item. Where surface contamination by both alpha-and beta-gammaemitting nuclides exists, the limits established for alpha-and beta-gamma-emitting nuclides apply independently.

108 109 110 <sup>2</sup> As used in this table, dpm (disintegrations per minute) means the rate of emission by radioactive material as determined by 111 correcting the counts per minute observed by an appropriate detector for background, efficiency, and geometric factors associated with the instrumentation.

112 113 <sup>3</sup> The levels may be averaged over one square meter provided the maximum surface activity in any area of 100 cm<sup>2</sup> is less than

114 three times the value specified. For purposes of averaging, any square meter of surface shall be considered to be above the 115 surface contamination value if: (1) From measurements of a representative number of sections it is determined that the average 116

contamination level exceeds the applicable value; or (2) it is determined that the sum of the activity of all isolated spots or particles in any 100 cm<sup>2</sup> area exceeds three times the applicable value. <sup>4</sup> The curve t is determine 117

118 119 The amount of removable radioactive material per  $100 \text{ cm}^2$  of surface area should be determined by swiping the area with dry filter or soft absorbent paper, applying moderate pressure, and then assessing the amount of radioactive material on the swipe 120 121 122 123 124 125 126 127 128 129 with an appropriate instrument of known efficiency. (Note - The use of dry material may not be appropriate for tritium.) When removable contamination on objects of surface area less than  $100 \text{ cm}^2$  is determined, the activity per unit area shall be based on the actual area and the entire surface shall be wiped. It is not necessary to use swiping techniques to measure removable contamination levels if direct scan surveys indicate that the total residual surface contamination levels are within the limits for removable contamination.

<sup>5</sup> This category of radionuclides includes mixed fission products, including the Sr-90 which is present in them. It does not apply to Sr-90 which has been separated from the other fission products or mixtures where the Sr-90 has been enriched.

- <sup>6</sup>Tritium contamination may diffuse into the volume or matrix of materials. Evaluation of surface contamination shall consider the extent to which such contamination may migrate to the surface in order to ensure the surface contamination value provided in
- this appendix is not exceeded. Once this contamination migrates to the surface, it may be removable, not fixed; therefore, a 130 "Total" value does not apply. 131
  - <sup>7</sup> (alpha)

107

## 132 E.1.3 DOE Order 5400.5 (non-exhaustive excerpts) from Chapter II

## 133 5. Release of Property Having Residual Radioactive Material

(a) Release of Real Property. Release of real property (land and structures) shall be in
accordance with the guidelines and requirements for residual radioactive material presented in
Chapter IV. These guidelines and requirements apply to both DOE-owned facilities and to
private properties that are being prepared by DOE for release. Real properties owned by DOE
that are being sold to the public are subject to the requirements of Section 120(h) of the
Comprehensive Environmental Response Compensation and Liability Act (CERCLA), as
amended, concerning hazardous substances, and to any other applicable Federal, State, and local

anonaca, concerning nazaraoas substances, and to any other appreader reactar, state, and recar

requirements. The requirements of 40 CFR Part 192 are applicable to properties remediated by

142 DOE under Title I of the Uranium Mill Tailings Radiation Control Act (UMTRA).

143 (b) Release of Personal Property. Personal property, which potentially could be contaminated,

144 may be released for unrestricted use if the results of a survey with appropriate instruments

indicate that the property is less than the contamination limits presented in Figure IV-1.

146 (c) Release of Materials and Equipment.

147 (1) Surface Contamination Levels. Prior to being released, property shall be surveyed to

148 determine whether both removable and total surface contamination (Including contamination

present on and under any coating) are in compliance with the levels given in Figure IV-1 and that

150 the contamination has been subjected to the ALARA process.

(2) Potential for Contamination. Property shall be considered to be potentially contaminated if it
has been used or stored in radiation areas that could contain unconfined radioactive material or
that are exposed to beams of particles capable of causing activation (neutrons, protons, etc.).

(3) Surveys. Surfaces of potentially contaminated property shall be surveyed using instrumentsand techniques appropriate for detecting the limits stated in Figure IV-1.

156 (4) Inaccessible Areas. Where potentially contaminated surfaces are not accessible for

157 measurement (as in some pipes, drains, and ductwork), such property may be released after case-

by-case evaluation and documentation based on both the history of its use and available

159 measurements demonstrate that the unsurveyable surfaces are likely to be within the limits given

160 in Figure IV-1.

- 161 (5) Records. The records of released property shall include:
- 162 (a) A description or identification of the property;
- 163 (b) The date of the last radiation survey;
- 164 (c) The identity of the organization and the individual who performed the monitoring operation;
- 165 (d) The type and identification number of monitoring instruments;
- 166 (e) The results of the monitoring operation; and
- 167 (f) The identity of the recipient of the released material.
- 168 (6) Volume Contamination. No guidance is currently available for release of material that has

169 been contaminated in depth, such as activated material or smelted contaminated metals (e.g.,

- 170 radioactivity per unit volume or per unit mass). Such materials may be released if criteria and
- 171 survey techniques are approved by EH-1.

# 172 E.1.4 DOE Guidance and Similar Documents

173 The following discussion summarizes DOE policy, practice, and guidance for the disposition of174 personal property, including materials and equipment from several DOE guidance documents.

175 "Application of DOE 5400.5 requirements for release and control of property containing residual

176 radioactive material," a guidance memorandum dated November 17, 1995. This guidance

177 memorandum explains the procedures through which authorized limits can be approved for the

178 disposition of waste materials to sanitary waste landfills. It also discusses the disposition criteria

- 179 for certain radionuclides. Finally, it delegates some responsibilities for the approval of release of
- 180 volumetrically contaminated materials to DOE field office managers when specified conditions

181 are met.
#### 182 Table E.2 Figure IV-1, from DOE Order 5400.5, as Supplemented in November, 1995 183 Memorandum: Surface Activity Guidelines – Allowable Total Residual Surface

184

Activity  $(dpm/100cm^2)^1$ 

| Radionuclides <sup>2</sup>                                                                                                                                                | Average <sup>3,4</sup> | Maximum <sup>4,5</sup> | Removable <sup>4,6</sup> |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------|------------------------|--------------------------|
| Group 1 - Transuranics, I-125, I-129, Ac-227,<br>Ra -226, Ra-228, Th-228, Th-230, Pa-231                                                                                  | 100                    | 300                    | 20                       |
| Group 2 - Th-natural, Sr-90, I-126, I-131, I-<br>133, Ra-223, Ra-224, U-232, Th-232                                                                                       | 1,000                  | 3,000                  | 200                      |
| Group 3 - U-natural, U-235, U-238, and associated decay products, alpha emitters                                                                                          | 5,000                  | 15,000                 | 1,000                    |
| Group 4 - Beta-gamma emitters (radionuclides<br>with decay modes other than alpha emission or<br>spontaneous fission) except Sr-90 and others<br>noted above <sup>7</sup> | 5,000                  | 15,000                 | 1,000                    |
| Tritium (applicable to surface and subsurface) <sup>8</sup>                                                                                                               | N/A                    | N/A                    | 10,000                   |

185 n this table, dpm (disintegrations per minute) means the rate of emission by radioactive material as deterr 186 187 correcting the counts per minute measured by an appropriate detector for background, efficiency, and geometric factors

associated with the instrumentation.

188 <sup>2</sup> Where surface contamination by both alpha- and beta-gamma-emitting radionuclides exists, the limits established for alpha- and 189 beta-gamma-emitting radionuclides should apply independently.

190 <sup>3</sup>Measurements of average contamination should not be averaged over an area of more than  $1 \text{ m}^2$ . For objects of less surface 191 area, the average should be derived for each such object.

<sup>4</sup> The average and maximum dose rates associated with surface contamination resulting from beta-gamma emitters should not exceed 0.2 mrad/h and 1.0 mrad/h, respectively, at 1 cm.

<sup>5</sup> The maximum contamination level applies to an area of not more than 100 cm<sup>2</sup>.

192 193 194 195 196 197 198 199 200 201 <sup>6</sup> The amount of removable material per 100 cm<sup>2</sup> of surface area should be determined by wiping an area of that size with dry filter or soft absorbent paper, applying moderate pressure, and measuring the amount of radioactive material on the wiping with an appropriate instrument of known efficiency. When removable contamination on objects of surface area less than 100 cm<sup>2</sup> is

determined, the activity per unit area should be based on the actual area and the entire surface should be wiped. It is not necessary to use wiping techniques to measure removable contamination levels if direct scan surveys indicate that the total

residual surface contamination levels are within the limits for removable contamination.

- 203 <sup>8</sup> Property recently exposed or decontaminated, [sic] should have measurements (smears) at regular time intervals to ensure that 204 there is not a build-up of contamination over time. Because tritium typically penetrates material it contacts, the surface
- 205 guidelines in group 4 are not applicable to tritium. The Department has reviewed the analysis conducted by the DOE Tritium
- 206 Surface Contamination Limits Committee ("Recommended Tritium Surface Contamination Release Guides," February 1991),
- 207 and has assessed potential doses associated with the release of property containing residual tritium. The Department recommends
- 208the use of the stated guideline as an interim value for removable tritium. Measurements demonstrating compliance of the
- 209 removable fraction of tritium on surfaces with this guideline are acceptable to ensure that non-removable fractions and residual
- 210 tritium in mass will not cause exposures that exceed DOE dose limits and constraints.

<sup>&</sup>lt;sup>7</sup> This category of radionuclides includes mixed fission products, including the Sr-90 which is present in them. It does not apply 202 to Sr-90 which has been separated from the other fission products or mixtures where the Sr-90 has been enriched.

211 "Control and Release of Property with Residual Radioactive Material for use with DOE Order

212 5400.5, Radiation Protection of the Public and the Environment," DOE G 441.1-XX, a draft

213 guidance document approved for interim use and issued on May 1, 2002. This guidance

214 document contains detailed discussions of the disposition approaches for real and personal

215 property, as well as summaries of DOE's policies regarding the disposition or release of

216 property.

217 "Cross-Cut Guidance on Environmental Requirements for DOE Real Property Transfers

218 (Update)," DOE/EH-413/97-12, originally issued October, 1997, revised March, 2005. This

219 guidance document contains a summary of various environmental requirements for the release or

transfer of real property.

"Managing the Release of Surplus and Scrap Materials," January 19, 2001, from DOE Secretary
Richardson to all DOE elements. This memorandum provides direction as well as guidance
regarding the release of property from DOE radiological control. It also restricts the release of
metal from radiological areas for recycle until certain steps are taken by DOE.

### 225 E.2 International Organizations

226 In general, each country establishes its own disposition criteria for materials and equipment. 227 These national disposition criteria may be consistent with guidance promulgated by multi-228 national organizations, such as the International Atomic Energy Agency (IAEA) or the European 229 Commission (EC). One example of widely-accepted regulations is the "Advisory Material for 230 the IAEA Regulations for the Safe Transport of Radioactive Material SAFETY GUIDE No. TS-231 G-1.1 (ST-2)." The references listed below provide the detailed information on guidance from 232 the IAEA and the EC. URLs are provided for internet access of this information. Disposition 233 criteria from specific nations should be obtained from those nations.

### 234 E.2.1 International Atomic Energy Agency (IAEA)

- 235 Advisory Material for the IAEA Regulations for the Safe Transport of Radioactive Material
- 236 SAFETY GUIDE No. TS-G-1.1 (ST-2):
- 237 <u>http://www-pub.iaea.org/MTCD/publications/PDF/Pub1109\_scr.pdf</u>.

- 238 Planning and Preparing for Emergency Response to Transport Accidents Involving Radioactive
- 239 Material, SAFETY GUIDE No. TS-G-1.2 (ST-3)
- 240 <u>http://www-pub.iaea.org/MTCD/publications/PDF/Pub1119\_scr.pdf</u>.
- 241 Application of the Concepts of Exclusion, Exemption and Clearance SAFETY GUIDE No. RS-
- 242 G-1.7: <u>http://www-pub.iaea.org/MTCD/publications/PDF/Pub1202\_web.pdf</u>.

### 243 E.2.2 European Commission

- 244 The publication list for radiation protection may be found on the EC website at:
- 245 <u>http://europa.eu.int/comm/energy/nuclear/radioprotection/publication\_en.htm</u>. Contact
- information for most of the authorities in the European Union may be found in Annex 3, in the
- 247 last pages of publication 139, "A review of consumer products containing radioactive substances
- 248 in the European Union," which can be found at:
- 249 <u>http://europa.eu.int/comm/energy/nuclear/radioprotection/publication/doc/139\_en.pdf</u>.
- Radiation protection publications pertaining to disposition criteria for materials and equipmentinclude:
- 252 134: Evaluation of the application of the concepts of exemption and clearance for practices
- according to title III of Council Directive 96/29/Euratom of 13 May 1996 in EU Member States,
- 254 Volume 1, Main Report:
- 255 <u>http://europa.eu.int/comm/energy/nuclear/radioprotection/publication/doc/134\_en.pdf</u>.
- 256 122: Practical Use of the Concepts of Clearance and Exemption Part I: Guidance on General
- 257 Clearance Levels for Practices:
- 258 <u>http://europa.eu.int/comm/energy/nuclear/radioprotection/publication/doc/122\_part1\_en.pdf</u>.
- 259 122: Practical Use of the Concepts of Clearance and Exemption Part II: Application of the
- 260 Concepts of Exemption and Clearance to Natural Radiation Sources:
- 261 <u>http://europa.eu.int/comm/energy/nuclear/radioprotection/publication/doc/122\_part2\_en.pdf</u>.
- 262 114: Definition of Clearance Levels for the Release of Radioactively Contaminated Buildings
- and Building Rubble:
- 264 <u>http://europa.eu.int/comm/energy/nuclear/radioprotection/publication/doc/114\_en.pdf</u>.

European legislation related to the transport of radioactive materials (database):
http://europa.eu.int/comm/energy/nuclear/transport/legislation en.htm.

### 267 E.3 Nuclear Regulatory Commission

268 Disposition criteria specified by NRC regulations are found in the Code of Federal Regulations, 269 Title 10 (10 CFR). NRC regulations in 10 CFR are structured in Parts, which apply to respective 270 areas of applicability. For example, 10 CFR Part 20 addresses "Standards for Protection against 271 Radiation." The regulatory citations below indicate the specific Part by the number to the left of 272 the decimal point, for example, §20.2003 is in 10 CFR Part 20, and 2003 indicates a specific 273 portion. In this appendix only the radiological component of those criteria pertaining to 274 quantitative measurement attributes are listed; there are almost always additional regulatory 275 requirements. "Disposition criteria" refers to the quantitative radiological portion of the 276 complete criteria. In some circumstances, disposition criteria are not addressed in the 277 regulations, and these cases are handled by existing policy and practices. A list of NRC 278 disposition criteria, which is not necessarily exhaustive, follows.

279 E.3.1 § 20.2003 Disposal by release into sanitary sewerage.

(2) The quantity of licensed or other radioactive material that the licensee releases into the sewer
in 1 month divided by the average monthly volume of water released into the sewer by the
licensee does not exceed the concentration listed in table 3 of appendix B to part 20; and

(4) The total quantity of licensed and other radioactive material that the licensee releases into the
sanitary sewerage system in a year does not exceed 5 curies (185 GBq) of hydrogen-3, 1 curie

285 (37 GBq) of carbon-14, and 1 curie (37 GBq) of all other radioactive materials combined.

286 E.3.2 § 20.2005 Disposal of specific wastes.

287 (a) A licensee may dispose of the following licensed material as if it were not radioactive

288 (1) 0.05 microcurie (1.85 kBq), or less, of hydrogen-3 or carbon-14 per gram of medium used

- 289 for liquid scintillation counting; and
- 290 (2) 0.05 microcurie (1.85 kBq), or less, of hydrogen-3 or carbon-14 per gram of animal tissue,
- averaged over the weight of the entire animal.

Appendix E

### 292 E.3.3 § 35.92 Decay-in-storage.

(a) A licensee may hold byproduct material with a physical half-life of less than 120 days for
 decay-in-storage before disposal without regard to its radioactivity if it--

(1) Monitors byproduct material at the surface before disposal and determines that its
 radioactivity cannot be distinguished from the background radiation level with an appropriate
 radiation detection survey meter set on its most sensitive scale and with no interposed shielding

298 E.3.4 § 35.315 Safety precautions.

(4) Either monitor material and items removed from the patient's or the human research subject's
room to determine that their radioactivity cannot be distinguished from the natural background
radiation level with a radiation detection survey instrument set on its most sensitive scale and
with no interposed shielding, or handle the material and items as radioactive waste.

303 E.3.5 § 36.57 Radiation surveys.

304 (e) Before releasing resins for unrestricted use, they must be monitored before release in an area
305 with a background level less than 0.5 microsievert (0.05 millirem) per hour. The resins may be
306 released only if the survey does not detect radiation levels above background radiation levels.
307 The survey meter used must be capable of detecting radiation levels of 0.5 microsievert (0.05
308 millirem) per hour.

# 309 E.3.6 Appendix A to Part 40--Criteria Relating to the Operation of Uranium Mills and the 310 Disposition of Tailings or Wastes Produced by the Extraction or Concentration of 311 Source Material from Ores Processed Primarily for Their Source Material Content

312 (6) The design requirements in this criterion for longevity and control of radon releases apply to 313 any portion of a licensed and/or disposal site unless such portion contains a concentration of 314 radium in land, averaged over areas of 100 square meters, which, as a result of byproduct 315 material, does not exceed the background level by more than: (i) 5 picocuries per gram (pCi/g) of 316 radium-226, or, in the case of thorium byproduct material, radium-228, averaged over the first 15 317 centimeters (cm) below the surface, and (ii) 15 pCi/g of radium-226, or, in the case of thorium 318 byproduct material, radium-228, averaged over 15-cm thick layers more than 15 cm below the 319 surface.

### 320 E.3.7 § 71.4 Definitions.

- 321 The following terms are as defined here for the purpose of this part. To ensure compatibility with
- 322 international transportation standards, all limits in this part are given in terms of dual units: The
- 323 International System of Units (SI) followed or preceded by U.S. standard or customary units.
- 324 The U.S. customary units are not exact equivalents but are rounded to a convenient value,
- 325 providing a functionally equivalent unit. For the purpose of this part, either unit may be used.
- $A_1$  means the maximum activity of special form radioactive material permitted in a Type A
- 327 package. This value is either listed in Appendix A, Table A-1, of this part, or may be derived in
- 328 accordance with the procedures prescribed in Appendix A of this part.
- $A_2$  means the maximum activity of radioactive material, other than special form material, LSA,
- and SCO material, permitted in a Type A package. This value is either listed in Appendix A,
- Table A-1, of this part, or may be derived in accordance with the procedures prescribed in
- 332 Appendix A of this part.
- 333 Low Specific Activity (LSA) material means radioactive material with limited specific activity
- 334 which is nonfissile or is excepted under §71.15, and which satisfies the descriptions and limits
- set forth below. Shielding materials surrounding the LSA material may not be considered in
- determining the estimated average specific activity of the package contents. LSA material must
- be in one of three groups:
- 338 (1) LSA--I.
- (i) Uranium and thorium ores, concentrates of uranium and thorium ores, and other ores
- 340 containing naturally occurring radioactive radionuclides which are not intended to be processed
- 341 for the use of these radionuclides;
- 342 (ii) Solid unirradiated natural uranium or depleted uranium or natural thorium or their solid or
  343 liquid compounds or mixtures;
- 344 (iii) Radioactive material for which the A<sub>2</sub> value is unlimited; or

- 345 (iv) Other radioactive material in which the activity is distributed throughout and the estimated
- 346 average specific activity does not exceed 30 times the value for exempt material activity
- 347 concentration determined in accordance with Appendix A.

348 (2) LSA--II.

(i) Water with tritium concentration up to 0.8 TBq/liter (20.0 Ci/liter); or

350 (ii) Other material in which the activity is distributed throughout and the average specific

activity does not exceed  $10^{-4}$ A<sub>2</sub>/g for solids and gases, and  $10^{-5}$ A<sub>2</sub>/g for liquids.

352 (3) LSA--III. Solids (e.g., consolidated wastes, activated materials), excluding powders, that

353 satisfy the requirements of § 71.77, in which:

(i) The radioactive material is distributed throughout a solid or a collection of solid objects, or is

essentially uniformly distributed in a solid compact binding agent (such as concrete, bitumen,ceramic, etc.);

357 (ii) The radioactive material is relatively insoluble, or it is intrinsically contained in a relatively

insoluble material, so that even under loss of packaging, the loss of radioactive material per

359 package by leaching, when placed in water for 7 days, would not exceed 0.1 A<sub>2</sub>; and

360 (iii) The estimated average specific activity of the solid does not exceed  $2 \times 10^{-3}$ A<sub>2</sub>/g.

361 Low toxicity alpha emitters means natural uranium, depleted uranium, natural thorium; uranium-

362 235, uranium-238, thorium-232, thorium-228 or thorium-230 when contained in ores or physical

363 or chemical concentrates or tailings; or alpha emitters with a half-life of less than 10 days.

364 *Surface Contaminated Object (SCO)* means a solid object that is not itself classed as radioactive 365 material, but which has radioactive material distributed on any of its surfaces. SCO must be in 366 one of two groups with surface activity not exceeding the following limit:

367 (1) SCO-I: A solid object on which:

368 (i) The nonfixed contamination on the accessible surface averaged over  $300 \text{ cm}^2$  (or the area of

369 the surface if less than 300 cm<sup>2</sup>) does not exceed 4 Bq/cm<sup>2</sup> ( $10^4$  microcurie/cm<sup>2</sup>) for beta and

- 370 gamma and low toxicity alpha emitters, or  $0.4 \text{ Bq/cm}^2 (10^{-5} \text{ microcurie/cm}^2)$  for all other alpha 371 emitters;
- 372 (ii) The fixed contamination on the accessible surface averaged over  $300 \text{ cm}^2$  (or the area of the
- surface if less than 300 cm<sup>2</sup>) does not exceed  $4 \times 10^4$  Bq/cm<sup>2</sup> (1.0 microcurie/cm<sup>2</sup>) for beta and
- 374 gamma and low toxicity alpha emitters, or  $4 \times 10^3$  Bq/cm<sup>2</sup> (0.1 microcurie/cm<sup>2</sup>) for all other
- alpha emitters; and
- 376 (iii) The nonfixed contamination plus the fixed contamination on the inaccessible surface
- averaged over 300 cm<sup>2</sup> (or the area of the surface if less than 300 cm<sup>2</sup>) does not exceed  $4 \times 10^4$
- 378 Bq/cm<sup>2</sup> (1 microcurie/cm<sup>2</sup>) for beta and gamma and low toxicity alpha emitters, or  $4 \times 10^3$
- $379 \quad Bq/cm^2 (0.1 \text{ microcurie/cm}^2) \text{ for all other alpha emitters.}$

380 (2) SCO-II: A solid object on which the limits for SCO-I are exceeded and on which:

- (i) The nonfixed contamination on the accessible surface averaged over  $300 \text{ cm}^2$  (or the area of
- the surface if less than 300 cm<sup>2</sup>) does not exceed 400 Bq/cm<sup>2</sup> ( $10^2$  microcurie/cm<sup>2</sup>) for beta and gamma and low toxicity alpha emitters or 40 Bq/cm<sup>2</sup> ( $10^3$  microcurie/cm<sup>2</sup>) for all other alpha emitters;
- (ii) The fixed contamination on the accessible surface averaged over 300 cm<sup>2</sup> (or the area of the surface if less than 300 cm<sup>2</sup>) does not exceed  $8 \times 10^5$  Bq/cm<sup>2</sup> (20 microcuries/cm<sup>2</sup>) for beta and gamma and low toxicity alpha emitters, or  $8 \times 10^4$  Bq/cm<sup>2</sup> (2 microcuries/cm<sup>2</sup>) for all other alpha emitters; and
- 389 (iii) The nonfixed contamination plus the fixed contamination on the inaccessible surface
- averaged over 300 cm<sup>2</sup> (or the area of the surface if less than 300 cm<sup>2</sup>) does not exceed  $8 \times 10^5$
- 391 Bq/cm<sup>2</sup> (20 microcuries/cm<sup>2</sup>) for beta and gamma and low toxicity alpha emitters, or  $8 \times 10^4$
- 392 Bq/cm<sup>2</sup> (2 microcuries/cm<sup>2</sup>) for all other alpha emitters.

### 393 E.3.8 § 71.14 Exemption for low-level materials.

394 (a) A licensee is exempt from all the requirements of this part with respect to shipment or

395 carriage of the following low-level materials:

(1) Natural material and ores containing naturally occurring radionuclides that are not intended
to be processed for use of these radionuclides, provided the activity concentration of the material
does not exceed 10 times the values specified in Appendix A, Table A-2, of this part.

399 (2) Materials for which the activity concentration is not greater than the activity concentration
400 values specified in Appendix A, Table A-2 of this part, or for which the consignment activity is
401 not greater than the limit for an exempt consignment found in Appendix A, Table A-2, of this
402 part.

403 (b) A licensee is exempt from all the requirements of this part, other than §§ 71.5 and 71.88,

404 with respect to shipment or carriage of the following packages, provided the packages do not

405 contain any fissile material, or the material is exempt from classification as fissile material under 406 § 71.15:

407 (1) A package that contains no more than a Type A quantity of radioactive material;

408 (2) A package transported within the United States that contains no more than 0.74 TBq (20 Ci)
409 of special form plutonium-244; or

410 (3) The package contains only LSA or SCO radioactive material, provided--

411 (i) That the LSA or SCO material has an external radiation dose of less than or equal to 10

412 mSv/h (1 rem/h), at a distance of 3 m from the unshielded material; or

413 (ii) That the package contains only LSA-I or SCO-I material.

### 414 E.3.9 § 110.22 General license for the export of source material.

415 (3) Th-227, Th-228, U-230, and U-232 when contained in a device, or a source for use in a

416 device, in quantities of less than 100 millicuries of alpha activity (3.12 micrograms Th-227, 122

417 micrograms Th-228, 3.7 micrograms U-230, 4.7 milligrams U-232) per device or source.

### 418 E.3.10 § 110.23 General license for the export of byproduct material.

- 419 (2) Actinium-225 and -227, americium-241 and -242m, californium-248, -249, -250, -251, -252,
- 420 -253, and -254, curium-240, -241, -242, -243, -244, -245, -246 and -247, einsteinium-252, -253, -
- 421 254 and -255, fermium-257, gadolinium-148, mendelevium-258, neptunium-235 and -237,

polonium-210, and radium-223 must be contained in a device, or a source for use in a device, in
quantities of less than 100 millicurie of alpha activity (see Sec. 110.2 for specific activity) per
device or source, unless the export is to a country listed in Sec. 110.30. Exports of americium
and neptunium are subject to the reporting requirements listed in paragraph (b) of this section.

426 (3) For americium-241, exports must not exceed one curie (308 milligrams) per shipment or 100

427 curies (30.8 grams) per year to any country listed in Sec. 110.29, and must be contained in

428 industrial process control equipment or petroleum exploration equipment in quantities not to

429 exceed 20 curies (6.16 grams) per device or 200 curies (61.6 grams) per year to any one country.

430 (5) For polonium-210, the material must be contained in static eliminators and may not exceed

431 100 curies (22 grams) per individual shipment.

432 (6) For tritium in any dispersed form, except for recovery or recycle purposes (e.g., luminescent 433 light sources and paint, accelerator targets, calibration standards, labeled compounds), exports 434 must not exceed the quantity of 10 curies (1.03 milligrams) or less per item, not to exceed 1,000 435 curies (103 milligrams) per shipment or 10,000 curies (1.03 grams) per year to any one country. 436 Exports of tritium to the countries listed in Sec. 110.30 must not exceed the quantity of 40 curies 437 (4.12 milligrams) or less per item, not to exceed 1,000 curies (103 milligrams) per shipment or 438 10,000 curies (1.03 grams) per year to any one country, and exports of tritium in luminescent 439 safety devices installed in aircraft must not exceed a quantity of 40 curies (4.12 milligrams) or 440 less per light source.

#### 441 E.3.11 Policies and Practices

442 Disposition criteria for the release of materials and equipment that are not specified in NRC

443 regulations are determined by the current policies and practices. NRC's current approaches for

444 making decisions on disposition of solid materials is different for materials licensees, i.e.,

445 industrial, research, and medical facilities, and for reactors, which include power, test, and

446 research reactors. These are summarized in Table E-3, and discussed in more detail below.

447 For non-reactor licensees—materials licensees—licensee requests for release of solid material

448 will continue to be evaluated using the nuclide concentration tables in Regulatory Guide 1.86

449 and its equivalent, Fuel Cycle Policy and Guidance Directive FC 83-23. Many materials

450 licensees obtain approval, as a license condition, to routinely use these guidelines. For residual

451 radioactivity within the volume of solid materials (for example, within a concrete or soil matrix),

452 non-reactor licensee requests for release of solid material may continue to be approved under a

453 disposal request (10 CFR 20.2002); a license termination plan; decommissioning plan review; or

454 other specific license amendment. In verifying that the dose from such release is maintained

455 ALARA and below the limits of our regulations in 10 Part 20, approval of a release is possible.

456 The disposition of materials with volumetrically-distributed radioactivity from materials

457 licensees is considered on a case-by-case basis with a reference of an annual individual dose

458 criterion of a "few mrem per year (a few 0.01 mSv/a)."

459 Non-reactor licensees, that is, materials licensees, and reactor licensees have essentially the same

460 detection level criteria for surface activity. But for materials licensees, radioactivity below these

detection level criteria is allowed—detectable radioactivity is not allowed at any level for reactor
licensees.

463 For reactor licensees, licensees may release of solid material using the "no detectable" policy of

464 NRC's Inspection and Enforcement Circular 81-07 and Information Notices 85-92 and 88-22.

465 For reactors, the policy is that released material can have no detectable licensed radioactivity.

466 The levels of detection are specified by each reactor licensee's procedures and are frequently

467 consistent with a now discontinued Regulatory Guide issued in 1974. In practice, these detection

468 levels for radioactivity on surfaces are: 5/6 Bq /cm<sup>2</sup> (5000 dpm/100 cm<sup>2</sup>) total  $\beta$ - $\gamma$  and 1/6 Bq

469  $/\text{cm}^2$  (1000 dpm/100 cm<sup>2</sup>) removable  $\beta$ - $\gamma$ . Non-detection at these levels of delectability

470 wasconsidered to result in potential doses to an individual significantly less than 5 mrem/yr

471 (<<0.05 mSv/a) from any non-detectable radioactivity that could remain on surfaces.

472 Detection levels for  $\alpha$ -emitting radioactivity are specified as 1/60 Bq /cm<sup>2</sup> (100 dpm/100 cm<sup>2</sup>)

473 total and  $1/300 \text{ Bq /cm}^2$  (20 dpm/100 cm<sup>2</sup>) for removable  $\alpha$ -emitting radioactivity. For

474 volumetric radioactivity from reactors, the detection levels are from guidance written in the late

475 1970's and specifies  $\beta$ - $\gamma$  concentrations in the general range of 3-4 Bq/kg (81-108 pCi/kg).

# Table E.3 Summary of NRC Disposition Criteria from Current Practices for the Release of Materials and Equipment

|                    | Surficial Radioactivity                                                                           | Volumetric Radioactivity                                                  |
|--------------------|---------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------|
| Reactor Licenses   | <b>β-</b> γ: Non-detectable [MDC<br>5/6 Bq/cm <sup>2</sup> ; 1/6 Bq/cm <sup>2</sup><br>removable] | <b>β</b> -γ: Non-detectable [MDC in General range of $\approx$ 3-4 Bq/kg] |
|                    | <b>α:</b> Non-detectable [MDC 1/60<br>Bq/cm <sup>2</sup> ; 1/300 Bq/cm <sup>2</sup><br>removable] | <b>α:</b> Non-detectable [MDC not indicated]                              |
| Materials Licenses | <b>β</b> -γ: $5/6$ Bq/cm <sup>2</sup> ; $1/6$ Bq/cm <sup>2</sup><br>removable <sup>1</sup>        | <b>β-γ:</b> Case-by-case [Reference to a few 0.01 mSv in a year]          |
|                    | $\alpha$ : 1/60 Bq/cm <sup>2</sup> ; 1/300<br>Bq/cm <sup>2</sup> removable <sup>2</sup>           | <b>α:</b> Case-by-case [Reference to a few 0.01 mSv in a year]            |

 $\frac{1}{129} = \frac{1}{129} \text{ km}^2 \text{ and } I = 126, I = 131, \text{ and } I = 133, \text{ where } 1/6 \text{ Bq/cm}^2 \text{ and } 1/30 \text{ Bq/cm}^2 \text{ removable applies; and except } I = 125, \text{ and } I = 129 \text{ where } 1/60 \text{ Bq/cm}^2 \text{ and } 1/300 \text{ Bq/cm}^2 \text{ removable applies.}$ 

<sup>2</sup> Except natural U, U-235, U-238, and associated decay products where 5/6 Bq/cm<sup>2</sup> and 1/6 Bq/cm<sup>2</sup> removable applies; and except transuranics, Ra-226, Ra-228, Th-230, Th-228, Pa-231, and Ac-227, where 1/60 Bq/cm<sup>2</sup> and 1/300 Bq/cm<sup>2</sup> removable applies.

### 483 E.3.12 Issues Related to International Trade

484 With regard to issues relating to international trade of solid materials released from facilities,

485 NRC's regulations contain requirements for export and import of material and could be

486 considered in handling materials that meet established international clearance criteria and, at the

487 same time, do not meet the guidelines for NRC licensees. Among other things, these regulations

488 require that "the proposed import does not constitute an unreasonable risk to the public health

489 and safety."

1 F. SCAN MDCS FOR SECTION 7.3

The methodology used to determine the scan MDC is based on NUREG-1507 (NRC 1998b). An
overview of the approach to determine scan MDCs follows:

| 4  |            | • | Calculate the fluence rate relative to the exposure rate (FRER) for the range of       |
|----|------------|---|----------------------------------------------------------------------------------------|
| 5  |            |   | energies of interest (Section F.1),                                                    |
| 6  |            | • | Calculate the probability of interaction (P) between the radiation of interest and the |
| 7  |            |   | detector (Section F.2),                                                                |
| 8  |            | • | Calculate the relative detector response (RDR) for each of the energies of interest    |
| 9  |            |   | (Section F.3),                                                                         |
| 10 |            | • | Determine the relationship between the detector's net count rate to net exposure rate  |
| 11 |            |   | in counts per minute per microRoentgen per hour, (cpm per $\mu$ R/h, Section F.4),     |
| 12 |            | • | Determine the relationship between the detector response and the radionuclide          |
| 13 |            |   | concentration (Section F.5),                                                           |
| 14 |            | • | Obtain the minimum detectable count rate (MDCR) for the ideal observer, for a given    |
| 15 |            |   | level of performance, by postulating detector background and a scan rate or            |
| 16 |            |   | observation interval (Section F.6), and                                                |
| 17 |            | • | Relate the MDCR for the ideal observer to a radionuclide concentration (in Bq/kg) to   |
| 18 |            |   | calculate the scan MDC (Section F.7).                                                  |
|    | <b>D</b> 4 | a |                                                                                        |

### 19 F.1 Calculate the Relative Fluence Rate to Exposure Rate (FRER)

20 For particular gamma energies, the relationship of NaI scintillation detector count rate

21 and exposure rate may be determined analytically (in cpm per  $\mu$ R/h). The approach is to

22 determine the gamma fluence rate necessary to yield a fixed exposure rate ( $\mu R/h$ ) as a

23 function of gamma energy. The fluence rate, following NUREG-1507 (NRC 1998b), is

24 directly proportional to the exposure rate and inversely proportional to the incident

25 photon energy and mass energy absorption coefficient. That is,

26 Fluence Rate(FRER) 
$$\propto \dot{X} \frac{1}{E_{\gamma}} \frac{1}{(\mu_{en} / \rho)_{air}}$$
 (F-1)

MARSAME

### 27 Where:

| 28 | $\dot{X}$                       | = the exposure rate (set equal to 1 $\mu$ R/hr for these calculations)    |
|----|---------------------------------|---------------------------------------------------------------------------|
| 29 | $E_\gamma$                      | = energy of the gamma photon of concern (keV)                             |
| 30 | $(\mu_{\rm en}/\rho)_{\rm air}$ | = mass energy absorption coefficient in air at the gamma photon energy of |
| 31 |                                 | concern $(cm^2/g)$                                                        |

32 The mass energy absorption coefficients in air are presented in Table F-1 (natural uranium) and

33 Table F-2 (natural thorium) along with the calculated fluence rates (up to a constant of

34 proportionality, since only the ratios of these values are used in subsequent calculations). Note

35 that while the mass energy absorption coefficients in air,  $(\mu_{en}/\rho)_{air}$ , are tabulated values (NIST

36 1996), the selected energies are determined by the calculation of the detector response based on

37 radionuclide concentration (see Section F.5).

### 38 F.2 Calculate the Probability of Interaction

39 Assuming that the primary gamma interaction producing the detector response occurs through

40 the end of the detector (i.e., through the beryllium window of the detector, as opposed to the

41 sides), the probability of interaction (P) for a gamma may be calculated using Equation F-2:

42 
$$P = 1 - e^{-(\mu/\rho)_{NaI}(x)(\rho_{NaI})} = 1 - e^{-(0.117 \text{ cm}^2/\text{g})(0.16 \text{ cm})(3.67 \text{ g/cm}^3)} = 0.066 \text{ at } 400 \text{ keV}$$
(F-2)

43 Where:

| 44 | Р                           | = probability of interaction (unitless)                               |
|----|-----------------------------|-----------------------------------------------------------------------|
| 45 | $(\mu / \rho)_{\text{NaI}}$ | = mass attenuation coefficient of FIDLER NaI crystal at the energy of |
| 46 |                             | interest (e.g., 0.117 cm <sup>2</sup> /g at 400 keV)                  |
| 47 | x                           | = thickness of the thin edge of the FIDLER NaI crystal (0.16 cm)      |
| 48 | ρ                           | = density of the NaI crystal $(3.67 \text{ g/cm}^3)$                  |

49 The mass attenuation coefficients for the NaI crystal and the calculated probabilities for each of

50 the energies of interest are presented in Table F.1 (natural uranium) and Table F.2 (natural

51 thorium). The mass attenuation coefficients for NaI were calculated using the XCOM program

52 (NIST 1998).

|        |                              |               |                       |               |               | cpm per       |
|--------|------------------------------|---------------|-----------------------|---------------|---------------|---------------|
| Energy | $(\mu_{ m en}/ ho)_{ m air}$ | FRER          | $(\mu/ ho)_{\rm NaI}$ | Р             | RDR           | μR/h          |
| (keV)  | (cm <sup>2</sup> /g)         | (Section F.1) | cm²/g                 | (Section F.2) | (Section F.3) | (Section F.4) |
| 15     | 1.334                        | 0.04998       | 47.4                  | 1.000         | 0.04998       | 28,374        |
| 20     | 0.5389                       | 0.09278       | 21.8                  | 1.000         | 0.09278       | 52,678        |
| 30     | 0.1537                       | 0.2169        | 7.36                  | 0.9867        | 0.2140        | 121,498       |
| 40     | 0.06833                      | 0.3659        | 18.8                  | 1.000         | 0.3659        | 207,725       |
| 50     | 0.04098                      | 0.4880        | 10.5                  | 0.9979        | 0.4870        | 276,511       |
| 60     | 0.03041                      | 0.5481        | 6.45                  | 0.9773        | 0.5356        | 304,123       |
| 80     | 0.02407                      | 0.5193        | 3.00                  | 0.8282        | 0.4301        | 244,204       |
| 100    | 0.02325                      | 0.4301        | 1.67                  | 0.6249        | 0.2688        | 152,606       |
| 150    | 0.02496                      | 0.2671        | 0.611                 | 0.3015        | 0.08052       | 45,717        |
| 200    | 0.02672                      | 0.1871        | 0.328                 | 0.1752        | 0.03278       | 18,613        |
| 300    | 0.02872                      | 0.1161        | 0.166                 | 0.09288       | 0.01078       | 6,120         |
| 400    | 0.02949                      | 0.08477       | 0.117                 | 0.06640       | 0.005629      | 3,196         |
| 500    | 0.02966                      | 0.06743       | 0.0950                | 0.05426       | 0.003659      | 2,077         |
| 600    | 0.02953                      | 0.05644       | 0.0822                | 0.04712       | 0.002660      | 1,510         |
| 662    | 0.02931                      | 0.05154       | 0.0766                | 0.04398       | 0.002267      | 1,287         |
| 800    | 0.02882                      | 0.04337       | 0.0675                | 0.03886       | 0.001685      | 957           |
| 1,000  | 0.02789                      | 0.03586       | 0.0588                | 0.03394       | 0.001217      | 691           |
| 1,500  | 0.02547                      | 0.02617       | 0.0470                | 0.02722       | 0.0007125     | 405           |
| 2,000  | 0.02345                      | 0.02132       | 0.0415                | 0.02407       | 0.0005133     | 291           |

 Table F.1 Calculation of Detector Response to Natural Uranium

|        |                              |               |                      |               |               | cpm per       |
|--------|------------------------------|---------------|----------------------|---------------|---------------|---------------|
| Energy | $(\mu_{ m en}/ ho)_{ m air}$ | FRER          | $(\mu/ ho)_{ m NaI}$ | Р             | RDR           | μR/h          |
| (keV)  | $(\mathrm{cm}^2/\mathrm{g})$ | (Section F.1) | cm²/g                | (Section F.2) | (Section F.3) | (Section F.4) |
| 40     | 0.06833                      | 0.3659        | 18.8                 | 1.000         | 0.3659        | 207,725       |
| 60     | 0.03041                      | 0.5481        | 6.45                 | 0.9773        | 0.5356        | 304,123       |
| 80     | 0.02407                      | 0.5193        | 3.00                 | 0.8282        | 0.4301        | 244,204       |
| 100    | 0.02325                      | 0.4301        | 1.67                 | 0.6249        | 0.2688        | 152,606       |
| 150    | 0.02496                      | 0.2671        | 0.611                | 0.3015        | 0.08052       | 45,717        |
| 200    | 0.02672                      | 0.1871        | 0.328                | 0.1752        | 0.03278       | 18,613        |
| 300    | 0.02872                      | 0.1161        | 0.166                | 0.09288       | 0.01078       | 6,120         |
| 400    | 0.02949                      | 0.08477       | 0.117                | 0.06640       | 0.005629      | 3,196         |
| 500    | 0.02966                      | 0.06743       | 0.0950               | 0.05426       | 0.003659      | 2,077         |
| 600    | 0.02953                      | 0.05644       | 0.0822               | 0.04712       | 0.002660      | 1,510         |
| 662    | 0.02931                      | 0.05154       | 0.0766               | 0.04398       | 0.002267      | 1,287         |
| 800    | 0.02882                      | 0.04337       | 0.0675               | 0.03886       | 0.001685      | 957           |
| 1,000  | 0.02789                      | 0.03586       | 0.0588               | 0.03394       | 0.001217      | 691           |
| 1,500  | 0.02547                      | 0.02617       | 0.0470               | 0.02722       | 0.0007125     | 405           |
| 2,000  | 0.02343                      | 0.02134       | 0.0415               | 0.02407       | 0.0005137     | 292           |
| 3,000  | 0.02057                      | 0.01620       | 0.0368               | 0.02138       | 0.0003464     | 197           |

 Table F.2 Calculation of Detector Response for Natural Thorium

### 55 F.3 Calculate the Relative Detector Response

56 The relative detector response (RDR) for each of the energies of interest is determined by

57 multiplying the FRER by P. The results are presented in Table F.1 (natural uranium) and Table

58 F.2 (natural thorium).

### 59 F.4 Relationship Between Detector Response and Exposure Rate

60 Using the same methodology described in Sections F.1 through F.3, FRER, P, and RDR are 61 calculated at the cesium-137 ( $^{137}$ Cs) energy of 662 keV and are presented in Table F.1 and Table 62 F.2. The manufacturer of the FIDLER NaI detector provides an estimated response of the crystal 63 in a known radiation field, which is 1,287 cpm per  $\mu$ R/h at the  $^{137}$ Cs energy of 662 keV. The 64 response at 662 keV can be used to determine the response at all other energies of interest using 65 Equation F-3:

66 
$$\frac{\text{cpm}}{\mu R/h_{E_i}} = \left(\frac{1,287 \text{ cpm}}{\mu R/h}\right) \times \frac{\text{RDR}_{E_i}}{\text{RDR}_{137}}$$
(F-3)

67 Where:

| 68 | Ei                                                 | = energy of the photon of interest (keV),                                     |
|----|----------------------------------------------------|-------------------------------------------------------------------------------|
| 69 | $\frac{\text{cpm}}{\mu \text{R/h}_{\text{E}_{i}}}$ | = response of the detector for energies of interest, Table F.1 and Table F.2, |
| 70 | $RDR_{E_i}$                                        | = RDR at the energy of interest, Table F.1 and Table F.2, and                 |
| 71 | RDR 137 Cs                                         | = RDR for $^{137}$ Cs, Table F.1 and Table F.2.                               |

72 The responses in cpm per  $\mu$ R/h for each of the decay energies of interest are presented in Table

F.1 and Table F.2.

# 74 F.5 Relationship Between Detector Response and Radionuclide 75 Concentration

The minimum detectable exposure rate is used to determine the MDC by modeling a specific impacted area. The relationship between the detector response (in cpm) and the radionuclide concentration (in Bq/kg) uses a computer gamma dose modeling code to model the presence of a normalized 1 Bq/kg total activity source term for natural uranium and natural thorium. The following assumptions from NUREG-1507 (NRC 1998b) were used to generate the computer gamma dose modeling runs:

- 82
- Impacted media is concrete,

• Density of concrete is  $2.3 \text{ g/cm}^3$ ,

- 83

| 84                   | • Activity is uniformly distributed into a layer of crushed concrete 15 cm thick,                                                                                                       |
|----------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 85                   | • Measurement points are 10 cm above the concrete surface,                                                                                                                              |
| 86                   | • Areas of elevated activity are circular with an area of $0.25 \text{ m}^2$ and a radius of 28 cm,                                                                                     |
| 87                   | • 0.051 cm beryllium shield simulates the window of the FIDLER detector, and                                                                                                            |
| 88                   | • Normalized 1 Bq/kg source term decayed for 50 years to allow ingrowth of decay                                                                                                        |
| 89                   | progeny.                                                                                                                                                                                |
| 90                   | The weighted cpm per $\mu$ R/h response (weighted instrument sensitivity [WS <sub>i</sub> ]) for each decay                                                                             |
| 91                   | energy is calculated by multiplying the $\mu$ R/h at 1 Bq/kg (exposure rate with buildup, $R_i$ ) by the                                                                                |
| 92                   | cpm per $\mu$ R/h and dividing by the total $\mu$ R/h (at 1 Bq/kg) for all decay energies of interest                                                                                   |
| 93                   | (equation F-4):                                                                                                                                                                         |
| 94                   | $WS_i = \frac{R_i \times (\text{cpm per } \mu \text{R} / \text{h})}{R_T} $ (F-4)                                                                                                        |
| 95                   | Where:                                                                                                                                                                                  |
| 96<br>97<br>98<br>99 | $WS_i$ = weighted instrument sensitivity (cpm per $\mu$ R/h), and<br>$R_i$ = exposure rate with buildup ( $\mu$ R/h)<br>$R_T$ = Total exposure rate with buildup ( $\mu$ R/h)           |
| 100                  | Calculate the percent of FIDLER response for each of the decay energies of interest by dividing                                                                                         |
| 101                  | $WS_i$ by the total weighted cpm per $\mu$ R/h and multiplying by 100 percent (equation F-5):                                                                                           |
| 102                  | Percent of FIDLER response = $\frac{WS_i \times 100\%}{W_T}$ (F-5)                                                                                                                      |
| 103                  | Where:                                                                                                                                                                                  |
| 104                  | $W_T$ = Total $WS_i$ weighted instrument sensitivity (cpm per $\mu$ R/h).                                                                                                               |
|                      |                                                                                                                                                                                         |
| 105                  | The exposure rates for each of the decay energies of interest are presented in Table F.3                                                                                                |
| 105<br>106           | The exposure rates for each of the decay energies of interest are presented in Table F.3 (assuming natural uranium for the source term) and Table F.4 (assuming natural thorium for the |

| Energy<br>keV | R <sub>i</sub><br>(µR/h)<br>(Section F.5) | cpm per μR/h<br>(Section F.4) | WS <sub>i</sub><br>(cpm per µR/h)<br>(Section F.5) | Percent of<br>FIDLER<br>Response<br>(Section F.5) |
|---------------|-------------------------------------------|-------------------------------|----------------------------------------------------|---------------------------------------------------|
| 15            | 4.473×10 <sup>-10</sup>                   | 28,374                        | 0                                                  | 0.00%                                             |
| 20            | 3.597×10 <sup>-12</sup>                   | 52,678                        | 0                                                  | 0.00%                                             |
| 30            | 2.623×10 <sup>-07</sup>                   | 121,498                       | 226                                                | 0.504%                                            |
| 40            | $1.299 \times 10^{-10}$                   | 207,725                       | 0                                                  | 0.00%                                             |
| 50            | $1.052 \times 10^{-07}$                   | 276,511                       | 206                                                | 0.460%                                            |
| 60            | 5.065×10 <sup>-06</sup>                   | 304,123                       | 10903                                              | 24.3%                                             |
| 80            | $1.518 \times 10^{-06}$                   | 244,204                       | 2625                                               | 5.86%                                             |
| 100           | $2.309 \times 10^{-05}$                   | 152,606                       | 24938                                              | 55.7%                                             |
| 150           | 5.138×10 <sup>-06</sup>                   | 45,717                        | 1663                                               | 3.71%                                             |
| 200           | 2.881×10 <sup>-05</sup>                   | 18,613                        | 3796                                               | 8.48%                                             |
| 300           | 2.237×10 <sup>-07</sup>                   | 6,120                         | 10                                                 | 0.0216%                                           |
| 400           | 2.434×10 <sup>-07</sup>                   | 3,196                         | 6                                                  | 0.0123%                                           |
| 500           | 4.208×10 <sup>-07</sup>                   | 2,077                         | 6                                                  | 0.0138%                                           |
| 600           | 2.048×10 <sup>-06</sup>                   | 1,510                         | 22                                                 | 0.0489%                                           |
| 800           | $1.478 \times 10^{-05}$                   | 957                           | 100                                                | 0.224%                                            |
| 1,000         | 5.759×10 <sup>-05</sup>                   | 691                           | 282                                                | 0.629%                                            |
| 1,500         | 1.695×10 <sup>-06</sup>                   | 405                           | 5                                                  | 0.0108%                                           |
| 2,000         | 2.841×10 <sup>-07</sup>                   | 291                           | 1                                                  | 0.00131%                                          |
| Total         | $1.413 \times 10^{-04}$                   |                               | 44,923                                             | 100%                                              |

 Table F.3 Detector Response to Natural Uranium

| Energy<br>keV | R <sub>i</sub><br>(µR/h)<br>(Section F.5) | cpm per μR/h<br>(Section F.4) | WS <sub>i</sub><br>(cpm per µR/h)<br>(Section F.5) | Percent of<br>FIDLER<br>Response<br>(Section F.5) |
|---------------|-------------------------------------------|-------------------------------|----------------------------------------------------|---------------------------------------------------|
| 40            | $1.299 \times 10^{-06}$                   | 207,725                       | 10                                                 | 0.266%                                            |
| 60            | $1.816 \times 10^{-06}$                   | 304,123                       | 21                                                 | 0.544%                                            |
| 80            | $1.989 \times 10^{-04}$                   | 244,204                       | 1855                                               | 47.8%                                             |
| 100           | 5.027×10 <sup>-05</sup>                   | 152,606                       | 293                                                | 7.55%                                             |
| 150           | 5.862×10 <sup>-05</sup>                   | 45,717                        | 102                                                | 2.64%                                             |
| 200           | $1.135 \times 10^{-03}$                   | 18,613                        | 807                                                | 20.8%                                             |
| 300           | 8.922×10 <sup>-04</sup>                   | 6,120                         | 209                                                | 5.37%                                             |
| 400           | $1.105 \times 10^{-04}$                   | 3,196                         | 13                                                 | 0.348%                                            |
| 500           | 8.146×10 <sup>-04</sup>                   | 2,077                         | 65                                                 | 1.67%                                             |
| 600           | 2.218×10 <sup>-03</sup>                   | 1,510                         | 128                                                | 3.30%                                             |
| 800           | 2.892×10 <sup>-03</sup>                   | 957                           | 106                                                | 2.72%                                             |
| 1,000         | 6.443×10 <sup>-03</sup>                   | 691                           | 170                                                | 4.38%                                             |
| 1,500         | $2.062 \times 10^{-03}$                   | 405                           | 32                                                 | 0.821%                                            |
| 2,000         | 5.822×10 <sup>-05</sup>                   | 292                           | 1                                                  | 0.0167%                                           |
| 3,000         | 9.249×10 <sup>-03</sup>                   | 197                           | 69                                                 | 1.79%                                             |
| Total         | 2.619×10 <sup>-02</sup>                   |                               | 3881                                               | 100%                                              |

### Table F.4 Detector Response to Natural Thorium

### 110 F.6 Calculation of Scan Minimum Detectable Count Rates

- 111 In the computer gamma dose modeling, an impacted area with a radius of 28 cm or
- 112 approximately 0.25 m was assumed. Using a scan speed of 0.25 meters per second (m/s)
- 113 provides an observation interval of one second.
- 114 A typical background exposure rate is 10  $\mu$ R/h. Using a conversion factor based upon field
- 115 measurements of 1,287 cpm per  $\mu$ R/h for <sup>137</sup>Cs (see Section F.4) results in an estimated
- 116 background count rate of 12,870 cpm. Converting this value from cpm to counts per second
- 117 (cps) using Equation F-6 results in a background of 214.5 cps.

118 
$$b(\text{cpm}) \times \frac{1 \min}{60 \text{ sec}} \times i(\text{sec}) = \frac{1,287 \text{ cpm}}{1 \,\mu\text{R/h}} \times 10 \,\mu\text{R/h} \times \frac{1 \min}{60 \text{ sec}} \times 1 \text{ sec} = 214.5 \text{ cps}$$
 (F-6)

119 Where:

- 120b= background count rate (12,870 cpm)121i= the observation interval length (one second)
- 122 The MDCR is calculated using the methodology in NUREG-1507 (NRC 1998b) shown in
- 123 Equations F-7 and F-8:

124 
$$s_i = d' \sqrt{b_i} = 1.38 \times \sqrt{214.5} = 20.21 \text{ counts}$$
 (F-7)

125 
$$s_{i, surveyor} = \frac{d'\sqrt{b_i}}{\sqrt{p}} = \frac{1.38 \times \sqrt{214.5}}{\sqrt{0.5}} = 28.58 \text{ counts}$$

126 MDCR = 
$$s_i \times (60/i) = 20.21 \times (60/1) = 1,212$$
 cpm (F-8)

127 
$$MDCR_{surveyor} = s_{i, surveyor} \times (60/i) = 28.58 \times (60/1) = 1,715 \text{ cpm}$$

128 Where:

| 129 | $b_i$ | = the average number of counts in the background interval (214.5 counts)  |
|-----|-------|---------------------------------------------------------------------------|
| 130 | i     | = the observation interval length (one second)                            |
| 131 | р     | = efficiency of a less than ideal surveyor, range of $0.5$ to $0.75$ from |
| 132 |       | NUREG-1507 (NRC 1998b); a value 0.5 was chosen as a conservative          |
| 133 |       | value                                                                     |

| 134 | d'                       | = detectability index from Table 6.1 of NUREG-1507 (NRC 1998b); a           |
|-----|--------------------------|-----------------------------------------------------------------------------|
| 135 |                          | value of 1.38 was selected, which represents a true positive detection rate |
| 136 |                          | of 95% and a false positive detection rate of 60%                           |
| 137 | $S_i$                    | = minimum detectable number of net source counts in the observation         |
| 138 |                          | interval (counts)                                                           |
| 139 | S <sub>i,surveyor</sub>  | = minimum detectable number of net source counts in the observation         |
| 140 |                          | interval by a less than ideal surveyor                                      |
| 141 | MDCR                     | = minimum detectable count rate (cpm)                                       |
| 142 | MDCR <sub>surveyor</sub> | = MDCR by a less than ideal surveyor (cpm)                                  |
| 1/2 | -                        |                                                                             |

143

### 144 F.7 Calculate the Scan Minimum Detectable Concentration

145 The scan minimum detectable concentration (MDC) can be calculated from the minimum

146 detectable exposure rate (MDER). The MDER can be calculated using the previously calculated

- 147 total weighted instrument sensitivities ( $WS_i$ ), in cpm per  $\mu$ R/h, for natural uranium and natural
- 148 thorium as shown in equations F-9 and F-10:

149 
$$MDER = \frac{MDCR_{surveyor}}{W_T}$$
(F-9)

150 Scan MDC = 
$$C \times \frac{\text{MDER}}{R_T}$$
 (F-10)

151 Where:

| 152 | MDER                     | = MDER for the "ith" source term, by a less than ideal surveyor, ( $\mu$ R/h) |
|-----|--------------------------|-------------------------------------------------------------------------------|
| 153 | MDCR <sub>surveyor</sub> | = MDCR rate by a less than ideal surveyor (cpm), from Section F.5             |
| 154 | $W_T$                    | = Total weighted instrument sensitivity (cpm per $\mu$ R/h, Table F.3 and     |
| 155 |                          | Table F.4)                                                                    |
| 156 | $R_T$                    | = Total exposure rate with buildup ( $\mu$ R/h, Table F.3 and Table F.4)      |
| 157 | С                        | = concentration of source term (set at 1 Bq/kg in Section F.5)                |
| 158 | Scan MDC                 | = minimum detectable concentration (Bq/kg)                                    |
|     |                          |                                                                               |

159 The Scan MDCs for the FIDLER were calculated using Equations F-9 and F-10, and the

- 160 instrument response information from Table F.3 (assuming natural uranium as the source term)
- and Table F.4 (assuming natural thorium as the source term). The scan MDCs for natural
- 162 uranium and natural thorium using a FIDLER are listed in Table F.5.

| Source<br>Term     | MDCR <sub>surveyor</sub><br>(cpm)<br>Section F.6 | W <sub>T</sub><br>(cpm per<br>μR/h)<br>Section F.5 | MDER<br>(µR/h)<br>Section F.7 | $R_T$<br>( $\mu$ R/h)<br>Section F.5 | C<br>(Bq/kg)<br>Section F.5 | Scan MDC<br>(Bq/kg)<br>Section F.7 |
|--------------------|--------------------------------------------------|----------------------------------------------------|-------------------------------|--------------------------------------|-----------------------------|------------------------------------|
| Natural<br>Uranium | 1,715                                            | 44,786                                             | 0.03829                       | 1.413×10 <sup>-04</sup>              | 1                           | <b>271</b> ≈ <b>300</b>            |
| Natural<br>Thorium | 1,715                                            | 3,881                                              | 0.4419                        | 2.619×10 <sup>-02</sup>              | 1                           | <b>16.9</b> ≈ <b>20</b>            |

 Table F.5
 Scan MDCs for FIDLER

164 The scan MDCs of approximately 300 Bq/kg for uranium and 20 Bq/kg for thorium are both less

165 than their respective NUREG-1640-based activity action levels of 38,000 and 330 Bq/kg,

166 respectively.

# APPENDIX G ESTABLISHING MQOS FOR MEASUREMENT UNCERTAINTY, MDCs AND MQCs

### 3 G.1 Establishing MQOs

4 This section provides the rationale and guidance for establishing project-specific MQOs for

5 controlling  $\sigma_M$ . This control is achieved by establishing a desired maximum measurement

6 method uncertainty at the upper boundary of the gray region. This control also will assist in both

7 the measurement method selection process and in the evaluation of measurement data.

8 Approaches applicable to several situations are detailed below.

9

### Table G.1 Notation for Section G.1

| Symbol          | Definition                                 | Formula or reference                                | Туре                        |
|-----------------|--------------------------------------------|-----------------------------------------------------|-----------------------------|
| α               | Probability of a Type I                    |                                                     | Chosen during DQO           |
|                 | decision error                             |                                                     | process                     |
| β               | The probability of a                       |                                                     | Chosen during DQO           |
|                 | Type II decision error                     |                                                     | process                     |
| Δ               | Width of the gray                          | (UBGR-LBGR)                                         | Chosen during DQO           |
|                 | region                                     |                                                     | process                     |
| $\varphi_{MR}$  | Required relative                          | $u_{\rm MR}$ / UBGR                                 | Chosen during DQO           |
|                 | method uncertainty                         |                                                     | process                     |
|                 | above the UBGR                             |                                                     |                             |
| $S_{\rm C}$ .   | The critical value of the                  | Calculation of $S_{\rm C}$ requires the choice of a | If a measured value         |
|                 | net instrument signal                      | significance level for the test. The significance   | exceeds the critical value, |
|                 | (e.g., net count)                          | level is a specified upper bound for the            | a decision is made that     |
|                 |                                            | probability, $\alpha$ , of a Type I error. The      | radiation or radioactivity  |
|                 |                                            | significance level is usually chosen to be 0.05.    | has been detected           |
| σ               | The total standard                         | $(\sigma_S^2 + \sigma_M^2)^{\gamma_2}$              | Theoretical population      |
|                 | deviation of the data                      |                                                     | parameter                   |
| $\sigma_S$      | Standard deviation of                      |                                                     | Theoretical population      |
|                 | the concentration in the                   |                                                     | parameter                   |
|                 | sampled population                         |                                                     |                             |
| $\sigma_M$      | Standard deviation of                      |                                                     | Theoretical population      |
|                 | the measurement                            |                                                     | parameter                   |
|                 | method                                     |                                                     | <u> </u>                    |
| $u_{MR}$        | Required method                            | Upper bound to the value of $\sigma_M$              | Chosen during DQO           |
|                 | uncertainty at and                         |                                                     | process                     |
| 2()             | below the UBGR                             |                                                     |                             |
| $u_c^2(y)$      | Combined variance of y                     | Uncertainty propagation                             |                             |
| $u_{\rm c}(y)$  | Combined standard                          | Uncertainty propagation                             |                             |
|                 | uncertainty of y.                          |                                                     |                             |
| $Z_{1-\alpha}$  | $1 - \alpha$ (or $1 - \beta$ ) quantile of | Table of Standard normal distribution.              | Theoretical                 |
| $(z_{1-\beta})$ | a standard normal                          |                                                     |                             |
|                 | distribution function                      |                                                     |                             |

# G.1.1 Developing a Requirement for Measurement Method Uncertainty For MARSSIM Type surveys

When, as in MARSSIM-Type surveys, a decision is to be made about the mean of a sampled population, generally the average of a set of measurements on a survey unit is compared to the disposition criterion.

15 The total variance of the data,  $\sigma^2$ , is the sum of two components

16 
$$\sigma^2 = \sigma_M^2 + \sigma_s^2 \tag{G-1}$$

17 Where:

 $\sigma_M^2$  = measurement method variance (M = "measurement"), and

19  $\sigma_s^2$  = variance of the radionuclide concentration or activity concentration in the 20 sampled population (S = "sampling").

The spatial and temporal distribution of the concentration, the extent of the survey unit, the physical sizes of the measured material, and the choice of measurement locations may affect the sampling standard deviation,  $\sigma_S$ . The measurement standard deviation,  $\sigma_M$ , is affected by the measurement methods. The value of  $\sigma_M$  is estimated in MARSAME by the combined standard uncertainty of a measured value for a measurement of material whose concentration equals the hypothesized population mean concentration. The calculation of measurement uncertainties is covered in Section 5.6.

Four cases are considered below where target values for  $\sigma_M$  can be suggested depending on what

is known about  $\sigma_s$ . Cases 1 and 2 treat the desired overall objective of keeping  $\Delta/\sigma \approx 3$  or higher.

30 When this is not possible, Cases 3 and 4 treat the less desirable alternative of attempting to

31 prevent  $\Delta/\sigma$  from going lower than 1.

32 **Case 1:**  $\sigma_S$  is known relative to  $\Delta / 3$ 

Generally, it is easier to control  $\sigma_M$  than  $\sigma_S$ . If  $\sigma_S$  is known (approximately), a target value for  $\sigma_M$ can be determined.

#### MARSAME

| 3 |
|---|
| 2 |

36 If  $\sigma_S \leq \Delta / 3$ , then a value of  $\sigma_M$  no greater than  $\sqrt{(\Delta^2 / 9) - \sigma_s^2}$  ensures that  $\sigma \leq \Delta / 3$ ,

because we have 
$$\sigma^2 = \sigma_M^2 + \sigma_s^2 \le (\Delta^2 / 9 - \sigma_s^2) + \sigma_s^2 = \Delta^2 / 9$$
, as desired.

38 Case 1b:  $\sigma_S > \Delta / 3$ 

39 If  $\sigma_S > \Delta / 3$ , the requirement that the total  $\sigma$  be less than  $\Delta/3$  cannot be met regardless of 40  $\sigma_M$ . In this case, it is sufficient to make  $\sigma_M$  negligible in comparison to  $\sigma_S$ . Generally,  $\sigma_M$ 41 can be considered negligible in comparison to  $\sigma_S$  if it is no greater than  $\sigma_S/3$ .

42 **Case 2:**  $\sigma_S$  is not known relative to  $\Delta / 3$ 

43 Often one needs a method for choosing  $\sigma_M$  in the absence of specific information about  $\sigma_S$ . Since 44 it is desirable to have  $\sigma \le \Delta / 3$ , this condition is adopted as a primary requirement. Assume for 45 the moment that  $\sigma_S$  is large. Then  $\sigma_M$  should be made negligible by comparison. As mentioned 46 above,  $\sigma_M$  can be considered negligible if it is no greater than  $\sigma_S/3$ . When this condition is met, 47 further reduction of  $\sigma_M$  has little effect on  $\sigma$  and therefore is usually not cost-effective. So, the 48 inequality  $\sigma_M \le \sigma_S/3$  is adopted as a secondary requirement.

49 Starting with the definition  $\sigma^2 = \sigma_M^2 + \sigma_s^2$  and substituting the secondary requirement  $\sigma_M \le \sigma_s/3$ 50 we get  $\sigma^2 \ge \sigma_M^2 + 9\sigma_M^2 = 10\sigma_M^2$ , thus

51 
$$\sigma_M \le \frac{\sigma}{\sqrt{10}}$$
 (G-2)

52 Substituting the primary requirement that  $\Delta/\sigma \ge 3$  (i.e.,  $\sigma \le \Delta/3$ ) we get  $\sigma_M \le \frac{\sigma}{\sqrt{10}} \le \frac{\Delta/3}{\sqrt{10}}$ , thus

$$\sigma_{M} \leq \frac{\Delta}{3\sqrt{10}}$$
(G-3)

54 Or approximately

|    | $ \Delta$                    |       |
|----|------------------------------|-------|
|    | $\sigma_M \leq \frac{1}{10}$ |       |
| 55 | 10                           | (G-4) |

December 2006

- 56 The required upper bound for the standard deviation  $\sigma_M$  will be denoted by  $\sigma_{MR}$ . MARSAME
- 57 recommends the equation

$$\sigma_{MR} = \frac{\Delta}{10} \tag{G-5}$$

58

59 by default as a requirement when  $\sigma_s$  is unknown and a decision is to be made about the mean of a 60 sampled population.

61 This upper bound was derived from the assumption that  $\sigma_S$  was large, but it also ensures that the

62 primary requirement  $\sigma \le \Delta / 3$  (i.e.,  $\Delta / \sigma \ge 3$ ) will be met if  $\sigma_s$  is small. When the measurement

63 standard deviation  $\sigma_M$  is less than  $\sigma_{MR}$ , the primary requirement will be met unless the sampling

64 variance,  $\sigma_s^2$ , is so large that  $\sigma_M^2$  is negligible by comparison, in which case little benefit can be

- 65 obtained from further reduction of  $\sigma_M$ .
- It may be that the primary requirement that  $\Delta/\sigma$  be at least 3 is not achievable. Suppose that the
- 67 primary requirement is relaxed to achieving  $\Delta/\sigma$  at least 1 (i.e.,  $\sigma \le \Delta$ ). This leads to
- 68 consideration of:

69 **Case 3:**  $\sigma_S$  is known relative to  $\Delta$ 

As in Case 1, it is generally easier to control  $\sigma_M$  than  $\sigma_S$ . If  $\sigma_S$  is known (approximately), a target value for  $\sigma_M$  can be determined.

72 Case 3a:  $\sigma_S \leq \Delta$ 

73 If  $\sigma_s \leq \Delta$ , then a value of  $\sigma_M$  no greater than  $\sqrt{\Delta^2 - \sigma_s^2}$  ensures that  $\sigma \leq \Delta$ , because we have 74  $\sigma^2 = \sigma_M^2 + \sigma_s^2 \leq (\Delta^2 - \sigma_s^2) + \sigma_s^2 = \Delta^2$  as desired.

- 75 Case 3b:  $\sigma_S > \Delta$
- 76 If  $\sigma_S > \Delta$ , the requirement that the total  $\sigma$  be less than  $\Delta$  cannot be met regardless of  $\sigma_M$ .
- 77 In this case, it is sufficient to make  $\sigma_M$  negligible in comparison to  $\sigma_S$ . Generally,  $\sigma_M$  can 78 be considered negligible if it is no greater than  $\sigma_S/3$ .

79 **Case 4:**  $\sigma_S$  is not known relative to  $\Delta$ 

80 Suppose  $\sigma \leq \Delta$  is adopted as the primary requirement. As in Case 2, if  $\sigma_S$  is large then  $\sigma_M$  should

be made negligible by comparison. As mentioned above,  $\sigma_M$  can be considered negligible if it is

- 82 no greater than  $\sigma_S/3$ . When this condition is met, further reduction of  $\sigma_M$  has little effect on  $\sigma$  and
- 83 therefore is usually not cost-effective. So, the inequality  $\sigma_M \le \sigma_S/3$  is adopted as a secondary
- 84 requirement.

Starting with the definition  $\sigma^2 = \sigma_M^2 + \sigma_s^2$  and substituting the secondary requirement  $\sigma_M \le \sigma_S / 3$ we get  $\sigma^2 \ge \sigma_M^2 + 9\sigma_M^2 = 10\sigma_M^2$ , thus

87 
$$\sigma_{M} \leq \frac{\sigma}{\sqrt{10}}$$

88 Substituting the primary requirement that  $\Delta/\sigma \ge 1$  (i.e.,  $\sigma \le \Delta$ ) we get  $\sigma_M \le \frac{\sigma}{\sqrt{10}} \le \frac{\Delta}{\sqrt{10}}$ , thus

89 
$$\sigma_{M} \leq \frac{\Delta}{\sqrt{10}} \approx \frac{\Delta}{3}$$

# G.1.2 Developing a Requirement for Measurement Method Uncertainty When Decisions Are to Be Made About Individual Items

When decisions are to be made about individual items, the total variance of the data equals the measurement variance,  $\sigma_M^2$ , and the data distribution in most instances should be approximately normal. The decision in this case may be made by comparing the measured concentration, *x*, plus or minus a multiple of its combined standard uncertainty, to the action level. The combined standard uncertainty,  $u_c(x)$ , is assumed to be an estimate of the true standard deviation of the measurement process as applied to the item being measured; so, the multiplier of  $u_c(x)$  equals  $z_{1-\alpha}$ , the  $(1 - \alpha)$ -quantile of the standard normal distribution (see MARLAP appendix C).

- Alternatively, if AL = 0, so that any detectable amount of radioactivity is of concern, the
- 100 decision may involve comparing the net instrument signal (e.g., count rate) to the critical value
- 101 of the concentration,  $S_{\rm C}$ , as defined in Section 5.7.1.

MARSAME

- 102 Two cases are considered below where target values for  $\sigma_M$  can be suggested depending on what
- 103 is known about the width of the gray region and the desired Type I and Type II decision error

104 rates. Case 5 is for Scenario A, and Case 6 is for Scenario B.

- 105 **Case 5:** Suppose the null hypothesis is  $X \ge AL$  (see Scenario A in Chapter 4), so that the action
- 106 level is the upper bound of the gray region. Given the measurement variance  $\sigma_M^2$ , only a
- 107 measured result that is less than (UBGR  $z_{1-\alpha}\sigma_M$ ) will be judged to be clearly less than the action
- 108 level. Then the desired power of the test  $1 \beta$  is achieved at the lower bound of the gray region
- 109 only if the LBGR  $\leq$  UBGR  $z_{1-\alpha}\sigma_M z_{1-\beta}\sigma_M$ . Algebraic manipulation transforms this
- 110 requirement to

111
$$\sigma_{M} \leq \frac{\text{UBGR} - \text{LBGR}}{z_{1-\alpha} + z_{1-\beta}} = \frac{\Delta}{z_{1-\alpha} + z_{1-\beta}}$$
(G-6)

112 **Case 6:** Suppose the null hypothesis is  $X \le AL$  (see Scenario B in Chapter 4), so that the action 113 level is the lower bound of the gray region. In this case, only a measured result that is greater 114 than LBGR +  $z_{1-\alpha}\sigma_M$  will be judged to be clearly greater than the action level. The desired power 115 of the test  $1 - \beta$  is achieved at the upper bound of the gray region only if the UBGR  $\ge$  LBGR + 116  $z_{1-\alpha}\sigma_M + z_{1-\beta}\sigma_M$ . Algebraic manipulation transforms this requirement to:

117 
$$\sigma_{M} \leq \frac{\text{UBGR} - \text{LBGR}}{z_{1-\alpha} + z_{1-\beta}} = \frac{\Delta}{z_{1-\alpha} + z_{1-\beta}}$$

118 So, in either Scenario A or Scenario B, the requirement remains that:

$$\sigma_{M} \leq \frac{\Delta}{z_{1-\alpha} + z_{1-\beta}}$$
(G-7)

120 Therefore, MARSAME uses the equation:

$$u_{MR} = \sigma_{MR} = \frac{\Delta}{z_{1-\alpha} + z_{1-\beta}}$$
(G-8)

121

1

122 as an MQO for method uncertainty when decisions are to be made about individual items or

123 locations and not about population parameters.

MARSAME

December 2006

- 124 If both  $\alpha$  and  $\beta$  are at least 0.05, one may use the value  $u_{MR} = 0.3\Delta$ .
- 125 The recommended value of  $u_{MR}$  is based on the assumption that any known bias in the
- 126 measurement process has been corrected and that any remaining bias is well less than a third of
- 127 the method uncertainty.

### 128 G.2 Uncertainty Calculation

129

### Table G.2 Notation for Section G.2

| Symbol                    | Definition                                                                                                                                             | Formula or reference                                                                                                                                          | Туре                                                    |
|---------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------|
| a                         | Half-width of a<br>bounded probability<br>distribution                                                                                                 | Type B evaluation of uncertainty                                                                                                                              | Estimated                                               |
| Ci                        | Sensitivity<br>coefficient                                                                                                                             | $\partial f / \partial x_i$ , the partial derivative of $f$ with respect to $x_i$                                                                             | Evaluated at the measured values $x_1, x_2, \dots, x_N$ |
| $f(x_1, x_2, \dots, x_N)$ | The calculated value<br>of the output quantity<br>from measurable<br>input quantities for a<br>particular<br>measurement                               | $y = f(x_1, x_2, \dots, x_N)$                                                                                                                                 | Experimental                                            |
| $f(X_1, X_2, \dots, X_N)$ | Model equation<br>expressing the<br>mathematical<br>relationship,<br>between the<br>measurand, $Y$ and the<br>input quantities $X_i$ .                 | $Y = f(X_1, X_2, \dots, X_N)$                                                                                                                                 | Theoretical                                             |
| k                         | Coverage factor for<br>expanded uncertainty                                                                                                            | Numerical factor used as a multiplier of the<br>combined standard uncertainty in order to obtain<br>an expanded uncertainty                                   | Chosen during<br>DQO process                            |
| p                         | Coverage probability<br>for expanded<br>uncertainty                                                                                                    | Probability that the interval surrounding the result<br>of a measurement determined by the expanded<br>uncertainty will contain the value of the<br>measurand | Chosen during<br>DQO process                            |
| $r(x_i, x_j)$             | Correlation<br>coefficient for two<br>input estimates, $x_i$<br>and $x_i$ ,                                                                            | $u(x_i,x_j) / (u(x_i) u(x_j))$                                                                                                                                | Experimental                                            |
| $s(x_i)$                  | Sample standard deviation of the input estimate $x_i$                                                                                                  | $s(x_i) = \sqrt{\frac{1}{(n-1)} \sum_{k=1}^{n} (x_{i,k} - \overline{x_i})^2}$                                                                                 | Experimental                                            |
| $u(x_i)$                  | Type B standard<br>uncertainty of the<br>input estimate $x_i$                                                                                          |                                                                                                                                                               | Estimated                                               |
| $u_i(y)$                  | Component of the<br>combined standard<br>uncertainty $u_c(y)$<br>generated by the<br>standard uncertainty<br>of the input estimate<br>$x_i$ , $u(x_i)$ | $u_i(y) = c_i u(x_i)$                                                                                                                                         | Estimated                                               |
| $u_{\rm c}(y)$            | Combined standard<br>uncertainty of <i>y</i> .                                                                                                         | Uncertainty propagation                                                                                                                                       |                                                         |
| $u_c^2(\mathbf{y})$       | Combined variance<br>of v                                                                                                                              | Uncertainty propagation                                                                                                                                       |                                                         |

| Symbol                  | Definition                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Formula or reference                                | Туре         |
|-------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------|--------------|
| U                       | Expanded uncertainty                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | "Defining an interval about the result of a         |              |
|                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | measurement that may be expected to encompass       |              |
|                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | a large fraction of values that could reasonably be |              |
|                         | <u>Considerations of the state of</u> | auributed to the measurand (GOM)                    | <b>F</b>     |
| $u(x_i,x_j)$            | Covariance of two input                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                     | Experimental |
|                         | estimates, $x_i$ and $x_j$ ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                     |              |
| $u_{\rm c}(y)/y$        | Relative combined                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                     | Experimental |
|                         | standard uncertainty of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                     |              |
|                         | the output quantity for a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                     |              |
|                         | particular measurement                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                     |              |
| $u(x_i)/x_i$            | Relative standard                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                     | Experimental |
|                         | uncertainty of a nonzero                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                     |              |
|                         | input estimate $x_i$ for a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                     |              |
|                         | particular measurement                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                     |              |
| $W_1, W_2, \ldots, W_n$ | input quantities                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | See $z_1, z_2, \ldots, z_m$ below                   |              |
| 1 2 1                   | appearing in the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1 2                                                 |              |
|                         | numerator of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                     |              |
|                         | $y = f(x_1, x_2, \dots, x_N)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                     |              |
| $X_1, X_2,, X_N$        | Measurable input                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                     | Theoretical  |
| 1 2 11                  | quantities                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                     |              |
| $x_1, x_2, \dots, x_N$  | Estimates of the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                     | Experimental |
| 1, 2, , N               | measurable input                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                     | -            |
|                         | quantities for a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                     |              |
|                         | particular measurement                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                     |              |
| Y                       | The output quantity or                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                     | Theoretical  |
|                         | measurand                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                     |              |
| у                       | Estimate of the output                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                     | Experimental |
| -                       | quantity for a particular                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                     | -            |
|                         | measurement                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                     |              |
| Z1, Z2,, Z.             | input quantities                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | N=n+m                                               |              |
| ~1, ~2, · · · , ~m      | appearing in the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                     |              |
|                         | denominator of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                     |              |
|                         | $y = f(x_1, x_2, \dots, x_N)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                     |              |

### Table G.2 Notation for Section G.2 (continued)

### 131 G.2.1 Procedures for Evaluating Uncertainty

132 The usual eight steps for evaluating and reporting the uncertainty of a measurement are

133 summarized in the following subsections (adapted from Chapter 8 of the GUM):

134 G.2.1.1 Identify the Measurand, Y, and all the Input Quantities,  $X_i$ , for the Mathematical Model

135 Include all quantities whose variability or uncertainty could have a potentially significant effect

136 on the result. Express the mathematical relationship,  $Y = f(X_1, X_2, ..., X_N)$ , between the

137 measurand and the input quantities.

#### MARSAME

| 138                                                                                                                                                                    | The procedure for assessing the uncertainty of a measurement begins with listing all significant                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 139                                                                                                                                                                    | sources of uncertainty in the measurement process. A good place to begin is with the input                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 140                                                                                                                                                                    | quantities' mathematical model $Y = f(X_1, X_2,, X_N)$ . When an effect in the measurement                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 141                                                                                                                                                                    | process that is not explicitly represented by an input quantity has been identified and quantified,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 142                                                                                                                                                                    | an additional quantity should be included in the mathematical measurement model to correct for                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 143                                                                                                                                                                    | it. The quantity, called a correction (additive with a nominal value of zero) or correction factor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 144                                                                                                                                                                    | (multiplicative with a nominal value of one), will have an uncertainty that should also be                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 145                                                                                                                                                                    | evaluated and propagated. Each uncertainty that is potentially significant should be evaluated                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 146                                                                                                                                                                    | quantitatively.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 147                                                                                                                                                                    | G.2.1.2 Determine an Estimate, $x_i$ , of the Value of Each Input Quantity, $X_i$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 148                                                                                                                                                                    | This involves simply determining for the particular measurement at hand, the specific value, $x_i$ ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 149                                                                                                                                                                    | that should be substituted for the input quantity $X_i$ in the mathematical relationship,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 150                                                                                                                                                                    | $Y = f(X_1, X_2, \dots, X_N)  .$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 151                                                                                                                                                                    | G.2.1.3 Evaluate the Standard Uncertainty, $u(x_i)$ , for Each Input Estimate, $x_i$ , Using a Type A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 152                                                                                                                                                                    | Method, a Type B Method, or a Combination of Both                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 153                                                                                                                                                                    | Methods for evaluating standard uncertainties are classified as either "Type A" or "Type B"                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 153<br>154                                                                                                                                                             | Methods for evaluating standard uncertainties are classified as either "Type A" or "Type B" (NIST, 1994). Both types of uncertainty need to be taken into consideration. A Type A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 153<br>154<br>155                                                                                                                                                      | Methods for evaluating standard uncertainties are classified as either "Type A" or "Type B" (NIST, 1994). Both types of uncertainty need to be taken into consideration. A Type A evaluation of an uncertainty uses a series of measurements to estimate the standard deviation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 153<br>154<br>155<br>156                                                                                                                                               | Methods for evaluating standard uncertainties are classified as either "Type A" or "Type B" (NIST, 1994). Both types of uncertainty need to be taken into consideration. A Type A evaluation of an uncertainty uses a series of measurements to estimate the standard deviation empirically. Any other method of evaluating an uncertainty is a Type B method. A Type B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 153<br>154<br>155<br>156<br>157                                                                                                                                        | Methods for evaluating standard uncertainties are classified as either "Type A" or "Type B"<br>(NIST, 1994). Both types of uncertainty need to be taken into consideration. A Type A<br>evaluation of an uncertainty uses a series of measurements to estimate the standard deviation<br>empirically. Any other method of evaluating an uncertainty is a Type B method. A Type B<br>evaluation of standard uncertainty is usually based on scientific judgment using all the relevant                                                                                                                                                                                                                                                                                                                                                                                                    |
| 153<br>154<br>155<br>156<br>157<br>158                                                                                                                                 | Methods for evaluating standard uncertainties are classified as either "Type A" or "Type B"<br>(NIST, 1994). Both types of uncertainty need to be taken into consideration. A Type A<br>evaluation of an uncertainty uses a series of measurements to estimate the standard deviation<br>empirically. Any other method of evaluating an uncertainty is a Type B method. A Type B<br>evaluation of standard uncertainty is usually based on scientific judgment using all the relevant<br>information available, which may include:                                                                                                                                                                                                                                                                                                                                                       |
| 153<br>154<br>155<br>156<br>157<br>158<br>159                                                                                                                          | Methods for evaluating standard uncertainties are classified as either "Type A" or "Type B"<br>(NIST, 1994). Both types of uncertainty need to be taken into consideration. A Type A<br>evaluation of an uncertainty uses a series of measurements to estimate the standard deviation<br>empirically. Any other method of evaluating an uncertainty is a Type B method. A Type B<br>evaluation of standard uncertainty is usually based on scientific judgment using all the relevant<br>information available, which may include:<br>• Previous measurement data,                                                                                                                                                                                                                                                                                                                       |
| 153<br>154<br>155<br>156<br>157<br>158<br>159<br>160                                                                                                                   | <ul> <li>Methods for evaluating standard uncertainties are classified as either "Type A" or "Type B" (NIST, 1994). Both types of uncertainty need to be taken into consideration. A Type A evaluation of an uncertainty uses a series of measurements to estimate the standard deviation empirically. Any other method of evaluating an uncertainty is a Type B method. A Type B evaluation of standard uncertainty is usually based on scientific judgment using all the relevant information available, which may include:</li> <li>Previous measurement data,</li> <li>Experience with, or general knowledge of, the behavior and property of relevant</li> </ul>                                                                                                                                                                                                                     |
| 153<br>154<br>155<br>156<br>157<br>158<br>159<br>160<br>161                                                                                                            | <ul> <li>Methods for evaluating standard uncertainties are classified as either "Type A" or "Type B" (NIST, 1994). Both types of uncertainty need to be taken into consideration. A Type A evaluation of an uncertainty uses a series of measurements to estimate the standard deviation empirically. Any other method of evaluating an uncertainty is a Type B method. A Type B evaluation of standard uncertainty is usually based on scientific judgment using all the relevant information available, which may include:</li> <li>Previous measurement data,</li> <li>Experience with, or general knowledge of, the behavior and property of relevant materials and instruments,</li> </ul>                                                                                                                                                                                          |
| 153<br>154<br>155<br>156<br>157<br>158<br>159<br>160<br>161<br>162                                                                                                     | <ul> <li>Methods for evaluating standard uncertainties are classified as either "Type A" or "Type B" (NIST, 1994). Both types of uncertainty need to be taken into consideration. A Type A evaluation of an uncertainty uses a series of measurements to estimate the standard deviation empirically. Any other method of evaluating an uncertainty is a Type B method. A Type B evaluation of standard uncertainty is usually based on scientific judgment using all the relevant information available, which may include:</li> <li>Previous measurement data,</li> <li>Experience with, or general knowledge of, the behavior and property of relevant materials and instruments,</li> <li>Manufacturer's specifications,</li> </ul>                                                                                                                                                  |
| <ol> <li>153</li> <li>154</li> <li>155</li> <li>156</li> <li>157</li> <li>158</li> <li>159</li> <li>160</li> <li>161</li> <li>162</li> <li>163</li> </ol>              | <ul> <li>Methods for evaluating standard uncertainties are classified as either "Type A" or "Type B" (NIST, 1994). Both types of uncertainty need to be taken into consideration. A Type A evaluation of an uncertainty uses a series of measurements to estimate the standard deviation empirically. Any other method of evaluating an uncertainty is a Type B method. A Type B evaluation of standard uncertainty is usually based on scientific judgment using all the relevant information available, which may include:</li> <li>Previous measurement data,</li> <li>Experience with, or general knowledge of, the behavior and property of relevant materials and instruments,</li> <li>Manufacturer's specifications,</li> <li>Data provided in calibration and other reports, and</li> </ul>                                                                                     |
| <ol> <li>153</li> <li>154</li> <li>155</li> <li>156</li> <li>157</li> <li>158</li> <li>159</li> <li>160</li> <li>161</li> <li>162</li> <li>163</li> <li>164</li> </ol> | <ul> <li>Methods for evaluating standard uncertainties are classified as either "Type A" or "Type B" (NIST, 1994). Both types of uncertainty need to be taken into consideration. A Type A evaluation of an uncertainty uses a series of measurements to estimate the standard deviation empirically. Any other method of evaluating an uncertainty is a Type B method. A Type B evaluation of standard uncertainty is usually based on scientific judgment using all the relevant information available, which may include: <ul> <li>Previous measurement data,</li> <li>Experience with, or general knowledge of, the behavior and property of relevant materials and instruments,</li> <li>Manufacturer's specifications,</li> <li>Data provided in calibration and other reports, and</li> <li>Uncertainties assigned to reference data taken from handbooks.</li> </ul> </li> </ul> |

165 The Type A standard uncertainty of the input estimate  $x_i$  is defined to be the experimental

166 standard deviation of the mean:

168

167 
$$u(x_i) = \sqrt{\frac{1}{n(n-1)} \sum_{k=1}^{n} (x_{i,k} - \overline{x_i})^2} = s(x_i) / \sqrt{n}$$
(G-9)

169 Ten independent one-minute measurements of the counts from a check source  $X_i$  were made with 170 a digital survey meter, yielding the values: 12,148, 12,067, 12,207, 12,232, 12,284, 12,129, 171 11,862, 11,955, 12,044, and 12,150.

172 The estimated value  $x_i$  is the arithmetic mean of the values  $X_{i,k}$ .

**Example 1:** Type A uncertainty calculation using equation G-9:

173 
$$x_i = X_i \frac{1}{n} \sum_{k=1}^n x_{i,k} = \frac{121078}{10} = 12107.8$$

174 The standard uncertainty of  $x_i$  is

175  

$$u(x_{i}) = \sqrt{\frac{1}{n(n-1)} \sum_{k=1}^{n} (x_{i,k} - \overline{x_{i}})^{2}} = \sqrt{\frac{1}{10(10-1)} \sum_{k=1}^{10} (x_{i,k} - 12107.8)^{2}}$$

$$= \sqrt{16628.84} = 128.95$$

177 There are other Type A methods, but all are based on repeated measurements.

178 Any evaluation of standard uncertainty that is not a Type A evaluation is a Type B evaluation.

179 Sometimes a Type B evaluation of uncertainty involves making a best guess based on all

180 available information and professional judgment. Despite the reluctance to make this kind of

181 evaluation, it is almost always better to make an informed guess about an uncertainty component

- 182 than to ignore it completely.
- 183 There are many ways to perform Type B evaluations of standard uncertainty. One example of a
- 184 Type B method is the estimation of counting uncertainty using the square root of the observed
- 185 counts. If the observed count is *N*, when the Poisson approximation is used, the standard
- 186 uncertainty of *N* may be evaluated as  $u(N) = \sqrt{N}$ . For example, the standard uncertainty of the

187 first value in Example 1, 12,148, could be estimated as  $\sqrt{12148} = 110.218$ . When *N* may be 188 very small or even zero, the equation  $u(N) = \sqrt{N+1}$  may be preferable.

Another Type B evaluation of an uncertainty u(x) consists of estimating an upper bound, *a*, for the magnitude of the error of *x* based on professional judgment and the best available information. If nothing else is known about the distribution of the measured result, then after *a* 

192 is estimated, the standard uncertainty may be calculated using the equation

193 
$$u(x) = \frac{a}{\sqrt{3}},$$
 (G-10)

194 which is the standard deviation of a random variable uniformly distributed over the interval 195 (x - a, x + a). The variable *a* is called the half-width of the interval. Suppose in Example 1, all 196 that was given was the observed range of the data from an analog survey meter dial, i.e., from 197 11,862 to 12,284, a difference of 422. If it was assumed that the data came from a uniform 198 distribution across this range, then the average is (11,862+12,284)/2 = 12,073, and an estimate of 199 the standard uncertainty would be  $u(x) = \frac{211}{\sqrt{3}} = 121.821$ .

Given the same information on the range, if values near the middle of the range were considered
more likely than those near the endpoints, a triangular distribution may be more appropriate.
The mean would be the same as above, 12,073. However the standard uncertainty then be
calculated using the equation

204 
$$u(x) = \frac{a}{\sqrt{6}} = \frac{211}{\sqrt{6}} = 86.14$$
 (G-11)

which is the standard deviation of a random variable with a triangular distribution over the interval (x - a, x + a).

When the estimate of an input quantity is taken from an external source, such as a book or acalibration certificate, the stated standard uncertainty can be used.

#### MARSAME

- 209 G.2.1.4 Evaluate the Covariances,  $u(x_i, x_i)$ , for all Pairs of Input Estimates with Potentially 210 Significant Correlations
- 211 A Type A evaluation of the covariance of the input estimates  $x_i$  = and  $x_i$  = is

212 
$$u(x_i, x_j) = \frac{1}{n(n-1)} \sum_{k=1}^n (x_{i,k} - \overline{x_i})(x_{j,k} - \overline{x_j})$$
(G-12)

213 An evaluation of variances and covariances of quantities determined by the method of least 214 squares may also be a Type A evaluation. Evaluation of the covariance of two input estimates,  $x_i$ 215 and  $x_i$ , whose uncertainties are evaluated by Type B methods may require expert judgment. In 216 such cases it may be simpler to estimate the correlation coefficient,  $r(x_i, x_i) = [u(x_i, x_i)/u(x_i) \cdot u(x_i)]$ 217 first and then multiply it by the standard uncertainties,  $u(x_i)$  and  $u(x_i)$  to obtain the covariance, 218  $u(x_i, x_i)$ .

- 219 A covariance calculation is demonstrated in Example 2 in Section G.2.2.
- G.2.1.5 Calculate the Estimate, y, of the Measurand from the Relationship  $y = f(x_1, x_2, ..., x_N)$ 220
- 221 This involves simply substituting, for the particular measurement at hand, the specific values of
- 222  $x_i$  for the input quantity  $X_i$  into the mathematical relationship,  $Y = f(X_1, X_2, \dots, X_N)$ , and calculating 223 the result  $y = f(x_1, x_2, ..., x_N)$ .
- 224 G.2.1.6 Determine the Combined Standard Uncertainty,  $u_c(y)$ , of the Estimate, y
- 225 The combined standard uncertainty of y is obtained using the following formula:

26
$$u_{c}^{2}(y) = \sum_{i=1}^{N} \left(\frac{\partial f}{\partial x_{i}}\right)^{2} u^{2}(x_{i}) + 2\sum_{i=1}^{N-1} \sum_{j=i+1}^{N} \frac{\partial f}{\partial x_{i}} \frac{\partial f}{\partial x_{j}} u(x_{i}, x_{j})$$
(G-13)

22

227 Here  $u^2(x_i)$  denotes the estimated variance of  $x_i$ , or the square of its standard uncertainty;  $u(x_i, x_i)$ 228 denotes the estimated covariance of  $x_i$  and  $x_j$ ;  $\partial f / \partial x_i$  (or  $\partial y / \partial x_i$ ) denotes the partial derivative of f with respect to  $x_i$  evaluated at the measured values  $x_1, x_2, \dots, x_N$ ; and  $u_c^2(y)$  denotes the combined 229 230 variance of y, whose positive square root,  $u_c(y)$ , is the combined standard uncertainty of y. The 231 partial derivatives,  $\partial f / \partial x_i$ , are called sensitivity coefficients, usually denoted  $c_i$ . The sensitivity

MARSAME
- 232 coefficient measures how much f changes when  $x_i$  changes. Equation G-13 is called the "law of
- 233 propagation of uncertainty" in the GUM (ISO 1995).
- 234 If the input estimates  $x_1, x_2, \dots, x_N$  are uncorrelated, the uncertainty propagation formula reduces to

$$u_c^2(y) = \sum_{i=1}^N \left(\frac{\partial f}{\partial x_i}\right)^2 u^2(x_i)$$
(G-14)

- 235
- Suppose the values  $x_1, x_2, ..., x_N$  are composed of two groups  $w_1, w_2, ..., w_n$  and  $z_1, z_2, ..., z_m$  with

237 N=n+m. If the *w*'s and the *z*'s are uncorrelated and nonzero, the combined standard uncertainty 238 of  $y = \frac{w_1 w_2 \dots w_n}{z_1 z_2 \dots z_m}$  may be calculated from the formula:

239 
$$u_c^2(y) = y^2 \left( \frac{u^2(w_1)}{w_1^2} + \frac{u^2(w_2)}{w_2^2} + \dots + \frac{u^2(w_n)}{w_n^2} + \frac{u^2(z_1)}{z_1^2} + \frac{u^2(z_2)}{z_2^2} + \dots + \frac{u^2(z_m)}{z_m^2} \right)$$
(G-15)

240 The symbols  $z_1, z_2, ..., z_m$  have been introduced simply to differentiate those values appearing in

241 the denominator of the model equation from the  $w_1, w_2, \dots, w_n$  appearing in the numerator.

242 If  $y = \frac{f(w_1, w_2, \dots, w_n)}{z_1 z_2 \dots z_m}$ , where *f* is some specified function of  $w_1, w_2, \dots, w_n$ , all the  $z_i$  are nonzero,

and all the input estimates are uncorrelated. Then:

244 
$$u_c^2(y) = \frac{u_c^2(f(w_1, w_2, \dots, w_n))}{z_1 z_2 \dots z_m} + y^2 \left(\frac{u^2(z_1)}{z_1^2} + \frac{u^2(z_2)}{z_2^2} + \dots + \frac{u^2(z_m)}{z_m^2}\right)$$
(G-16)

An alternative to uncertainty propagation is the use of computerized Monte Carlo methods to propagate not the uncertainties of input estimates but their distributions. Given assumed distributions for the input estimates, the method provides an approximate distribution for the output estimate, from which the combined standard uncertainty or an uncertainty interval may be derived. 250 G.2.1.7 Optionally Multiply  $u_c(y)$  by a Coverage Factor k to Obtain the Expanded Uncertainty 251 U such that the Interval [v - U, v + U] can be Expected to Contain the Value of the 252 Measurand with a Specified Probability

253 The specified probability, p, is called the level of confidence or the coverage probability and is 254 generally only an approximation of the true probability of coverage. When the distribution of the 255 measured result is approximately normal, the coverage factor is often chosen to be k = 2 for a 256 coverage probability of approximately 95%. An expanded uncertainty calculated with k = 2 or 3 257 is sometimes informally called a "two-sigma" or "three-sigma" uncertainty, respectively. The 258 GUM recommends the use of coverage factors in the 2 to 3 range when the combined standard 259 uncertainty represents a good estimate of the true standard deviation. Attachment 19D of 260 MARLAP describes a more general procedure for calculating the coverage factor that gives a 261 desired coverage probability p when there is substantial uncertainty in the value of  $u_c(y)$ .

262 G.2.1.8 Report the Result as  $y \pm U$  with the Unit of Measurement

263 At a minimum, state the coverage factor used to compute U and the estimated coverage 264 probability. Alternatively, report the result, y, and its combined standard uncertainty,  $u_c(y)$ , with 265 the unit of measurement.

266 The number of significant figures that should be reported for the result of a measurement 267 depends on the uncertainty of the result. A common convention, recommended by MARLAP, is 268 to round the uncertainty (standard uncertainty or expanded uncertainty) to two significant figures 269 and to report both the measured value and the uncertainty to the same number of decimal places. 270 Only final results should be rounded in this manner. Intermediate results in a series of 271 calculation steps should be carried through all steps with additional figures to prevent 272 unnecessary round-off errors. Additional figures are also recommended when the data are stored 273 electronically. Rounding should be performed only when the result is reported. 274 All results, whether positive, negative, or zero, should be reported as obtained, together with

275

A measured value y of a quantity Y that is known to be positive may be so far below zero that it

276

277 indicates a possible blunder, procedural failure, or other quality control problem. Usually, if

#### MARSAME

their uncertainties.

- 278  $y + 3u_c(y) < 0$ , the result may be invalid. For example, if y = -10 and  $u_c(y) = 1$ , this would imply
- 279 that *Y* is negative with high probability, which is known to be impossible. However, if y = -1
- and  $u_c(y) = 1$ , the expanded uncertainty covers positive values with reasonable probability. The
- 281 accuracy of the uncertainty estimate  $u_c(y)$  must be considered in evaluating such results,
- especially in cases where only few counts are observed during the measurement and counting
- uncertainty is the dominant component of  $u_c(y)$ . (See MARLAP Chapter 18 and Attachment
- 284 19D).

#### 285 G.2.2 Examples of Some Parameters that Contribute to Uncertainty

286 The sources of uncertainty described in the following sections, drawn from MARLAP Section

287 19.5, should be considered.

288 G.2.2.1 Instrument Background

289 Single-channel background measurements are usually assumed to follow the Poisson model, in which the uncertainty in the number of counts obtained, N, is given by  $\sqrt{N}$ . There may be 290 291 effects that increase the variance beyond what the model predicts. For example, cosmic radiation 292 and other natural sources of instrument background may vary between measurements, the 293 instrument may become contaminated, or the instrument may simply be unstable. Generally, the 294 variance of the observed background is somewhat greater than the Poisson counting variance, 295 although for certain types of instruments, the Poisson model may overestimate the background 296 variance (Currie et al., 1998). If the background does not closely follow the Poisson model, its 297 variance should be estimated by repeated measurements.

The "instrument background," or "instrument blank," is usually measured under the same conditions that will be encountered in the field. Ambient background sources should be minimized, and kept constant during the measurements of M&E. Periodic checks should be made to ensure that the instrument has not picked up additional radioactivity from the M&E during the measurements. If the background drifts or varies nonrandomly over time (i.e., is nonstationary), it is important to minimize the consequences of the drift by performing frequent background measurements. 305 If repeated measurements demonstrate that the background level is stable, then the average,  $\overline{x}$ , 306 the results of *n* similar measurements performed over a period of time may give the best estimate 307 of the background. In this case, if all measurements have the same duration, the experimental 308 standard deviation of the mean,  $s(\bar{x})$ , is also a good estimate of the measurement uncertainty. 309 Given the Poisson assumption, the best estimate of the uncertainty is still the Poisson estimate, 310 which equals the square root of the summed counts, divided by the number of measurements,  $\sqrt{n\overline{x}}_{n} = \sqrt{\overline{x}_{n}}$  but the experimental standard deviation may be used when the Poisson 311 assumption is invalid. It is always wise to compare the value of  $s(\bar{x})$  to the value of the Poisson 312 313 uncertainty when possible to identify any discrepancies.

314 G.2.2.2 Counting Efficiency

315 The counting efficiency for a measurement of radioactivity (usually defined as the detection 316 probability for a particle or photon of interest emitted by the source) may depend on many 317 factors, including source geometry, placement, composition, density, activity, radiation type and 318 energy and other instrument-specific factors. The estimated efficiency is sometimes calculated 319 explicitly as a function of such variables (in gamma-ray spectroscopy, for example). In other 320 cases a single measured value is used (e.g., alpha-particle spectrometry). If an efficiency 321 function is used, the uncertainties of the input estimates, including those for both calibration 322 parameters and sample-specific quantities, must be propagated to obtain the combined standard 323 uncertainty of the estimated efficiency. Calibration parameters tend to be correlated; so, 324 estimated covariances must also be included. If a single value is used instead of a function, the 325 standard uncertainty of the value is determined when the value is measured. An example of the 326 calculation of the uncertainty in counting efficiency is given in Example 2.

327 Example 2; A radiation counter is calibrated, taking steps to ensure that the geometry of the
328 source position, orientation of the source, pressure, temperature, relative humidity, and other
329 factors that could contribute to uncertainty are controlled, as described below:

330 The standard source is counted 15 times on the instrument for 300 s.

The radionuclide is long-lived; so, no decay corrections are needed. The uncertainties of thecount times are assumed to be negligible.

333 Within the range of linearity of the instrument, the mathematical model for the calibration is:

$$\varepsilon = \frac{1}{n} \sum_{i=1}^{n} \frac{(N_{S,i} / t_S) - (N_B / t_B)}{a_s}$$
(G-17)

335 Where:

334

336  $\varepsilon$  is the counting efficiency,

- 337 n is the number times the source is counted (15),
- 338  $N_{S,i}$  is the gross count observed during the *i*<sup>th</sup> measurement of the source,

339  $t_s$  is the source count time (300 s),

340  $N_{\rm B}$  is the observed background count (87),

341  $t_B$  is the background count time (6,000 s),

342  $a_s$  is the activity of the standard source (150.0 Bq). The standard uncertainty of the source,

2.0 Bq, was given by the certificate for the source.

344 The combined standard uncertainty of  $\varepsilon$  can be evaluated using Equation G-13. For the purpose 345 of uncertainty evaluation, it is convenient to rewrite the model as:

346 
$$\varepsilon = \frac{\overline{R}}{a_1}$$

347 Where:

343

$$\overline{R} = \frac{1}{n} \sum_{i=1}^{n} R_i$$
 and  $R_i = (N_{S,i} / t_S) - (N_B / t_B)$ ,  $i = 1, 2, ..., n$ 

The values  $R_i$  and their average,  $\overline{R}$ , are estimates of the count rate produced by the standard, while  $\overline{R}/a_{\rm S}$  is an estimate of the count rate produced by 1 Bq of activity. The standard uncertainty of  $\overline{R}$  can be evaluated experimentally from the 15 repeated measurements:  $u^2(\overline{R}) = s^2(\overline{R}) = \frac{1}{n(n-1)} \sum_{i=1}^n (R_i - \overline{R})^2$ . Since only one background measurement was made, the input estimates  $R_i$  are correlated with each other. The uncertainty of  $N_{\rm B}$ ,  $u(N_B) = \sqrt{87}$ , using a Type B evaluation based on an assumption of a Poisson distribution for the number of background counts. 356 The covariance between  $R_i$  and  $R_j$ , for  $i \neq j$ , may be estimated as

$$u(R_i, R_j) = \frac{\partial R_i}{\partial N_B} \frac{\partial R_j}{\partial N_B} u^2(N_B) = \frac{-1}{t_B} \frac{-1}{t_B} u^2(N_B) = \frac{u^2(N_B)}{t_B^2} = \frac{\sqrt{87}^2}{6000^2} \cong 2 \times 10^{-6}$$

However, the correlation is negligible here because the uncertainty of the background count,  $N_{\rm B}$ , is much smaller than the uncertainty of each source count,  $N_{\rm S,i}$ . So, the correlation of the input estimates  $R_i$  will be approximated as zero (i.e., treated as if they were uncorrelated), and the correlation terms dropped from Equation G-13. This means the evaluation used to calculate the combined standard uncertainty of  $\varepsilon$  can proceed using equation G-14:

363 
$$u_c^2(y) = \sum_{i=1}^N \left(\frac{\partial f}{\partial x_i}\right)^2 u^2(x_i), \text{ so since } \varepsilon = \frac{\overline{R}}{a_s}$$

364 
$$u_c^2(\varepsilon) = \left(\frac{\partial(\overline{R})}{\partial \overline{R}}\right)^2 u^2(\overline{R}) + \left(\frac{\partial(\overline{R})}{a_s}\right)^2 u^2(a_s) = \left(\frac{1}{a_s}\right)^2 u^2(\overline{R}) + \left(\frac{-\overline{R}}{a_s^2}\right)^2 u^2(a_s)$$

365 
$$= \left(\frac{u^2(\overline{R})}{a_s^2}\right) + \varepsilon^2 \left(\frac{u^2(a_s)}{a_s^2}\right).$$
 Therefore,  $u_c(\varepsilon) = \sqrt{\frac{u^2(\overline{R})}{a_s^2} + \varepsilon^2 \frac{u^2(a_s)}{a_s^2}}$ 

#### 366

357

## Assume the following data were obtained for the 15 separate counts of the calibration source.

| Count Number, <i>i</i> | Gross count, $N_{S,i}$ | $R_i$ (s <sup>-1</sup> ) |
|------------------------|------------------------|--------------------------|
| 1                      | 18,375                 | 61.236                   |
| 2                      | 18,644                 | 62.132                   |
| 3                      | 18,954                 | 63.166                   |
| 4                      | 19,249                 | 64.149                   |
| 5                      | 19,011                 | 63.356                   |
| 6                      | 18,936                 | 63.106                   |
| 7                      | 18,537                 | 61.776                   |
| 8                      | 18,733                 | 62.429                   |
| 9                      | 18,812                 | 62.692                   |
| 10                     | 18,546                 | 61.806                   |
|                        |                        |                          |

| 11                        | 18,810                                                   | 62.686  |
|---------------------------|----------------------------------------------------------|---------|
| 12                        | 19,273                                                   | 64.229  |
| 13                        | 18,893                                                   | 62.962  |
| 14                        | 18,803                                                   | 62.662  |
| 15                        | 18,280                                                   | 60.919  |
|                           | Average, $\overline{R}$ (s <sup>-1</sup> )               | 62.6202 |
| Experimental s            | tandard deviation, $s(R_i)$ (s <sup>-1</sup> )           | 0.9483  |
| Experimental standard dev | iation of the mean, $s(\overline{R})$ (s <sup>-1</sup> ) | 0.2449  |

367

368

Then the estimated counting efficiency is:

$$\varepsilon = \frac{\overline{R}}{a_s} = \frac{62.6202 \text{ s}^{-1}}{150.0 \text{ Bq}} = 0.4176$$

369 And the combined standard uncertainty of  $\varepsilon$  is given by

370 
$$u_{c}(\varepsilon) = \sqrt{\frac{(0.2449 \text{ s}^{-1})^{2}}{(150.0 \text{ Bq})^{2}} + 0.4176^{2} \times \frac{(2.0 \text{ Bq})^{2}}{(150.0 \text{ Bq})^{2}}} = 0.005802$$

371 Which may be rounded to 0.0058.

372 The true counting efficiency may vary because of variations in geometry, position and other 373 influence quantities not explicitly included in the model. These sources of uncertainty may not 374 be controlled as they were in the above example. If this is the case, the standard uncertainty of  $\varepsilon$ 375 should include not only the standard uncertainty of the estimated mean, as calculated in the 376 example, but also another component of uncertainty due to variations of the true efficiency 377 during subsequent measurements. The additional component may be written as  $\varepsilon \phi$ , where  $\phi$  is 378 the coefficient of variation (i.e., the standard deviation divided by the mean) of the true 379 efficiency. Then the total uncertainty of  $\varepsilon$  is obtained by squaring the original uncertainty estimate, adding  $\varepsilon^2 \phi^2$ , and taking the square root of the sum. 380

381 
$$u_c(\varepsilon) = \sqrt{\frac{u^2(\overline{R})}{a_s^2} + \varepsilon^2 \left(\frac{u^2(a_s)}{a_s^2} + \phi^2\right)}$$
(G-18)

MARSAME

December 2006

- 382 In the example above, the experimental variance of the count rates,  $R_i$ , may be used to
- estimate  $\phi$ . Section 18B.2 of Attachment 18B of MARLAP describes an approach for estimating
- 384 such "excess" variance in a series of measurements.

385 Variations in counting efficiency due to source placement should be reduced as much as possible

through the use of positioning devices that ensure a source with a given geometry is always

387 placed in the same location relative to the detector. If such devices are not used, variations in

388 source position may significantly increase the measurement uncertainty.

389 Calibrating an instrument under conditions different from the conditions under which M&E

390 sources are counted may lead to large uncertainties in the activity measurements. Source

391 geometry in particular tends to be an important factor for many types of radiation counters. If

- 392 correction factors are used, their uncertainties should be evaluated and propagated, as mentioned
- 393 in section G.2.1.1.
- 394 G.2.2.3 Digital Displays and Rounding

If a measuring device has a digital display with readability<sup>1</sup>  $\delta$ , the standard uncertainty of a measured value is at least  $\delta / 2\sqrt{3}$ , which is the variance of a random variable uniformly distributed over the interval  $(x - \delta/2, x + \delta/2)$ . Note that this is the same result as given by equation G-10 with  $a = \delta/2$ . This uncertainty component exists even if the instrument is completely stable.

400 A similar Type B method may be used to evaluate the standard uncertainty due to computer

401 round-off error. When a value x is rounded to the nearest multiple of  $10^n$ , where n is an integer,

- 402 the component of uncertainty generated by round-off error is  $10^n / (2\sqrt{3})$ . This component of
- 403 uncertainty should be kept small in comparison to the total uncertainty of *x* by performing

<sup>&</sup>lt;sup>1</sup> **Readability is the** smallest difference that can still be read on a display. For instruments with an analog indicating device, the readability is equal to the smallest fraction of a scale interval that can still be estimated with reasonable reliability or which can be determined by an auxiliary device. For instruments with a numeric indicator (digital display), the readability is equal to one digital step.

404 rounding properly and printing with an adequate number of figures. In a long calculation

405 involving mixed operations, carry as many digits as possible through the entire set of

406 calculations and then round the final result appropriately as described in MARLAP Section

407 19.3.7 (MARLAP 2004).

| 408 | <b>Example 3:</b> The readability of a digital survey doserate meter is 1 nGy/h. Therefore, the |
|-----|-------------------------------------------------------------------------------------------------|
| 409 | minimum standard uncertainty of a measured absorbed dose rate is $1/2\sqrt{3} = 0.29$ nGy/h.    |

410

411 **Example 4:** Suppose the results for  $R_i$  in Example 2 had been rounded to the nearest whole 412 number before the analysis. Then the average would be computed as 62.6 instead of 62.6202 413 and the standard deviation would be computed as 0.9103 instead of 0.9483. This demonstrates 414 the effect that rounding intermediate results can have on subsequent calculations. If this 415 rounding to the nearest positive integer had already occurred prior to receiving the data, and the 416 original data were no longer available, a correction for it could be made when estimating the 417 combined standard uncertainty of  $R_i$ . The component of uncertainty generated by round-off error is  $1/(2\sqrt{3})$ : 418

419

$$u(R_i) = \sqrt{0.9103^2 + \left(\frac{1}{2\sqrt{3}}\right)^2} = 0.9549.$$

### 420 G.2.3 Example Uncertainty Calculation

To illustrate how the uncertainty calculations are performed in practice, the following example is
given based on that of Lewis et al. (Lewis 2005). The calculation will be that of the combined
standard uncertainty in the calibration of a surface contamination monitor.

424 G.2.3.1 Model Equation and Sensitivity Coefficients

425 Surface contamination monitors are calibrated in terms of their response to known rates of

426 radioactive emissions. In practice this is achieved by using large-area, planar sources that have a

- 427 defined area and whose emission rates have been determined in a traceable manner. The
- 428 calibration is usually determined in terms of response per emission rate per unit area. In this

- 429 example, the source is positioned with its active face parallel to and at a distance of 3 mm from
- 430 the face of the detector. The monitor detector area  $(50 \text{ cm}^2)$  is smaller than the area of the
- 431 calibration source, which is a 10 cm  $\times$  10 cm layer of <sup>14</sup>C on a thick aluminum substrate. The
- 432 monitor has an analog display and has a means to set the detector voltage.
- 433 The efficiency,  $\varepsilon$ , is defined by:

434 
$$\varepsilon = \frac{(M-B) \times f_V \times f_d \times f_u \times f_{bs}}{\begin{pmatrix} E/A \end{pmatrix}}$$
(G-19)

435 Where:

- 436 M observed monitor reading, s<sup>-1</sup>
- 437 B background reading, s<sup>-1</sup>
- 438 E emission rate of the calibration source, s<sup>-1</sup>
- 439 A area of the active portion of the calibration source,  $cm^2$
- 440  $f_{\rm V}$  plateau voltage factor,
- 441  $f_d$  source-detector separation factor,
- 442  $f_u$  source uniformity factor,
- 443  $f_{bs}$  backscatter factor.

444 The sensitivity coefficients of Equation G-19 are given by:

445 
$$\frac{\partial \varepsilon}{\partial M} = (A/E) \times f_V \times f_d \times f_u \times f_{bs} = \frac{\varepsilon}{(M-B)}$$
(G-20)

446 
$$\frac{\partial \varepsilon}{\partial B} = -(A/E) \times f_V \times f_d \times f_u \times f_{bs} = \frac{-\varepsilon}{(M-B)}$$
(G-21)

447 
$$\frac{\partial \varepsilon}{\partial E} = -(M - B)(A/E^2) \times f_V \times f_d \times f_u \times f_{bs} = \frac{-\varepsilon}{E}$$
(G-22)

448 
$$\frac{\partial \varepsilon}{\partial A} = (M - B)(1/E) \times f_V \times f_d \times f_u \times f_{bs} = \frac{\varepsilon}{A}$$
(G-23)

MARSAME

December 2006

449 
$$\frac{\partial \varepsilon}{\partial f_V} = (M - B)(A/E) \times f_d \times f_u \times f_{bs} = \frac{\varepsilon}{f_V}$$
(G-24)

450 
$$\frac{\partial \varepsilon}{\partial f_d} = (M - B)(A/E) \times f_V \times f_u \times f_{bs} = \frac{\varepsilon}{f_d}$$
(G-25)

451 
$$\frac{\partial \varepsilon}{\partial f_u} = (M - B)(A/E) \times f_V \times f_d \times f_{bs} = \frac{\varepsilon}{f_u}$$
(G-26)

452 
$$\frac{\partial \varepsilon}{\partial f_{bs}} = (M - B)(A/E) \times f_V \times f_d \times f_u = \frac{\varepsilon}{f_{bs}}$$
(G-27)

453 Under normal conditions, the factors  $f_V$ ,  $f_d$ ,  $f_u$  and  $f_{bs}$  are each assumed to have a value of one. If 454 the uncertainties are to be calculated in relative terms, the uncertainty equation becomes (see 455 Equation G-16):

$$456 \qquad \left(\frac{\sigma_c}{\varepsilon}\right)^2 = \left(\frac{M}{M-B}\right)^2 \left(\frac{\sigma_M}{M}\right)^2 + \left(\frac{B}{M-B}\right)^2 \left(\frac{\sigma_B}{B}\right)^2 + \left(\frac{\sigma_E}{E}\right)^2 + \left(\frac{\sigma_A}{A}\right)^2 + \left(\frac{\sigma_{f_v}}{f_v}\right)^2 + \left(\frac{\sigma_{f_u}}{f_d}\right)^2 + \left(\frac{\sigma_{f_u}}{f_u}\right)^2 + \left(\frac{\sigma_{f_w}}{f_{w}}\right)^2 + \left(\frac{\sigma_{f_w}}{f_{w}}\right)^2$$

457 If the relative uncertainties are all expressed as percentages,  $\left(\frac{\sigma_{x_i}}{x_i}\right)$ , where  $x_i$  is an input quantity,

458 then the combined standard uncertainty will be a percentage. The relative sensitivity

459 coefficients,  $c_{i}$ , are the terms multiplying each relative uncertainty term  $\left(\frac{\sigma_{x_i}}{x_i}\right)$  in Equation G-28.

- 460 This approach produces relative sensitivity coefficients of unity for the last 6 terms.
- 461 G.2.3.2 Uncertainty Components

### 462 <u>Monitor reading of source, *M* (Type A)</u>

463 Several techniques can be used to determine the mean observed monitor reading, *M*, and its

- 464 uncertainty. Assume a snap-shot technique is used whereby six successive, but randomly timed,
- 465 readings are recorded, giving 350, 400, 400, 325, 350,  $350 \text{ s}^{-1}$ . The mean and standard deviation
- 466 of the mean becomes  $362.5 \pm 12.5 \text{ s}^{-1}$ . This equates to a percentage uncertainty in *M* of 3.45%

467 and the relative sensitivity coefficient from Equation G-28, 
$$\frac{M}{(M-B)}$$
, is 362.5/(362.5 – 32.5),

468 which is equal to 1.10. The distribution is assumed to be normal.

- 469 <u>Monitor reading of background, *B* (Type B)</u>
- 470 In this case, an eye-averaging technique was used whereby the highest and lowest count rates
- 471 were recorded over a given period of time. These count rates were 40 and 25 s<sup>-1</sup> respectively,
- 472 giving a mean value of  $32.5 \text{ s}^{-1}$ . This value is assumed to have a rectangular distribution with a
- 473 half-width of 7.5 s<sup>-1</sup>, and an uncertainty of  $7.5/\sqrt{3} = 4.330$ , equating to a percentage uncertainty
- 474 of 4.330/32.5 = 0.1332 or 13%. The relative sensitivity coefficient from Equation G-28,
- 475  $\frac{B}{(M-B)}$ , is 32.5/(362.5 32.5), which gives a value of 0.098.
- 476 Emission rate of calibration source, *E* (Type B)

The emission rate of the source and its uncertainty were provided on the calibration certificate bythe laboratory that calibrated the source using a windowless proportional counter. The statement

479 on the certificate was:

480 "The measured value of the emission rate is  $E = 2,732 \pm 13 \text{ s}^{-1}$ 

481 The reported uncertainty is based on a standard uncertainty multiplied by a coverage factor of

- 482 k = 2, which provides a level of confidence of approximately 95%. The standard uncertainty on
- 483 *E* is therefore  $13/2 = 6.5 \text{ s}^{-1}$  or 0.24%. Unless the certificate provides information to the
- 484 contrary, it is assumed that the uncertainty has a normal distribution.
- 485 <u>Source area, A (Type B)</u>
- 486 In the absence of an uncertainty statement by the manufacturer, the only information available is
- 487 the product drawing that shows the active area dimensions to be  $10 \text{ cm} \times 10 \text{ cm}$ . On the
- 488 assumption that the outer bounds of the length, *L*, and the width, *W*, are 9.9 and 10.1 cm, the
- 489 uncertainty of the linear dimensions may be taken to be a rectangular distribution with a half-
- 490 width of 0.1 cm.
- 491  $L = 10 \text{ and } u(L) = 0.1/\sqrt{3} = 0.0577$ .  $W = 10 \text{ and } u(W) = 0.1/\sqrt{3} = 0.0577$ . Since A = LW, we
- 492 get  $u^{2}(A) = u^{2}(LW) = L^{2}u^{2}(W) + W^{2}u^{2}(L) = 2(10)^{2}(0.0577)^{2} = 0.665858$ , therefore
- 493  $u(A) = 0.816 \,\mathrm{cm}^2 \,\mathrm{or} \, 0.816\%.$

### 494 <u>Plateau voltage factor, $f_V$ (Type B)</u>

495 This applies only to those instruments where voltage adjustments are possible. If the setting is 496 not checked and/or adjusted between calibrations, then this has no effect. Changing the plateau 497 voltage without performing a recalibration is not recommended. If, however, the user is allowed 498 to do this, the setting may not be returned to exactly that used during the calibration. In this 499 particular example, the slope of the response curve in this region is taken to be 10% / 50 v. It is 500 assumed that an operator is more likely to set the voltage nearer to the optimum than the 501 extremes and that  $\pm$  50 v represents the range at the 100% confidence level. Accordingly, a 502 triangular distribution is assumed with a half-width of 50 v, equating to an uncertainty for the voltage of  $50/\sqrt{6} = 20.4124$  and an uncertainty for the voltage factor of 20.4124(10%)/50 =503 504 4.0825%.

### 505 Source-detector separation factor, $f_d$ (Type B)

This effect arises from the uncertainty in mounting the calibration source exactly 3 mm from the detector face. Experimental evidence has shown that, for the particular <sup>14</sup>C source at 3 mm source-detector separation, the change in response was 2.6% / mm. It is assumed that the deviation from the nominal 3 mm separation is no greater than 1 mm but that all values are equally probable between 2 and 4 mm, a rectangular distribution. The uncertainty in the separation is thus  $1/\sqrt{3} = 0.5774$ . The uncertainty of the separation factor is thus 0.5774 mm × 2.6% / mm, equal to 1.5011%.

#### 513 Non-uniformity of calibration source, $f_{\mu}$ (Type B)

Large area sources may have a non-uniform activity distribution across their surfaces. For the <sup>14</sup>C source, the uniformity is assumed to be better than  $\pm 10\%$ . This is based on comparing 10 cm<sup>2</sup> sections of the source. For a typical monitor with a detector area of 50 cm<sup>2</sup> and a calibration source area of 100 cm<sup>2</sup>, a worst-case condition could be that the area under the detector has an activity per unit area that is 10% greater than the mean value for the whole source. (The outer area correspondingly will be 10% less than mean value.) Assuming a rectangular distribution, this represents an uncertainty of  $10/\sqrt{3} = 5.774\%$  for the source non-uniformity factor.

### 521 <u>Backscatter factor, *f*<sub>bs</sub> (Type B)</u>

- 522 Variations in backscatter effects arise from factors such as the nature of the surface on which the
- 523 calibration source is resting and the proximity to scattering surfaces such as walls. This effect
- 524 can be quite marked for photon emitters, but for  ${}^{14}$ C on aluminum substrates the effect is
- 525 negligible.
- 526 G.2.3.3 Uncertainty Budget
- 527 An important part of the uncertainty analysis is to determine which factors are contributing the
- 528 most to the overall uncertainty.
- 529

### Table G.3: Uncertainty Budget for the Efficiency Example

| Source of uncertainty                                              | Туре | Probability distribution                   | Relative<br>Sensitivity<br>Coeffient,c <sub>i</sub> | $u_i(x_i)$<br>(%) | $u_i(y) = c_i u_i(x_i)$ (%) | $(u_i(y))^2$    | $(u_i(y))^2/Total$ |
|--------------------------------------------------------------------|------|--------------------------------------------|-----------------------------------------------------|-------------------|-----------------------------|-----------------|--------------------|
| Standard deviation of mean of <i>M</i>                             | А    | Normal                                     | 1.10                                                | 3.45              | 3.80                        | 14.44           | 0.21               |
| Standard deviation of mean of <i>B</i>                             | В    | Rectangular                                | 0.098                                               | 13.32             | 1.31                        | 1.72            | 0.02               |
| Standard uncertainty of calibration source emission rate, <i>E</i> | В    | Normal                                     | 1.0                                                 | 0.24              | 0.24                        | 0.06            | 0.00               |
| Half -width of source<br>length, L and width W<br>on the area A    | В    | Product of 2<br>independent<br>rectangular | 1.0                                                 | 0.816             | 0.816                       | 0.666           | 0.01               |
| Half -width of voltage factor, $f_V$                               | В    | Triangular                                 | 1.0                                                 | 4.08              | 4.08                        | 16.65           | 0.24               |
| Half -width of source-<br>detector separation factor, $f_d$        | В    | Rectangular                                | 1.0                                                 | 1.50              | 1.50                        | 2.25            | 0.03               |
| Half-width of calibration source non-uniformity factor, $f_u$      | В    | Rectangular                                | 1.0                                                 | 5.77              | 5.77                        | 33.29           | 0.48               |
| Uncertainty of backscatter factor, $f_{bs}$                        | В    | n.a.                                       | 1.0                                                 | 0.0               | 0.0                         | 0.00            | 0.00               |
| Combined standard<br>uncertainty                                   |      | Normal                                     |                                                     |                   | 8.31<br>=<br>$\sqrt{69.07}$ | Total=<br>69.07 | 0.99               |
| Expanded uncertainty ( <i>k</i> =2)                                |      | Normal                                     |                                                     |                   | 2·8.31=<br>16.6             |                 |                    |

- 530 The relative sensitivity coefficients,  $c_i$ , are the terms multiplying each relative uncertainty term 531  $\left(\frac{\sigma_{x_i}}{x_i}\right)$  in Equation G-28. To do this, each component of uncertainty  $u_i(y)=c_i u_i(x_i)$  is squared to
- 532 give its component of variance  $(u_i(y))^2$ . These are totaled to get the total variance, in this case
- 533 69.07. Finally, the ratio of each component of variance to the total is computed.
- 534 Examining the last column of the uncertainty budget table (Table G.3) shows that the major
- source of uncertainty is due to source non-uniformity (48%) followed by the voltage factor
- 536 (24%) and the reading of the source (21%). Thus, to decrease the overall uncertainty, attention
- 537 should be paid to those factors first.
- 538 G.2.3.4 Reported Result
- 539 Using the formula above, the calibration factor in terms of emission rate becomes:

540 
$$\varepsilon = \frac{(M-B) \times f_V \times f_d \times f_u \times f_{bs}}{\binom{E}{A}} = \frac{(362.5 - 32.5) \times 1 \times 1 \times 1 \times 1}{\binom{2732}{100}} = 12.1 \,(\text{counts} \times \text{s}^{-1})/(\text{s}^{-1} \times \text{cm}^{-2})$$

- 541 The combined standard uncertainty is (12.1)(.0831) = 1.0056. The reported expanded
- 542 uncertainty will be 2.0, based on a standard uncertainty of 1.0 multiplied by a coverage factor of
- 543 k = 2, which provides a level of confidence of approximately 95%.

### 544 G.3 Calculation of the Minimum Detectable Concentration

545

### Table G.4 Notation for Section G.3

| Symbol                          | Definition                                                                                                                                                      | Formula or reference                                                                                                                                                                                                                     | Туре                                                                                                                                |
|---------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------|
| ε                               | efficiency                                                                                                                                                      |                                                                                                                                                                                                                                          |                                                                                                                                     |
| F                               | calibration function                                                                                                                                            | X = F(Y)                                                                                                                                                                                                                                 |                                                                                                                                     |
| $F^{-1}$                        | evaluation function                                                                                                                                             | $Y = F^{-1}(X)$ , closely related to the<br>mathematical model<br>$Y = f(X_1, X_2,, X_N)$                                                                                                                                                |                                                                                                                                     |
| <i>S</i> <sub>C</sub> .         | Critical net signal                                                                                                                                             | Net signal is calculated from the gross<br>signal by subtracting the estimated blank<br>value and any interferences                                                                                                                      |                                                                                                                                     |
| S <sub>D</sub>                  | Mean value of the net signal<br>that gives a specified<br>probability, $1-\beta$ , of yielding an<br>observed signal greater than its<br>critical value $S_C$ . |                                                                                                                                                                                                                                          |                                                                                                                                     |
| X                               | observable response<br>variable, measureable signal                                                                                                             |                                                                                                                                                                                                                                          |                                                                                                                                     |
| <i>x</i> <sub>C</sub> .         | The critical value of the response variable                                                                                                                     | Calculation of $y_C$ requires the choice of a significance level for the test. The significance level is a specified upper bound for the probability, $\alpha$ , of a Type I error. The significance level is usually chosen to be 0.05. | If a measured value<br>exceeds the critical<br>value, a decision is<br>made that radiation or<br>radioactivity has been<br>detected |
| Y                               | state variable, measurand                                                                                                                                       |                                                                                                                                                                                                                                          |                                                                                                                                     |
| Ус                              | Critical value of the concentration                                                                                                                             | $y_C = F^{-1}(x_C).$                                                                                                                                                                                                                     |                                                                                                                                     |
| $y_D = \frac{S_D}{\varepsilon}$ | Minimum detectable concentration (MDC)                                                                                                                          | $y_D = \frac{S_D}{\varepsilon}$                                                                                                                                                                                                          |                                                                                                                                     |

### 546 G.3.1 Critical Value

547 In the terminology of ISO 11843-1 (1997), the measured concentration is the state variable,

548 denoted by *Y*, which represents the state of the material being analyzed. The state variable

549 usually cannot be observed directly, but it is related to an observable response variable, denoted

- 550 by *X*, through a calibration function *F*, the mathematical relationship being written as X = F(Y).
- 551 The response variable X is most often an instrument signal, such as the number of counts
- 552 observed. The inverse,  $Y = F^{-1}(X)$  of the calibration function is sometimes called the
- 553 evaluation function. The evaluation function, which gives the value of the net concentration in
- terms of the response variable, is closely related to the mathematical model
- 555  $Y = f(X_1, X_2, \dots, X_N)$  described in Section G.2.1.1.

556 In a Scenario B detection decision, either the null or alternative hypothesis is chosen on the basis

- 557 of the observed value of the response variable, *X*. The value of *X* must exceed a certain threshold
- value to justify rejection of the null hypothesis and acceptance of the alternative hypothesis.
- 559 This threshold is called the critical value of the response variable and is denoted by  $x_c$ .

560 The calculation of  $x_c$  requires the choice of a significance level for the test. The significance

level is a specified upper bound for the probability,  $\alpha$ , of a Type I error. The significance level is

- usually chosen to be 0.05. This means that when there is no radiation or radioactivity present
  (above background), there should be at most a 5% probability of incorrectly deciding that it is
  present.
- 565 The critical value of the concentration,  $y_c$ , is defined as the value obtained by applying the
- 566 evaluation function,  $F^{-1}$ , to the critical value of the response variable,  $x_c$ . Thus,  $y_c = F^{-1}(x_c)$ .

567 When x is the gross instrument signal, this formula typically involves subtraction of the

568 background signal and division by the counting efficiency, and possibly other factors.

569 A detection decision can be made by comparing the observed gross instrument signal to its

570 critical value,  $x_c$ , as indicated above. However, it has become standard practice to make the

571 decision by comparing the net instrument signal to its critical value,  $S_c$ . The net signal is

572 calculated from the gross signal by subtracting the estimated blank value and any interferences.<sup>2</sup>

573 The critical net signal,  $S_{\rm C}$ , is calculated from the critical gross signal,  $x_{\rm C}$ , by subtracting the same

574 correction terms; so, in principle, either approach should lead to the same detection decision.

575 Since the term "critical value" alone is ambiguous, one should specify the variable to which the

576 term refers. For example, one may discuss the critical (value of the) radionuclide concentration,

577 the critical (value of the) net signal, or the critical (value of the) gross signal. In this document,

- 578 the signal is usually a count, and the critical value generally refers to the net count.
- 579 The response variable is typically an instrument signal, whose mean value generally is positive
- 580 even when there is radioactivity present (i.e., above background). The gross signal must be

 $<sup>^{2}</sup>$  Interference is the presence of other radiation or radioactivity that hinder the ability to analyze for the radiation or radioactivity of interest.

corrected by subtracting an estimate of the signal produced under those conditions. See SectionG.2.2.1 (Instrument Background).

#### 583 G.3.2 Minimum Detectable Concentration

584 The minimum detectable concentration (MDC) is the minimum concentration of radiation or 585 radioactivity that must be present in a sample to give a specified power,  $1 - \beta$ . It may also be 586 defined as:

- 587 588
- The minimum radiation or radioactivity concentration that must be present to give a specified probability,  $1 \beta$ , of detecting the radiation or radioactivity; or
- The minimum radiation or radioactivity concentration that must be present to give a specified probability, 1 β, of measuring a response greater than the critical value, leading one to conclude correctly that there is radiation or radioactivity present.

592 The *power* of any hypothesis test is defined as the probability that the test will reject the null 593 hypothesis when it is false, i.e., the correct decision. Therefore, if the probability of a Type II 594 error is denoted by  $\beta$ , the power is  $1 - \beta$ . In the context of radiation or radioactivity detection, 595 the power of the test is the probability of correctly detecting the radiation or radioactivity 596 (concluding that the radiation or radioactivity is present), which happens whenever the response 597 variable exceeds its critical value. The power depends on the concentration of the radiation or 598 radioactivity and other conditions of measurement; so, one often speaks of the "power function" 599 or "power curve." Note that the power of a test for radiation or radioactivity detection generally 600 is an increasing function of the radiation or radioactivity concentration – i.e., the greater the 601 radiation or radioactivity concentration the higher the probability of detecting it.

In the context of MDC calculations, the value of  $\beta$  that appears in the definition, like  $\alpha$ , is usually chosen to be 0.05 or is assumed to be 0.05 by default if no value is specified. The minimum detectable concentration is denoted in mathematical expressions by  $y_D$ . The MDC is usually obtained from the minimum detectable value of the net instrument signal,  $S_D$ .  $S_D$ , is defined as the mean value of the net signal that gives a specified probability,  $1 - \beta$ , of yielding an observed signal greater than its critical value  $S_C$ . The relationship between the critical net signal,  $S_C$ , and the minimum detectable net signal,  $S_D$ , is shown in Figure 5.2 in Section 5.7.2.

- The term MDC must be carefully and precisely defined to prevent confusion. The MDC is by
- 610 definition an estimate of the true concentration of the radiation or radioactivity required to give a
- 611 specified high probability that the measured response will be greater than the critical value.
- 612 The common practice of comparing a measured concentration to the MDC, instead of to the  $S_C$ ,
- 613 to make a detection decision is incorrect. If this procedure were used, then there would be only a
- a 50% chance of deciding that radioactivity was present when the concentration was actually at
- 615 the MDC. This is in direct contradiction to the definition of MDC. See MARLAP Appendix B,
- 616 Attachment B1 for a further discussion of this issue.
- 617 Since the MDC is calculated from measured values of input quantities such as the counting
- 618 efficiency and background level, the MDC estimate has a combined standard uncertainty, which
- 619 in principle can be obtained by uncertainty propagation. To avoid confusion, it may be useful to
- 620 remember that a detection decision is usually made by comparing the instrument response to the
- 621 critical value, and that the critical value generally does not even have the units of radiation or622 radioactivity concentration.
- 623 G.3.3 Calculation of the Critical Value
- 624 If the net signal is a count, then in many circumstances the uncertainty in the count can be
- estimated by a Type B evaluation using the fact that for a Poisson distribution with mean  $N_B$ , the
- 626 variance is also  $N_B$ . Thus the uncertainty in the background count is estimated as  $\sqrt{N_B}$ .
- 627 Hence, the critical value is often an expression involving  $\sqrt{N_B}$ .
- 628 The most commonly used approach for calculating the critical net signal,  $S_C$  is given by the 629 following equation.<sup>3</sup>

<sup>&</sup>lt;sup>3</sup> This expression for the critical net count depends for its validity on the assumption of Poisson counting statistics. If the variance of the blank signal is affected by interferences, or background instability, then Equation 20.7 of MARLAP may be more appropriate.

Establishing MQOs for Measurement Uncertainty, MDCs and MQCs

630 
$$S_C = z_{1-\alpha} \sqrt{N_B \frac{t_S}{t_B} \left(1 + \frac{t_S}{t_B}\right)}$$
(G-29)

631 Where:

632  $N_B$  is the background count,

- 633  $t_S$  is the count time for the sample,
- $634 t_B is the count time for the background, and$
- 635  $z_{1-\alpha}$  is the  $(1 \alpha)$ -quantile of the standard normal distribution.

636 **Example 5:** A 6,000-second background measurement is performed on a proportional counter 637 and 108 beta counts are observed. A sample is to be counted for 3,000 s. Estimate the critical 638 value of the net count when  $\alpha = 0.05$ .

639 
$$S_C = z_{1-\alpha} \sqrt{N_B \frac{t_S}{t_B} \left(1 + \frac{t_S}{t_B}\right)}$$

640

$$S_C = 1.645 \sqrt{108 \times \left(\frac{3,000 \text{ s}}{6,000 \text{ s}}\right) \left(1 + \frac{3,000 \text{ s}}{6,000 \text{ s}}\right)} = 14.8 \text{ net counts}$$

641 If  $\alpha = 0.05$  and  $t_B = t_S$ , equation G-29 leads to the well-known expression  $2.33\sqrt{N_B}$  for the 642 critical net count (Currie, 1968).

643 When the background count is high (e.g., 100 or more) Equation G-29 works well, but at lower

background levels it can produce a high rate of Type I errors. Since this is a Scenario B

645 hypothesis test, this means that too often a decision will be made that there is radiation or

- 646 radioactivity present when it actually is not.
- 647 When the mean background counts are low and  $t_B \neq t_S$ , another approximation formula for  $S_C$
- 648 appears to out-perform all of the other approximations reviewed in MARLAP, namely the

649 Stapleton Approximation:

650 
$$S_{C} = d \times \left(\frac{t_{S}}{t_{B}} - 1\right) + \frac{z_{1-\alpha}^{2}}{4} \times \left(1 + \frac{t_{S}}{t_{B}}\right) + z_{1-\alpha} \sqrt{\left(N_{B} + d\right) \frac{t_{S}}{t_{B}} \left(1 + \frac{t_{S}}{t_{B}}\right)}$$
(G-30)

651 When  $\alpha = 0.05$ , setting the parameter d = 0.4 yields the best results. When, in addition,  $t_B = t_S$ , 652 the Stapleton approximation gives the equation

$$S_C = 1.35 + 2.33\sqrt{N_B + 0.4} \tag{G-31}$$

#### 654 G.3.4 Calculation of the Minimum Detectable Value of the Net Instrument Signal

655 The traditional method for calculating the MDC involves two steps: first calculating the

656 minimum detectable value of the net instrument signal and then converting the result to a

657 concentration using the mathematical measurement model.

658 The minimum detectable value of the net instrument signal, denoted by  $S_D$ , is defined as the

- 659 mean value of the net signal that gives a specified probability,  $1 \beta$ , of yielding an observed 660 signal greater than its critical value  $S_C$ .

# 661 The MDC may be estimated by calculating the minimum detectable value of the net instrument 662 signal, $S_D$ , and converting the result to a concentration.

663 Counting data rarely, if ever, follow the Poisson model exactly, but the model can be used to 664 calculate  $S_D$  if the variance of the background signal is approximately Poisson and a conservative 665 value of the efficiency constant,  $\varepsilon$ , is used to convert  $S_D$  to  $y_D$ . The equation below shows how to 666 calculate  $S_D$  using the Poisson model.

$$S_{D} = S_{C} + \frac{z_{1-\beta}^{2}}{2} + z_{1-\beta} \sqrt{\frac{z_{1-\beta}^{2}}{4}} + S_{C} + R_{B} t_{S} \left(1 + \frac{t_{S}}{t_{B}}\right)$$
(G-33)

667

668 Where:

 $S_C$  is the critical value,

670 
$$R_B$$
 is the mean count rate of the blank,  $R_B = \frac{N_B}{t_B}$ ,

 $N_B$  is the background count,

- $t_S$  is the count time for the test source,
- $t_B$  is the count time for the background, and
- 674  $z_{1-\beta}$  is the  $(1 \beta)$ -quantile of the standard normal distribution.

675 When Equation G-29 is appropriate for the critical net count, and  $\alpha = \beta$ , this expression for  $S_D$ 

676 simplifies to  $z_{1-\beta}^2 + 2S_c$ . If in addition,  $\alpha = \beta = 0.05$  and  $t_B = t_S$  then

677 
$$S_D = 2.71 + 2S_C = 2.71 + 2(2.33\sqrt{N_B}) = 2.71 + 4.66\sqrt{N_B}$$

678 **Example 6** A 6,000-second background measurement on a proportional counter produces 108 679 beta counts and a source is to be counted for 3,000 s. Assume the background measurement 680 gives the available estimate of the true mean background count rate,  $R_B$  and use the value 0.05 681 for Type I and Type II error probabilities. From Section,G.3.3 Example 5, the critical net count, 682  $S_C$ , equals 14.8, so  $S_D = z_{1-\beta}^2 + 2S_C = 1.645^2 + 2 (14.8) = 32.3$  net counts.

683 When the Stapleton approximation (Equation G-30) is used for  $S_C$ , the minimum detectable net 684 count  $S_D$  may be calculated using the equation G-33, but when the Poisson model is assumed, a 685 better estimate is given by the equation:

$$S_{D} = \frac{(z_{1-\alpha} + z_{1-\beta})^{2}}{4} \left(1 + \frac{t_{S}}{t_{B}}\right) + (z_{1-\alpha} + z_{1-\beta}) \sqrt{R_{B}t_{S}\left(1 + \frac{t_{S}}{t_{B}}\right)}$$
G-34)

This equation is the same as that recommended by ISO 11929-1 (ISO 2000) in a slightlydifferent form.

689 When  $\alpha = \beta = 0.05$  and  $t_B = t_S$ , the preceding equation becomes:

$$S_D = 5.41 + 4.65\sqrt{R_B t_S}$$
 (G-35)

691 Consult MARLAP Chapter 20 for a discussion of the calculation of  $S_D$  and  $y_D$  when both Poisson 692 counting statistics and other sources of variance are considered.

686

### 693 G.3.5 Calculation of the Minimum Detectable Concentration

694 The MDC is often used to compare different measurement procedures against specified 695 requirements. The calculation of the nominal MDC is complicated by the fact that some input 696 quantities in the mathematical model, such as interferences, counting efficiency, and instrument 697 background may vary significantly from measurement to measurement. Because of these 698 variable quantities, determining the value of the radiation or radioactivity concentration that 699 corresponds to the minimum detectable value of the net instrument signal,  $S_D$ , may be difficult in 700 practice. One common approach to this problem is to make conservative choices for the values 701 of the variable quantities, which tend to increase the value of the MDC.

The mean net signal, *S*, is usually directly proportional to *Y*, the true radiation or radioactivity concentration present. Hence, there is a efficiency constant,  $\varepsilon$ , such that  $S = \varepsilon Y$ . The constant  $\varepsilon$ is typically the mean value of the product of factors such as the source count time, decaycorrection factor, and counting efficiency. Therefore, the value of the minimum detectable concentration,  $y_D$ , is

$$y_D = \frac{S_D}{\varepsilon}$$
(G-36)

The preceding equation is only true if all sources of variability are accounted for when determining the distribution of the net signal,  $\hat{S}$ . Note that ensuring the MDC is not underestimated also requires that the value of  $\varepsilon$  not be overestimated.

711 Using any of the equations in Section G.3.4 to calculate  $S_D$  is only appropriate if a conservative 712 value of the efficiency constant,  $\varepsilon$ , is used when converting  $S_D$  to the MDC.

713Example 7: Consider a scenario where 
$$t_{\rm B} = 6,000 \, {\rm s}, t_{\rm S} = 3,000 \, {\rm s}, {\rm and } R_{\rm B} \approx 0.018 \, {\rm s}^{-1}$$
. Let the714measurement model be  $Y = \frac{N_s - (N_B t_s / t_B)}{t_s \varepsilon}$ 715Where:716Y is the activity of the radionuclide in the sample and717 $\varepsilon$  is the counting efficiency (counts per second)/(Bq/cm<sup>2</sup>)

718 Assume the source count time,  $t_S$ , has negligible variability, the counting efficiency has mean 719 0.42 and a 10% relative combined standard uncertainty, and from Example 6,  $S_D = 32.3$  net 720 counts.

721 The mean minimum detectable concentration is  $y_D = \frac{S_D}{t_s \varepsilon} = \frac{32.3}{(3000)(0.42)} = 0.0256 \text{ Bq/cm}^2.$ 

Adjusting for the 10% variability in the counting efficiency, the uncertainty is  $(0.10) \times (0.42) =$ 0.042. Assuming that the efficiency is normally distributed, the lower 5<sup>th</sup> percentile for  $\varepsilon$  is (0.42) - (1.645)(0.042) = 0.35, where -1.645 is the 5<sup>th</sup> percentile of a standard normal distribution.. Therefore a conservative estimate of the efficiency constant is  $\varepsilon = 0.35$  and a conservative estimate of the minimum detectable concentration is:

727 
$$y_D = \frac{S_D}{t_s \varepsilon} = \frac{32.3}{(3000)(0.35)} = 0.0308 \text{ Bq/cm}^2.$$

An alternative procedure could be to recognize that because of the uncertainties in the input estimates entered into the measurement model to convert from  $S_D$  to *Y*, that the MDC is actually a random variable. Then the methods for propagation of uncertainty given in Section G.2 can be applied. Using the same assumptions as above we would find that  $y_D = 0.0256 \pm 0.0051$  with 95% confidence based on a coverage factor of 2. Therefore the 95% upper confidence level for  $y_D$  would be 0.0307 Bq.

- 734 More conservative (higher) estimates of the MDC may be obtained by following NRC
- recommendations (NRC 1984), in which formulas for the MDC include estimated bounds for
- relative systematic error in the background determination ( $\Phi_B$ ) and the sensitivity ( $\Phi_A$ ). The
- 737 critical net count  $S_{\rm C}$  is increased by  $\Phi_B N_B \frac{t_s}{t_B}$ , and the minimum detectable net count  $S_{\rm D}$  is
- increased by  $2 \Phi_B N_B \frac{t_s}{t_B}$ . Next, the MDC is calculated by dividing  $S_D$  by the efficiency and
- multiplying the result by  $1+4_A$ . The conservative approach presented in NRC 1984 treats
- random errors and systematic errors differently to ensure that the MDC for a measurement
- 741 process is unlikely to be consistently underestimated, which is an important consideration if it is
- required by regulation or contract to achieve a specified MDC.

## 743 G.4 Calculation of the Minimum Quantifiable Concentration

### Table G.5 Notation for Section G.4

| Symbol                  | Definition                                                                      | Formula or reference                                                                                                                                            | Туре                         |
|-------------------------|---------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------|
| k <sub>Q</sub>          | Multiple of the standard deviation defining $y_{Q_i}$ usually chosen to be 10.  | $k_{\varrho} = \frac{\sqrt{\sigma^2(y \mid Y = y_{\varrho})}}{y_{\varrho}}$                                                                                     | Chosen during<br>DQO process |
| $\sigma^2(y   Y = y_Q)$ | The variance of the estimator y given the true concentration $Y$ equals $y_Q$ . |                                                                                                                                                                 | Theoretical                  |
| <i>Y</i> <sub>Q</sub>   | Minimum quantifiable<br>concentration (MQC)                                     | The concentration at which the measurement process gives results with a specified relative standard deviation $1/k_Q$ , where $k_Q$ is usually chosen to be 10. | Theoretical                  |

745 Calculation of the MQC requires that one be able to estimate the standard deviation for the result

of a hypothetical measurement performed on a sample with a specified radionuclide

concentration. The MQC is defined symbolically as the value  $y_Q$  that satisfies the relation:

748 
$$y_Q = k_Q \sqrt{\sigma^2(y | Y = y_Q)}$$
 (G-37)

Where the specified relative standard deviation of  $y_Q$  is  $1/k_Q$  (usually chosen to be 10% so that  $k_Q = 10$ ).  $\sigma^2(y | Y = y_Q)$  is the variance of the estimator y given the true concentration Y equals  $y_Q$ . If the function  $\sigma^2(y | Y = y_Q)$  has a simple form, it may be possible to solve the above equation for  $y_Q$  using only algebraic manipulation. Otherwise, fixed-point iteration, or other more general approaches, may be used, as discussed in MARLAP Section 20.4.3.

When Poisson counting statistics are assumed, and the mathematical model for the radionuclide concentration is  $Y = S / \varepsilon$ , where *S* is the net count,  $S / t_S$  is the net count rate and  $\varepsilon$  is the efficiency of the measurement, the above equation may be solved for  $y_Q$  to obtain:

757 
$$y_{Q} = \frac{k_{Q}^{2}}{2t_{S}\varepsilon(1-k_{Q}^{2}\phi_{\hat{\varepsilon}}^{2})} \left(1 + \sqrt{1 + \frac{4(1-k_{Q}^{2}\phi_{\hat{\varepsilon}}^{2})}{k_{Q}^{2}}} \left(R_{B}t_{S}\left(1 + \frac{t_{S}}{t_{B}}\right) + R_{I}t_{S} + \sigma^{2}(\hat{R}_{I})t_{S}^{2}\right)\right)$$
(G-38)

| 758 | Where:                     |                                                                                          |
|-----|----------------------------|------------------------------------------------------------------------------------------|
| 759 | $t_S$                      | is the count time for the source, s,                                                     |
| 760 | $t_B$                      | is the count time for the background, s,                                                 |
| 761 | $R_B$                      | is the mean background count rate, s <sup>-1</sup> ,                                     |
| 762 | $R_I$                      | is the mean interference count rate, s <sup>-1</sup> ,                                   |
| 763 | $\sigma(\widehat{R}_{I})$  | is the standard deviation of the measured interference count rate, s <sup>-1</sup> , and |
| 764 | $\phi_{\hat{arepsilon}}^2$ | is the relative variance of the measured efficiency, $\hat{\varepsilon}$ .               |

If the efficiency  $\varepsilon$  may vary, then a conservative value, such as the 0.05-quantile  $\varepsilon_{0.05}$ , should be substituted for  $\varepsilon$  in the formula. Note that  $\phi_{\hat{\varepsilon}}^2$  denotes only the relative variance of  $\hat{\varepsilon}$  due to subsampling and measurement error – it does not include any variance of the efficiency  $\varepsilon$  itself (see discussion in Section G.2).

Note that equation G-38 defines the MQC only if  $1 - k_Q^2 \phi_{\hat{\epsilon}}^2 > 0$ . If  $1 - k_Q^2 \phi_{\hat{\epsilon}}^2 \le 0$ , the MQC is

infinite, because there is no concentration at which the relative standard deviation of y fails to exceed  $1 / k_{Q}$ . In particular, if the relative standard deviation of the measured efficiency  $\hat{\varepsilon}$ exceeds  $1 / k_{Q}$ , then  $1 - k_{Q}^{2} \phi_{\hat{\varepsilon}}^{2} < 0$  and the MQC is infinite.

773 If there are no interferences, equation G-37 simplifies to:

774 
$$y_{Q} = \frac{k_{Q}^{2}}{2t_{S}\varepsilon(1 - k_{Q}^{2}\phi_{\varepsilon}^{2})} \left(1 + \sqrt{1 + \frac{4(1 - k_{Q}^{2}\phi_{\varepsilon}^{2})}{k_{Q}^{2}}} \left(R_{B}t_{S}\left(1 + \frac{t_{S}}{t_{B}}\right)\right)\right)$$
(G-39)

775 **Example 8:** Consider the scenario of Example 5, where 
$$t_{\rm B} = 6,000$$
 s,  $t_{\rm S} = 3,000$  s, and  
776  $R_{\rm B} \approx 0.018 \text{ s}^{-1}$ . Suppose the measurement model is  $Y = \frac{N_S - (N_B t_S / t_B)}{t_S \varepsilon}$ 

777 Where:

778 Y is the specific activity of the radionuclide in the sample and

| 779 | $\varepsilon$ the counting efficiency (counts per second)/(Bq/cm <sup>2</sup> ).                                                                                                                                                        |
|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 780 | Assume:                                                                                                                                                                                                                                 |
| 781 | The source count time, $t_S$ , has negligible variability,                                                                                                                                                                              |
| 782 | the counting efficiency has mean 0.42 and a 5% relative combined standard uncertainty,                                                                                                                                                  |
| 783 | and                                                                                                                                                                                                                                     |
| 784 | $S_D = 32.3$ net counts. $S_D / t_S = 32.3/3000$ is the net count rate.                                                                                                                                                                 |
| 785 | The counting efficiency $\varepsilon = 0.42$                                                                                                                                                                                            |
| 786 | The mean minimum detectable concentration is $y_D = \frac{S_D}{t_S \varepsilon} = \frac{32.3}{(3000)(0.42)} = 0.0256 \text{ Bq/cm}^2.$                                                                                                  |
| 787 | Also assume:                                                                                                                                                                                                                            |
| 788 | $k_{Q} = 10$                                                                                                                                                                                                                            |
| 789 | $\phi_{\hat{arepsilon}}=0.05$                                                                                                                                                                                                           |
| 790 | $\phi_{\hat{\varepsilon}}^2=0.05^2$                                                                                                                                                                                                     |
| 791 | $1 - k_Q^2 \phi_{\hat{\varepsilon}}^2 = 1 - 100 \times (0.05^2) = 0.75$ , and                                                                                                                                                           |
| 792 | there are no interferences so that equation G-38 can be used.                                                                                                                                                                           |
| 793 | Note that if the counting efficiency has mean 0.42 and a 10% relative standard uncertainty as in                                                                                                                                        |
| 794 | Example 11, then $1 - k_Q^2 \phi_{\hat{\varepsilon}}^2 = 1 - 100 \times (0.10^2) = 0$ and the MQC would be infinite. Therefore it was                                                                                                   |
| 795 | necessary to change the procedure for evaluating the efficiency in this example so that the                                                                                                                                             |
| 796 | relative combined standard uncertainty could be reduced. In this example it is assumed to be 5%.                                                                                                                                        |
| 797 | The MQC can be calculated as:                                                                                                                                                                                                           |
| 798 | $y_{Q} = \frac{k_{Q}^{2}}{2t_{S}\varepsilon(1 - k_{Q}^{2}\phi_{\varepsilon}^{2})} \left(1 + \sqrt{1 + \frac{4(1 - k_{Q}^{2}\phi_{\varepsilon}^{2})}{k_{Q}^{2}}} \left(R_{B}t_{S}\left(1 + \frac{t_{S}}{t_{B}}\right) + 0\right)\right)$ |
| 799 | $y_{Q} = \frac{100}{2(3000)(0.42)(0.75)} \left( 1 + \sqrt{1 + \frac{4(0.75)}{100}} \left( (0.018 \text{ s}^{-1})(3000 \text{ s}) \left( 1 + \frac{(3000 \text{ s})}{(6000 \text{ s})} \right) + 0 \right) \right)$                      |

800 = 0.151 Bq/cm<sup>2</sup>  
801 As a check, 
$$y_Q$$
 can be calculated in a different way. If  $y_Q$  is the MQC and  $k_Q = 10$ , then the  
802 relative combined standard uncertainty of a measurement of concentration  $y_Q$  is 10%. The  
803 procedure described in Section 5.6 can be used to predict the combined standard uncertainty of a  
804 measurement made on a hypothetical sample whose concentration is exactly  $y_Q = 0.151$  Bq/cm<sup>2</sup>.  
805 The measurement model is  $Y = \frac{N_S - (N_B t_S / t_B)}{t_S c}$ .  
806 Recall from Section G.2.1.6 that if  $y = \frac{f(x_1, x_2, \dots, x_n)}{t_s c_s}$ , where  $f$  is some specified function of  
807  $x_1, x_2, \dots, x_n$ , all the  $z_i$  are nonzero, and all the input estimates are uncorrelated that the combined  
808 standard uncertainty may be calculated using Equation G-16:  
809  $u_c^2(y) = \frac{u_c^2(f(x_1, x_2, \dots, x_n))}{t_q t_2(x_2, \dots, x_m)} + y^2 \left(\frac{u^2(z_2)}{z_1^2} + \frac{u^2(z_2)}{z_2^2} + \dots + \frac{u^2(z_m)}{z_m^2}\right)$   
810 Substituting  
811  $y = Y$   
812  $f(x_1, x_2, \dots, x_n) = f(N_S, N_B, t_S, t_B) = N_S - (N_B t_S / t_B) / t_S$   
813  $z_i = c_i$  and  
814  $u_c^2(N_S - (N_B t_S / t_B) / t_S) = -u_c^2(N_S / t_S) + u_c^2((N_B t_S / t_B) / t_S) = -\frac{u_c^2(N_S) + (t_S / t_B)^2 u_c^2(N_B)}{t_S^2} = \frac{N_S + N_B (t_S^2 / t_B^2)}{t_S^2}$   
816 Results in:  
817  $u_c^2(Y) = \frac{N_S + (N_B t_S^2 / t_B^2)}{t_S^2 c^2} + Y^2 \left(\frac{u^2(c_s)}{c^2}\right)$  or

| 818 | $u_{c}(Y) = \sqrt{\frac{N_{s} + (N_{B}t_{s}^{2}/t_{B}^{2})}{t_{s}^{2}\varepsilon^{2}} + Y^{2}\left(\frac{u^{2}(\varepsilon)}{\varepsilon^{2}}\right)}$ |
|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------|
| 819 | Inserting the values                                                                                                                                   |
| 820 | $Y = y_Q = 0.151 \text{ Bq/cm}^2$                                                                                                                      |
| 821 | $t_{\rm B} = 6,000 \ {\rm s}$                                                                                                                          |
| 822 | $t_{\rm S} = 3,000 \ {\rm s}$                                                                                                                          |
| 823 | $\epsilon = 0.42$ (counts per second)/(Bq/cm <sup>2</sup> )                                                                                            |
| 824 | $N_B = R_B t_B = (0.018 \mathrm{s}^{-1})(3,000 \mathrm{s}) = 108$ and                                                                                  |
| 825 | $N_s = x_{\varrho} t_s \varepsilon + R_B t_B = (0.151 \text{ Bq})(3000 \text{ s})(0.42) + (0.018 \text{ s}^{-1})(3,000 \text{ s}) = 244.26$            |
| 826 | yields                                                                                                                                                 |
| 827 | $u_{c}(Y) = \sqrt{\frac{244.26 + (108)(3,000)^{2} / (6,000)^{2}}{(3000)^{2} (0.42)^{2}} + (0.151)^{2} (0.05^{2})} = 0.0151 \text{ Bq/cm}^{2}$          |
| 828 | Thus, the uncertainty at $y_Q = 0.151$ is 0.0151 and the relative uncertainty is 0.1, so $y_Q$ is verified                                             |
| 829 | to be the MQC.                                                                                                                                         |
| 830 | As in example 7, we adjust for the (now) 5% relative combined standard uncertainty in the                                                              |
| 831 | counting efficiency. The uncertainty is $(0.05) \times (0.42) = 0.02142$ . Assuming that the efficiency                                                |
| 832 | is normally distributed, the lower $5^{\text{th}}$ percentile is $(0.42) - (1.645)(0.021) = 0.385$ . Therefore a                                       |
| 833 | conservative estimate of the efficiency is $\varepsilon = 0.385$ and a conservative estimate of the minimum                                            |
| 834 | detectable concentration is: $y_Q = \frac{(0.151)(0.42)}{0.385} = 0.165 \text{ Bq/cm}^2.$                                                              |
|     |                                                                                                                                                        |

### 1 **REFERENCES**

| 2  | 10 CFR 20.1003. Standards for Protection Against Radiation, Definitions. Code of Federal           |
|----|----------------------------------------------------------------------------------------------------|
| 3  | Regulations (CFR) Title 10, Energy, Part 20.1003, December 19, 2002.                               |
| 4  | http://www.nrc.gov/reading-rm/doc-collections/cfr/part020/ (accessed November 26,                  |
| 5  | 2006).                                                                                             |
| 6  | 10 CFR 36.57. Licenses and Radiation Safety Requirements for Irradiators, Radiation Surveys.       |
| 7  | Code of Federal Regulations (CFR) Title 10, Energy, Part 36.57, January 1, 2005.                   |
| 8  | http://www.nrc.gov/reading-rm/doc-collections/cfr/part036/part036-0057.html (accessed              |
| 9  | November 26, 2006).                                                                                |
| 10 | 10 CFR 50.2. Domestic Licensing of Production and Utilization Facilities, Definitions. Code of     |
| 11 | Federal Regulations (CFR) Title 10, Energy, Part 50.2, January 13, 1998.                           |
| 12 | http://www.nrc.gov/reading-rm/doc-collections/cfr/part050/ (accessed November 26,                  |
| 13 | 2006).                                                                                             |
| 14 | 10 CFR 835. Occupational Radiation Protection. Code of Federal Regulations (CFR) Title 10,         |
| 15 | Energy, Part 835, Subpart E, "Monitoring of Individuals and Areas," 401, "General                  |
| 16 | Requirements" November 4, 1998. <u>http://www.eh.doe.gov/radiation/10cfr835/835gpo.pdf</u>         |
| 17 | (accessed November 26, 2006).                                                                      |
| 18 | 49 CFR 173.433. Requirements for Determining Basic Radionuclide Values and for the Listing         |
| 19 | of Radionuclides on Shipping Papers and Labels. Code of Federal Regulations (CFR)                  |
| 20 | Title 49, Transportation, Part 173.433, October 2005.                                              |
| 21 | http://ecfr.gpoaccess.gov/cgi/t/text/text-                                                         |
| 22 | <u>idx?c=ecfr&amp;sid=8076e78d1028798adad76e917604d5f5&amp;rgn=div8&amp;view=text&amp;node=49:</u> |
| 23 | <u>2.1.1.3.8.9.25.22&amp;idno=49</u> (accessed November 26, 2006).                                 |
| 24 | Abelquist 2001. Decommissioning Health Physics: A Handbook for MARSSIM Users.                      |
| 25 | E. Abelquist, Institute of Physics Publishing, Philadelphia, PA, 2001.                             |
| 26 | ANSI 1989. Performance Specifications for Health Physics Instrumentation-Portable                  |
| 27 | Instrumentation for Use in Extreme Environmental Conditions. ANSI N42.17C,                         |
| 28 | American National Standards Institute, 1989.                                                       |
|    |                                                                                                    |

- 29 ANSI 1994. Calibration and Usage of Thallium-Activated Sodium Iodide Detector Systems for Assay of Radionuclides. ANSI N42.12, American National Standard Institute, 1994. 30 31 ANSI 1997. Radiation Protection Instrumentation Test and Calibration, Portable Survey 32 Instruments. ANSI N323A, American National Standards Institute, 1997. 33 ANSI 1999. Surface and Volume Radioactivity Standards for Clearance. ANSI N13.12, 34 American National Standards Institute, 1999. 35 ANSI 2003a. Performance Criteria for Hand-held Instruments for the Detection and Identification of Radionuclides. ANSI N42.34, American National Standards Institute, 36 37 2003. 38 ANSI 2003b. Performance Specifications for Health Physics Instrumentation-Portable 39 Instrumentation for Use in Normal Environmental Conditions. ANSI N42.17A, American 40 National Standards Institute, 2003.
- ANSI 2004. American National Standard for Evaluation and Performance of Radiation
   Protection Portal Monitors for Use in Homeland Security. ANSI N42.35, American
   National Standards Institute, 2004.
- Beck 1980. Perturbations on the Natural Radiation Environment Due to the Utilization of Coal *as an Energy Source*. Beck H.L., Gogolak C.V., Miller K.M., and Lowder W.M. in
  "Natural Radiation Environment III," U.S. Department of Energy CONF-780422, 1980.

47 BIL 2005. "IonSens® 208 Large Item Monitor." BIL Solutions, 2005.

48 <u>http://www.bilsolutions.com/pdf/datasheets/IonSens%20208%20Large%20Items%20Mon</u>
49 itor.pdf (accessed November 26, 2006).

50 Canberra 2005a. "Considerations for Environmental Gamma Spectroscopy Systems." Canberra,

- 51 Inc., 2005. <u>http://www.canberra.com/literature/972.asp</u> (accessed November 26, 2006).
- 52 Canberra 2005b. "RadSentry<sup>™</sup> Security Portals for SNM and Other Radionuclides." Canberra,
   53 Inc., 2005. <u>http://www.canberra.com/products/1211.asp</u> (accessed November 26, 2006).
- Currie 1968. "Limits for Qualitative Detection and Quantitative Determination: Application to
   Radiochemistry." *Analytical Chemistry* 40(3): 586–593. L. A. Currie, 1968.

- 56 DOE 1987. The Environmental Survey Manual, Appendix A Criteria for Data Evaluation.
- 57 DOE/EH-0053, DOE, Office of Environmental Audit, Washington, D.C. (DE88-000254),
  58 August 1987.
- 59 DOE 1993. Radiation Protection of the Public and the Environment. DOE Order 5400.5,
- 60 Change 2, U.S. Department of Energy, Washington, DC, January 1993.
- 61 <u>http://homer.ornl.gov/oepa/guidance/risk/54005.pdf</u> (accessed November 26, 2006).
- 62 DOE 2005. *RESRAD Recycle Version 3.10*. U.S. Department of Energy, Argonne National
- 63 Laboratory, 2005. <u>http://web.ead.anl.gov/resrad/home2/index.cfm</u> (accessed November
  64 26, 2006).
- 65 Eberline 2004. "Segmented Gate System." Eberline Services, 2004.
- 66 <u>http://www.eberlineservices.com/documents/SGSBrochure\_000.pdf</u> (accessed November
  67 26, 2006).
- EC 1998. Handbook on Measurement Methods and Strategies at Very Low Levels and Activities.
  European Commission for Nuclear Safety and the Environment Report 17624, ISBN 92828-3163-9, 1998.
- Eckerman 1993. Nuclear Decay Data Files of the Dosimetry Research Group. Eckerman, K.F.,
  Westfall, R.J., Ryman, J.C., and Cristy, M., ORNL-TM-12350, 1993.
- Eicholz 1980. *Radiation Exposure From Building Materials*. Eicholz G.G., Clarke F.J., and
  Kahn, B., in "Natural Radiation Environment III," U.S. Department of Energy CONF75 780422, 1980.
- 76 EPA 1980. Upgrading Environmental Radiation Data, Health Physics Society Committee
   77 Report HPSR-1. EPA 520/1-80-012, EPA, Office of Radiation Programs, Washington,
   78 D.C. (PB81-100364), August 1980.
- EPA 1992a. *Guidance for Data Useability in Risk Assessment, Part A.* Office of Solid
  Waste and Emergency Response (OSWER) Directive 9285.7-09A, Environmental
- 81 Protection Agency, Office of Emergency and Remedial Response, Washington, D.C.
- 82 (PB92-963356), April 1992.

| 83  | EPA 1992b. Guidance for Data Useability in Risk Assessment, Part B. Office of Solid       |
|-----|-------------------------------------------------------------------------------------------|
| 84  | Waste and Emergency Response (OSWER) Directive 9285.7-09B, Environmental                  |
| 85  | Protection Agency, Office of Emergency and Remedial Response, Washington, D.C.            |
| 86  | (PB92-963362), May 1992.                                                                  |
| 87  | EPA 2000. Evaluation of EPA's Guidelines for Technologically Enhanced Naturally Occurring |
| 88  | Radioactive Materials (TENORM). Report to Congress, EPA 402-R-00-01, U.S.                 |
| 89  | Environmental Protection Agency, 2000.                                                    |
| 90  | EPA 2001. Guidance for Preparing Standard Operating Procedures, EPA QA/G-6.               |
| 91  | EPA/240/B-01/004, U.S. Environmental Protection Agency, Office of Environmental           |
| 92  | Information, Washington, DC, March 2001.                                                  |
| 93  | EPA 2002a. Guidance for Quality Assurance Project Plans, EPA QA/G-5. EPA/240/R-02/009,    |
| 94  | U.S. Environmental Protection Agency, Office of Environmental Information,                |
| 95  | Washington, DC, December 2002.                                                            |
| 96  | EPA 2002b. Calculating Upper Confidence Limits For Exposure Point Concentrations At       |
| 97  | Hazardous Waste Sites. Office of Solid Waste and Emergency Response (OSWER)               |
| 98  | Directive 9285.6-10, Environmental Protection Agency, Office of Emergency and             |
| 99  | Remedial Response, Washington, DC, 2002.                                                  |
| 100 | EPA 2002c. Guidance for Developing Quality Systems for Environmental Programs, EPA        |
| 101 | QA/G-1. EPA/240/R-02/008, U.S. Environmental Protection Agency, Office of                 |
| 102 | Environmental Information, Washington, DC, November 2002.                                 |
| 103 | EPA 2006a. Guidance on Systematic Planning Using the Data Quality Objectives Process, EPA |
| 104 | QA/G-4. EPA/240/B-06/001, U.S. Environmental Protection Agency, Office of                 |
| 105 | Environmental Information, Washington, DC, February 2006.                                 |
| 106 | EPA 2006b. Data Quality Assessment: Statistical Tools for Practitioners, EPA QA/G-9R.     |
|     |                                                                                           |
| 107 | EPA/240/B-06/002, U.S. Environmental Protection Agency, Office of Environmental           |

- 109 EPA 2006c. Data Quality Assessment: A Reviewer's Guide, EPA QA/G-9S. EPA/240/
- B-06/003, U.S. Environmental Protection Agency, Office of Environmental Information,
  Washington, DC, February 2006.
- 112 EPA 2006d. Technical Support Center for Monitoring and Site Characterization: Software for
- 113 *Calculating Upper Confidence Limits (UCLs), ProUCL Version 3.00.02.*
- 114 <u>http://www.epa.gov/esd/tsc/software.htm</u> (accessed November 26, 2006).
- 115 EPRI 2003. Operational Changes and Impacts on LLW Scaling Factors. D. James, Electric
- Power Research Institute (EPRI) Report 1008017, Electric Power Research Institute, Palo
  Alto, CA, December 2003.
- 118 Gilbert 1992. Environmental and Ecological Statistics. Laboratory Report PNL-7409, Rev. 1,
- 119 Gilbert and Simpson, 1992.
- GUM Workbench 2006. GUM Workbench Version 1.2 demo installer and user manual.
   <a href="http://www.gum.dk/download/download.html">http://www.gum.dk/download/download.html</a> (accessed November 26, 2006).
- 122 Hatch 1978. Self-Evaluation of Occupational Safety and Health Programs. Hatch, L. L.,
- 123 Rentos, P. G., Godbey, F. W., Schrems, E. L., DHEW (NIOSH) 78-187, ," U.S.
- 124 Department of Health, Education, and Welfare, 1978.
- Hobbs 2000. *Radioactivity Measurements on Glazed Ceramic Surfaces*. Hobbs T.G., J. Res.
  Natl. Inst. Stand. Technol. 105, 275-283, 2000.
- ISO 1988. Evaluation of Surface Contamination Part 1: Beta Emitters and Alpha Emitters.
  ISO-7503-1 (first edition), International Organization for Standardization, Geneva,
  Switzerland, 1988.
- 130 ISO 1995. Guide to the Expression of Uncertainty in Measurement. ISO Guide 98, GUM,
- 131 International Organization for Standardization, Geneva, Switzerland, 1995.
- ISO 1996. International Vocabulary of Basic and General Terms in Metrology. ISO Guide 99,
   VIM, International Organization for Standardization, Geneva, Switzerland, 1996.
- ISO 1997. Capability of Detection Part 1: Terms and Definitions. ISO 11843-1. International
   Organization for Standardization, Geneva, Switzerland, 1997.

136 Knoll 1999. *Radiation Detection and Measurement*, 3<sup>rd</sup> edition. G.F. Knoll, John Wiley & Sons,
137 Inc., New York, NY, 1999.

138 Kragten 1994. J. Analyst, 119, 1994, 2161-2165.

139 Laurus 2001. "Gamma Solid Waste Monitor WM-295." Laurus Systems, Inc., 2001.

- 140 <u>http://www.laurussystems.com/products/gamma\_solid\_waste\_monitor.htm</u> (accessed
  141 November 26, 2006).
- Life Safety 2005. "ACM-140A Automated Contamination Monitor (DETRD56)." Life Safety
  Systems, Inc. <u>http://www.lifesafetysys.com/osb/itemdetails.cfm/ID/528</u> (accessed
  November 26, 2006).

Lewis 2000. "The Measurement Good Practice Guide No. 49: The Assessment of Uncertainty in
Radiological Calibration and Testing." Lewis V., Woods M., Burgess P., Green S.,

147 Simpson J., and Wardle J., National Physical Laboratory, Teddington, Middlesex, UK,

- 148 TW11 0LW, February 2005. <u>http://eig.unige.ch/nucleaire/articles/gpg49.pdf</u>, (accessed
  149 November 26, 2006).
- MARLAP 2004. *Multi-Agency Radiological Laboratory Analytical Protocols Manual* (Final).
   Nuclear Regulatory Commission NUREG-1576, Environmental Protection Agency EPA
   402-B-04-001A, National Technical Information Service NTIS PB2004-105421, July
   2004.
- MARSSIM 2002. *Multi-Agency Radiation Survey and Site Investigation Manual* (Revision 1).
   Nuclear Regulatory Commission NUREG-1575 Rev. 1, Environmental Protection Agency
   EPA 402-R-97-016 Rev. 1, Department of Energy DOE EH-0624 Rev. 1, August 2002.
- McCroan 2006. GUMCalc freeware. <u>http://www.mccroan.com/GumCalc.htm</u> (accessed
  November 26, 2006).
- 159 Meyer 1995. "Assays of Thick Soil Samples Using Low-Resolution Alpha Spectroscopy."
- 160 Meyer, K. and Lucas, A., 41<sup>st</sup> Bioassay Analytical and Environmental Radiochemistry
- 161 Conference, 1995. <u>http://www.lanl.gov/BAER-Conference/BAERCon-41p038.pdf</u>
- 162 (accessed November 26, 2006).

| 163 | Miller 2000. "Release Surveying of Scrap Metals with the IonSens <sup>TM</sup> Conveyor." Miller E,. |
|-----|------------------------------------------------------------------------------------------------------|
| 164 | Peters J., Nichols D., Waste Management 2000 Conference, Tucson, AZ, February 2000.                  |
| 165 | http://www.bilsolutions.co.uk/file_download.php?file_id=4 (accessed November 26,                     |
| 166 | 2006).                                                                                               |
| 167 | NAS 1999. Evaluation of Guidelines for Technologically Enhanced Naturally Occurring                  |
| 168 | Radioactive Materials (TENORM). Committee on Evaluation of EPA Guidelines for                        |
| 169 | Exposure to Naturally Occurring Radioactive Materials, National Research Council,                    |
| 170 | National Academy of Sciences, National Academy Press, p. 72, 1999.                                   |
| 171 | NBS 1963. Experimental Statistics. NBS Handbook 91, National Bureau of Standards,                    |
| 172 | Gaithersburg, MD, 1963.                                                                              |
| 173 | NCRP 1988a. Exposure of the Population in the United States and Canada from Natural                  |
| 174 | Background Radiation. NCRP Report No. 94, National Council on Radiation Protection                   |
| 175 | and Measurements, Bethesda, MD, 1988.                                                                |
| 176 | NCRP 1988b. Exposure of the U.S. Population from Consumer Products and Miscellaneous                 |
| 177 | Sources. NCRP Report No. 95, National Council on Radiation Protection and                            |
| 178 | Measurements, Bethesda, MD, 1988.                                                                    |
| 179 | NIST 1994. Guidelines for Evaluating and Expressing the Uncertainty of NIST Measurement              |
| 180 | Results. NIST Technical Note 1297, National Institute of Standards and Technology,                   |
| 181 | Gaithersburg, MD, 1994. http://physics.nist.gov/Document/tn1297.pdf (accessed                        |
| 182 | November 26, 2006).                                                                                  |
| 183 | NIST 1996. Tables of X-Ray Mass Attenuation Coefficients and Mass Energy-Absorption                  |
| 184 | Coefficients. Hubbell, J.H. and Seltzer, S.M., National Institute of Standards and                   |
| 185 | Technology, Gaithersburg, MD, April 1996.                                                            |
| 186 | http://physics.nist.gov/PhysRefData/XrayMassCoef/cover.html (accessed November 26,                   |
| 187 | 2006).                                                                                               |
| 188 | NIST 1998. XCOM: Photon Cross Sections Database. National Institute of Standards and                 |
| 189 | Technology, 1998. http://physics.nist.gov/PhysRefData/Xcom/Text/XCOM.html                            |
| 190 | (accessed November 26, 2006).                                                                        |
- 191 NIST 2006. "NIST/SEMATECH e-Handbook of Statistical Methods."
- 192 <u>http://www.itl.nist.gov/div898/handbook/</u> (accessed November 26, 2006).
- 193 Novelec 2001a. "Technical Information Systems and Machines." Novelec Nuclear
- 194 Instrumentation, 2001. <u>http://www.novelec.fr/descriptionUK-</u>
- 195 <u>CRL01.htm#T2C%20and%20T2C-AB</u> (accessed November 26, 2006).
- 196 Novelec 2001b. "Technical Information Radiation Survey." Novelec Nuclear Instrumentation,
- 197 2001. <u>http://www.novelec.fr/descriptionUK-MSA.htm#MSA-P and MSA-C</u> (accessed
  198 November 26, 2006).
- 199 NRC 1984. Lower Limit of Detection: Definition and Elaboration of a Proposed Position for
- 200 *Radiological Effluent and Environmental Measurements*. NUREG/CR-4007. U.S.
- 201 Nuclear Regulatory Commission, Washington, DC, 1984.
- 202 NRC 1992. Manual for Conducting Radiological Surveys in Support of License Termination,
   203 Draft Report for Comment. NUREG/CR-5849, U.S. Nuclear Regulatory Commission,
   204 Washington, DC, and Oak Ridge Associated Universities, Oak Ridge, TN, June 1992.
- 205 NRC 1994. Background as a Residual Radioactivity Criterion for Decommissioning, Draft
   206 Report. NUREG-1501, U.S. Nuclear Regulatory Commission, Office of Nuclear
   207 Regulatory Research, Washington, DC. 1994.
- NRC 1995. Proposed Methodologies for Measuring Low Levels of Residual Radioactivity for
   Decommissioning. NUREG-1506, Draft Report for Comment, U.S. Nuclear Regulatory
   Commission, Washington, DC. 1995.
- 211 NRC 1998a. A Nonparametric Statistical Methodology for the Design and Analysis of Final
- 212 Status Decommissioning Surveys (Revision 1). NUREG-1505 Rev. 1, U.S., Nuclear
- 213 Regulatory Commission, Office of Nuclear Regulatory Research, Washington, DC, 1998.
- 214 NRC 1998b. Minimum Detectable Concentrations with Typical Radiation Survey Instruments
- 215 for Various Contaminants and Field Conditions. NUREG-1507, U.S., Nuclear
- 216 Regulatory Commission, Office of Nuclear Regulatory Research, Washington, DC,
- 217 December 1998.

| 218         | NRC 2000. Low-Level Waste Classification, Characterization, and Assessment: Waste Streams     |  |  |
|-------------|-----------------------------------------------------------------------------------------------|--|--|
| 219         | and Neutron-Activated Metals. NUREG/CR-6567, D.E. Robertson, C.W. Thomas, S.L.                |  |  |
| 220         | Pratt, E.A. Lepel, and V.W. Thomas, Pacific Northwest Laboratory, 2000.                       |  |  |
| 221         | NPC 2002 Padiological Surveys for Controlling Palages of Solid Materials NUPEC 1761           |  |  |
| 221         | NRC 2002. Radiological Surveys for Controlling Release of Solia Materials. NUREG-1761,        |  |  |
| 222         | U.S. Nuclear Regulatory Commission, Office of Nuclear Regulatory Research,                    |  |  |
| 223         | Washington, DC, 2002.                                                                         |  |  |
| 224         | NRC 2003a. Radiological Assessments for Clearance of Materials from Nuclear Facilities.       |  |  |
| 225         | NUREG-1640, U.S. Nuclear Regulatory Commission, Office of Nuclear Regulatory                  |  |  |
| 226         | Research, Washington, DC, 2003.                                                               |  |  |
| 227         | NRC 2003b. Radiological Toolbox Version 1.0.0. Eckerman, K.F. and Sjoreen, A.L. for the       |  |  |
| 228         | U.S. Nuclear Regulatory Commission, 2003. <u>http://www.nrc.gov/what-we-</u>                  |  |  |
| 229         | do/regulatory/research/radiological-toolbox.html (accessed November 26, 2006).                |  |  |
| 220         | OSHA 2002 Lab Hazard Analysia OSHA Publication 2071 Occupational Safety and Health            |  |  |
| 250         | OSHA 2002. Job Hazara Analysis. OSHA Publication 3071, Occupational Safety and Health         |  |  |
| 231         | Administration, 2002. <u>http://www.osha.gov/Publications/osha3071.pdf</u> (accessed          |  |  |
| 232         | November 26, 2006).                                                                           |  |  |
| 233         | Strom 1999. Counting Statistics Utility for Comparing Eight Decision Rules. D.J. Strom, 1999. |  |  |
| 234         | http://www.pnl.gov/bayesian/strom/strompub.htm (accessed November 26, 2006).                  |  |  |
| 235         | Thermo 2005. "SAM11 Small articles and tools monitor for low level gamma measurement"         |  |  |
| 236         | Thermo Fisher Scientific, Inc., 2005.                                                         |  |  |
| 237         | http://www.thermo.com/eThermo/CMA/PDFs/Product/productPDF_23747.pdf (accessed                 |  |  |
| 238         | November 26, 2006)).                                                                          |  |  |
| <b>2</b> 20 |                                                                                               |  |  |
| 239         | Thermo 2006. "ACM-10 Laundry Monitor." Thermo Fisher Scientific, Inc., 2006.                  |  |  |
| 240         | http://www.labsystems.fi/com/cda/product/detail/0,1055,15711,00.html (accessed                |  |  |
| 241         | November 26, 2006).                                                                           |  |  |
| 242         | UNSCEAR 2000. Sources and Effects of Ionizing Radiation. United Nations Scientific            |  |  |
| 243         | Committee on the Effects of Atomic Radiation Report to the General Assembly, ISBN 92-         |  |  |
| 244         | 1-142238-8, 2000. http://www.unscear.org/unscear/en/publications.html (accessed               |  |  |
| 245         | November 26, 2006)                                                                            |  |  |
|             | MARSAME Ref-9 December 2006                                                                   |  |  |

- 246 Vetter 2006. Quantifying Measurement Uncertainty in Analytical Chemistry A Simplified
- 247 *Practical Approach*. T.W. Vetter, 2006.
- 248 <u>http://www.cstl.nist.gov/acd/839.03/Uncertainty.pdf</u> (accessed November 26, 2006).

Glossary

## 1 GLOSSARY

Accessible Area is an area that can be easily reached or obtained. In many cases an area must be
physically accessible to perform a measurement. However, radioactivity may be measurable
even if an area is not physically accessible. See in this glossary *measurable radioactivity*.

5 Action Level is the numerical value that causes a decision maker to choose one of the alternative 6 actions. In the context of MARSAME, the numerical value is the radionuclide concentration or 7 level of radioactivity corresponding to the disposition criterion, and the alternative actions are 8 determined by the selection of a disposition option.

9 Alternative Action is the choice between two mutually exclusive possibilities. See in this
10 glossary *decision rule*.

Ambient Radiation is radiation that is currently present in the surrounding area. Ambient radiation may include natural background, instrument background, intrinsic radiation from surrounding materials, intrinsic radiation from the item(s) being measured, contamination, or radiation from nearby machines (e.g., x-ray machines when operating) depending on the local conditions. Ambient radiation changes with location.

Background Radiation (as defined in Nuclear Regulatory Commission regulations) is radiation from cosmic sources; naturally occurring radioactive material including radon (except as a decay product of source or special nuclear material); and global fallout as it exists in the environment from the testing of nuclear explosive devices or from past nuclear accidents such as Chernobyl that contribute to background radiation and are not under the control of the licensee. "Background radiation" does not include radiation from source, byproduct or special nuclear

22 materials regulated by the Nuclear Regulatory Commission (10 CFR 20.1003).

Biased Measurements are measurements performed at locations selected using professional judgment based on unusual appearance, location relative to known contamination areas, high potential for residual radioactivity, and general supplemental information. Biased measurements are not included in the statistical evaluation of survey unit data because they violate the assumption of randomly selected, independent measurements. Instead, biased measurement results are individually compared to the action levels. Biased measurements are also called judgment measurements (MARSSIM 2002).

Calibration Function is the function that relates the net instrument signal to activity (e.g.,
 relates counts to disintegrations or radiations).

Categorization is the act of determining whether M&E are impacted or non-impacted. This is a
 departure from MARSSIM where this decision was included in the definition of classification.

34 Class 1 M&E are impacted M&E that have, or had, the following: (1) highest potential for, or

35 known, radionuclide concentration(s) or radioactivity above the action level(s); (2) highest

36 potential for small areas of elevated radionuclide concentration(s) or radioactivity; and (3)

37 insufficient evidence to support reclassification as Class 2 or Class 3. Such potential may be

38 based on historical information and process knowledge, while known radionuclide

39 concentration(s) or radioactivity may be based on preliminary surveys. See in this glossary

40 Class 2, Class 3, classification, and impacted.

41 **Class 2** M&E are impacted M&E that have, or had, the following: (1) low potential for

42 radionuclide concentration(s) or radioactivity above the action level(s); and (2) little or no

43 potential for small areas of elevated radionuclide concentration(s) or radioactivity. Such

44 potential may be based on historical information, process knowledge, and preliminary surveys.

45 See in this glossary *Class 1*, *Class 3*, *classification*, and *impacted*.

46 **Class 3** M&E are impacted M&E that have, or had, the following: (1) little or no potential for

47 radionuclide concentrations(s) or radioactivity above background; and (2) insufficient evidence

48 to support categorization as non-impacted. See in this glossary Class 1, Class 2, classification,

49 *impacted*, and *non-impacted*.

50 **Classification** is the act or result of separating impacted M&E or survey units into one of three 51 designated classes: Class 1, Class 2, or Class 3. Classification is the process of determining the 52 appropriate level of survey effort based on estimates of activity levels and comparison to action 53 levels, where the activity estimates are provided by historical information, process knowledge, 54 and preliminary surveys. See in this glossary *Class 1, Class 2, Class 3*, and *impacted*.

55 Clearance is the removal of radiological regulatory controls from materials and equipment.
56 Clearance is a subset of release. See in this glossary *release*.

57 **Combined Standard Uncertainty** is the standard uncertainty of an output estimate calculated 58 by combining the standard uncertainties of the input estimates. The combined standard 59 uncertainty of *y* is denoted by  $u_c(y)$ . See also in this glossary *expanded uncertainty, input* 60 *estimate, measurement method uncertainty, output estimate,* and *standard uncertainty.* 

61 **Combined Variance** is the square of the combined standard uncertainty. The combined 62 variance of y is denoted by  $[u_c(y)]^2$ . See in this glossary *combined standard uncertainty*.

63 Concentration is activity per unit volume (e.g., Bq/kg or pCi/g) or activity per unit area (e.g.,
64 Bq/m<sup>2</sup> or dpm/100 cm<sup>2</sup>).

65 Conceptual Model is a description of a component or area to be surveyed and the associated 66 radionuclides or radioactivity expected to be present. The initial conceptual model is based on 67 the results of the initial assessment. Additional data is used to update the conceptual model 68 throughout the development, implementation, and assessment of the disposition survey. See in 69 this glossary *initial assessment*.

Glossary

70 **Coverage Factor** (*k*) is the value multiplied by the combined standard uncertainty  $u_c(y)$  to give 71 the expanded uncertainty, *U*. See in this glossary *combined standard uncertainty* and *expanded* 72 *uncertainty*.

Coverage Probability is the approximate probability that the reported uncertainty interval will
 contain the value of the measurand. See in this glossary *level of confidence* and *measurand*.

75 Critical Value in the context of radiation detection is the minimum measured value (e.g., of the 76 instrument signal or the radionuclide concentration) required to give a specified probability that a 77 positive (nonzero) amount of radioactivity is present in the material being measured. The critical 78 value is the same as the critical level or decision level in publications by Currie (Currie 1968 and 79 NRC 1984).

80 **Critical Value** in the context of statistical testing is the value, which, if exceeded by the test 81 statistic, results in rejection of the null hypothesis. See in this glossary *null hypothesis*.

Data Life Cycle is the process of planning the survey, implementing the survey plan, and
assessing the survey results prior to making a decision (MARSSIM 2002).

84 Data Quality Objectives (DQOs) are qualitative and quantitative statements derived from the 85 DQO process that clarify study technical and quality objectives, define the appropriate type of 86 data, and specify tolerable levels of potential decision errors that will be used as the basis for 87 establishing the quality and quantity of data needed to support decisions (MARSSIM 2002).

Data Quality Objectives Process is a systematic strategic planning tool based on the scientific
method that identifies and defines the type, quality, and quantity of data needed to satisfy a
specific use (MARSSIM 2002). See also in this glossary *data quality objectives*.

91 Data Quality Assessment (DQA) is a scientific and statistical evaluation that determines
92 whether data are the right type, quality and quantity to support their intended use (EPA 2006b).

Decision Rule is a statement that describes a logical basis for choosing among alternative actions
(MARSSIM 2002). A theoretical decision rule is developed early in the planning process
assuming ideal data are available to support a disposition decision (see Chapter 3). An
operational decision rule is developed based on the measurements that will be performed as part
of the final disposition survey (see Chapter 4).

98 Detection Capability is a generic term describing the capability of a measurement process to 99 distinguish small amounts of radioactivity from zero. It may be expressed in terms of the 100 minimum detectable concentration. See in this glossary *minimum detectable concentration*.

101 Difficult-to-Measure Radioactivity is radioactivity that is not measurable until the M&E to be 102 surveyed is prepared. Preparation of M&E may be relatively simple (e.g., cleaning) or more 103 complicated (e.g., disassembly or complete destruction). Given sufficient resources, all 104 radioactivity can be made measurable; however, it is recognized that increased survey costs can 105 outweigh the benefit of some dispositions.

Discrimination Limit is the level of radioactivity selected by the members of the planning team
that can be reliably distinguished from the action level. The lower bound of the gray region
(LBGR) for Scenario A and the upper bound of the gray region (UBGR) for Scenario B are
examples of discrimination limits.

110 **Disposition** is the future use, fate, or final location for something.

**Disposition Decision** is the selection between alternative actions to determine acceptable future use. In statistical decision making, when the null hypothesis is rejected based on the survey data the decision maker is left with the alternative hypothesis. A failure to reject the null hypothesis is not the same as demonstrating the null hypothesis is true. See in this glossary *null hypothesis*.

**Disposition Survey** is a radiological survey designed to collect information to support a

116 disposition decision.

117 **Distinguishable from Background** means that the detectable concentration of a radionuclide is

118 statistically different from the background concentration of that radionuclide in the vicinity of

the site or, in the case of structures, in similar materials using adequate measurement technology,

120 survey and statistical techniques (10 CFR 20.1003).

Energy Resolution is the quantifiable ability of a measurement method to distinguish between
radiations with different energies.

123 Environmental Radioactivity is radioactivity from the environment where the M&E are

124 located. Environmental radioactivity includes background radiation as well as inherent

125 radioactivity and radioactivity from nearby sources.

Evaluation Function is a mathematical expression that allows the user to compare options anddraw a conclusion or calculate a result.

128 Expanded Uncertainty is the product, U, of the combined standard uncertainty of a measured

129 value y and a coverage factor, k, chosen so that the interval from y - U to y + U has a desired

130 high probability of containing the value of the measurand. See in this glossary *combined* 

131 standard uncertainty, coverage factor, and measurand.

Fluence is the number of photons or particles passing through a cross-sectional area. The international standard (SI) unit for fluence is  $m^{-2}$ .

134 **Frequency Plot** is a chart plotting the number of data points against their measured values.

135 **Graded Approach** is the process of basing the level of application of managerial controls

applied to an item or work according to the intended use of the results and the degree of

137 confidence needed in the quality of the results. See in this glossary data quality objectives

138 process.

- 139 Gray Region is the range of radionuclide concentrations or quantities between the
- 140 discrimination limit and the action level. See in this glossary action level, discrimination limit,
- 141 *lower bound of the gray region*, and *upper bound of the gray region*.

Hard Data are quantitative data used to directly determine levels of radioactivity associated with
measurement results.

144 Impacted is a term applied to M&E that are not classified as non-impacted. M&E with a 145 reasonable potential to contain radionuclide concentration(s) or radioactivity above background 146 are considered impacted (10 CFR 50.2). See in this glossary *background radiation* and *non-*147 *impacted*.

Inherent Radioactivity is radioactivity resulting from radionuclides that are an essential
 constituent of the material being measured (e.g., <sup>40</sup>K in fertilizer containing potassium).

Initial Assessment (IA) is an investigation to collect existing information describing materials
 and equipment and is similar to the Historical Site Assessment (HSA) described in MARSSIM.

152 Input Quantity is any of the quantities in a mathematical measurement model whose values are 153 measured and used to calculate the value of another quantity, called the output variable.

**Instrument Efficiency** is the ratio between the instrument net reading and the surface emission rate of a source under given geometrical conditions (ISO 1988). For a given instrument, the instrument efficiency depends on the energy of the radiations emitted by the source. See in this glossary *source efficiency* and *total efficiency*.

158 **Interdiction** is the authoritative refusal to approve or assent to an action.

159 **Interdiction Survey** is the collection of data to support an interdiction decision regarding M&E.

160 In general, interdiction surveys are used to accept or refuse to accept control of M&E that is

161 potentially radioactive. In some cases an interdiction survey may result in the impoundment of

162 radioactive M&E that represent an unacceptable risk to human health or the environment.

163 Interference is the presence of other radiation or radioactivity that hinders the ability to analyze164 for the radiation or radioactivity of interest.

165 **Intrinsic Radioactivity** is radioactivity resulting from radionuclides that are an essential 166 constituent of the material being measured (e.g.,  ${}^{40}$ K in fertilizer containing potassium).

167 Level of Confidence (*p*) is the approximate probability that the reported uncertainty interval will
168 contain the value of the measurand. See in this glossary *coverage probability* and *measurand*.

169 Lower Bound of the Gray Region (LBGR) is the radionuclide concentration or level of

170 radioactivity that corresponds with the lowest value from the range where decision errors are not

171 controlled for statistical hypothesis testing. For Scenario A the LBGR corresponds to the

172 discrimination limit. For Scenario B the LBGR corresponds to the action level. See in this

173 glossary action level, discrimination limit, gray region, Scenario A, and Scenario B.

174 Mathematical Model is the general characterization of a process, object, or concept in terms of 175 mathematics, which enables the relatively simple manipulation of variables to be accomplished 176 in order to determine how the process, object, or concept would behave in different situations.

Materials and Equipment (M&E) are items considered for disposition that include metals,
concrete, dispersible bulk materials, tools, equipment, piping, conduit, furniture, solids, liquids,
and gases in containers, etc. M&E are considered non-real property distinguishable from
buildings and land, which are considered real property. See in this glossary *disposition*.

181 **Measurand** is a particular quantity subject to measurement (ISO 1996).

182 **Measurement Method Uncertainty** is the parameter, associated with the result of a

183 measurement that characterizes the dispersion of the values that could reasonably be attributed to

the measurand (ISO 1996).

185 Measurement Quality Objectives (MQOs) are a statement of a performance objective or

186 requirement for a particular method performance characteristic (MARLAP 2004).

187 Measurable Radioactivity is radioactivity that can be quantified using known or predicted

188 relationships developed from historical information, process knowledge or preliminary

189 measurements as long as the relationships are developed, verified, and validated as specified in

190 the data quality objectives (DQOs) and measurement quality objectives (MQOs).

191 **Median** is the middle value of the data set when the number of data points is odd, or the average

192 of the two middle values when the number of data points is even.

Minimum Detectable Activity (MDA) is the minimum detectable value of activity for a
 measurement. See in this glossary *minimum detectable value*.

Minimum Detectable Concentration (MDC) is the minimum detectable value of the
 radionuclide or radioactivity concentration for a measurement. See in this glossary *minimum detectable value*.

198 **Minimum Detectable Value** is an estimate of the smallest true value of the measurand that 199 ensures a specified high probability,  $1 - \beta$ , of detection. This definition presupposes that an 200 appropriate detection criterion has been specified (e.g., critical value). See in this glossary 201 *measurand* and *critical value*.

Minimum Quantifiable Concentration (MQC) is the smallest concentration or quantity of
 radioactivity the measurement method will indicate within a specified relative standard
 deviation.

Non-impacted is a term applied to M&E where there is no reasonable potential to contain
radionuclide concentration(s) or radioactivity above background (10 CFR 50.2). See in this
glossary *background radioactivity* and *impacted*.

Null Hypothesis, or baseline condition, is a tentative assumption about the true, but unknown, radionuclide concentration or level of radioactivity that can be retained or rejected based on the available evidence. When hypothesis testing is applied to disposition decisions, the data are used to select between a presumed baseline condition (the null hypothesis) and an alternate condition

(the alternative hypothesis). The null hypothesis is retained until evidence demonstrates with apreviously specified probability that the baseline condition is false.

Output Quantity is the quantity in a mathematical measurement model whose value is
calculated from the measured values of other quantities in the model. See in this glossary *input quantity*.

217 Planning Team is the group of people who perform the DQO process. Members include the

218 decision maker (senior manager), site manager, representatives of other data users, senior

219 program and technical staff, someone with statistical expertise, and a quality assurance and

220 quality control advisor (such as a QA manager) (EPA 2000a).

221 **Posting Plot** is a map of the survey unit with the data values entered at the measurement

locations. This type of plot potentially reveals heterogeneities in the data, especially possiblepatches of elevated contamination.

224 **Preliminary Survey** is any survey performed prior to the disposition survey in MARSAME, and

is generally performed to provide information required to support the design of the final survey.See also in this glossary *disposition survey*.

Process Knowledge is information concerning the characteristics, history of prior use, and inherent radioactivity of the materials and equipment being considered for release. Process knowledge is obtained through a review of the operations conducted in facilities or areas where materials and equipment may have been located and the processes where the materials and equipment were involved.

Radioactive Materials consist of any material, equipment or system component determined or
 suspected to contain radionuclides in excess of inherent radioactivity. Radioactive material
 includes activated material, sealed and unsealed sources, and substances that emit radiation. See
 in this glossary *inherent radioactivity*.

- 236 Radiological Controls are any means, method or activity (including engineered or
- administrative) designed to protect personnel or the environment from exposure to a radiological
- 238 risk.

239 Radionuclides or Radiations of Concern are radionuclides or radiations that are present at a

- 240 concentration or activity that poses an unacceptable risk to human health or the environment. In
- 241 MARSAME, the term radionuclides or radiations of concern is used to describe the radionuclides
- or radiations that are actually measured during the disposition survey. See also in this glossary
- 243 radionuclides or radiations of potential concern and disposition survey.

Radionuclides or Radiations of Potential Concern are radionuclides or radiations that are
identified during the initial assessment as potentially being associated with the M&E being
investigated. See also in this glossary *initial assessment*.

Ratemeter is an instrument that indicates the counting rate of an electronic counter. In the context of radiological measurements, a ratemeter displays the counting rate from a radiation detector. The averaging time for calculating the rate is determined by the time constant of the meter. See in this glossary *scaler*.

251 Recycle is beneficial reuse of constituent materials incorporated within the M&E. A hammer 252 that is melted down as scrap metal so the component metals can be reused is an example of 253 recycle.

Reference Material is material of similar physical, radiological, and chemical characteristics as the M&E considered for disposition. Reference material provides information on the level of radioactivity that would be present if the M&E being investigated had not been radiologically impacted. See in this glossary *impacted*.

258 **Relative Standard Uncertainty** is the ratio of the standard uncertainty of a measured result to

- 259 the result itself. The relative standard uncertainty of x may be denoted by  $u_r(x)$ . See in this
- 260 glossary standard uncertainty.

- 261 **Release** is a reduction in the level of radiological control, or a transfer of control to another
- 262 party. Examples of release include clearance (i.e., unrestricted release of materials and
- 263 equipment to the public sector), recycle, reuse, disposal as waste, or transfer of control of
- radioactive M&E from one authorized user to another. See also in this glossary *reuse*, *recycle*,
- 265 *restricted release*, and *clearance*.
- Release Survey is a type of disposition survey designed to collect information to support a
  release decision. See also in this glossary *disposition survey* and *release*.
- 268 **Restricted Release** is a reduction in the level of radiological control, or transfer of control to
- another party, where restrictions are placed on how the released items will be used or transferred.
- 270 Maintaining a tool crib in a radiologically controlled area restricts reuse of those tools to that
- radiologically controlled area, and tools returned to the tool crib represent a restricted release ofthose tools.
- Reuse is the continued use of M&E for their original purpose(s). An example of reuse is ahammer that continues to be used as a hammer.
- **Ruggedness** is the relative stability of a measurement technique's performance when small
  variations in method parameter values are made.
- Scaler is an electronic counter that displays the aggregate of a number of signals, which usually
  occur too rapidly to be recorded individually. In the context of radiological measurements, a
  scaler records the number of counts from a radiation detector over a specified time interval. See
- 280 in this glossary *ratemeter*.
- 281 Scenario A uses a null hypothesis that assumes the level of radioactivity associated with the
- 282 M&E exceeds the action level. Scenario A is sometimes referred to as "presumed not to
- 283 comply" or "presumed not clean."

284 Scenario B uses a null hypothesis that assumes the level of radioactivity associated with the

285 M&E is less than or equal to the action level. Scenario B is sometimes referred to as

286 "indistinguishable from background" or "presumed clean."

287 **Secular Equilibrium** is the condition in which the precursor radionuclide in a decay series has a

longer half-life than any subsequent members of the series. Secular equilibrium is achieved
when the activities for all members of the decay series are equal to the activity of the precursor
radionuclide.

291 Segregation is the process of separating or isolating from a main body or group. In the context

of disposition surveys, segregation is based on the physical and radiological attributes of the

293 M&E being investigated and is used to help control measurement method uncertainty.

294 Sensitivity Coefficient for an input estimate,  $x_i$ , used to calculate an output estimate,

295  $y=f(x_1, x_2, ..., x_N)$ , is the value of the partial derivative,  $\partial f/\partial x_i$ , evaluated at  $i=x_1, x_2, ..., x_N$ . The

296 sensitivity coefficient represents the ratio of the change in y to a small change in  $x_i$ .

Sentinel Measurement is a biased measurement performed at a key location to provide
information specific to the objectives of the Initial Assessment (IA).

Significance Level is, in the context of a hypothesis test, a specified upper limit for the
 probability of a Type I decision error.

301 **Sign Test** is a non-parametric statistical test used to evaluate disposition survey results if the

302 radionuclide being measured is not present in background, or is present at such a small fraction

303 of the action level as to be considered insignificant.

304 Smear is a non-quantitative test for the presence of removable radioactive materials in which the

305 suspected surface or area is wiped with a filter paper or other substance, which is then tested for

- 306 the presence of radioactivity. The surface area tested may be related to the release criterion.
- 307 Smear is also referred to as a smear test, swipe, or wipe.

308 Soft data are qualitative and/or quantitative data that do not directly determine levels of

309 radioactivity. Soft data provide information that is used to infer or deduce knowledge

310 concerning the levels of radioactivity in materials and equipment.

311 **Source Efficiency** is the ratio between the number of particles of a given type above a given

312 energy emerging from the front face of a source or its window per unit time and the number of

313 particles of the same type created or released within the source (for a thin source) or its

314 saturation layer thickness (for a thick source) per unit time (ISO 1988). See also in this glossary

315 *instrument efficiency* and *total efficiency*.

316 **Specific Activity** is the radioactivity per unit mass for a specified radionuclide.

317 Specificity is the ability of the measurement method to measure the radionuclide of concern in318 the presence of interferences.

319 Spectrometry is a measurement across a range of energies. The measurement of alpha particles
320 by energy is called alpha spectrometry.

321 Spectroscopy is the measurement and analysis of electromagnetic spectra produced as the result 322 of the emission or absorption of energy by various substances. The measurement of gamma-ray 323 emissions from a substance is called gamma spectroscopy.

Standard Operating Procedure (SOP) is a written document that details the method for an
operation, analysis, or action with thoroughly prescribed techniques and steps, and that is
officially approved as the method for performing certain routine or repetitive tasks (MARSSIM
2002).

328 **Standard Uncertainty** is the uncertainty of a measured value expressed as an estimated standard 329 deviation, often called a "1-sigma" (1 $\sigma$ ) uncertainty (MARLAP 2004). The standard uncertainty 330 of a value *x* is denoted by u(x). 331 Standardized Initial Assessment is a set of instructions or questions that are used to perform

the initial assessment, usually documented in a standard operating procedure. See also in this

333 glossary *initial assessment* and *standard operating procedure*.

334 **Structures** are buildings or other objects constructed from several parts.

335 **Surficial Radioactive Material** is radioactive material distributed on any of the surfaces of a

336 solid object. Surficial radioactive material may be removable by non-destructive means (such as

337 casual contact, wiping, brushing, or washing) or fixed.

338 **Surrogate Measurement** is a measurement where one radionuclide is quantified and used to

339 demonstrate compliance with the release criterion for additional radionuclide(s) based on known

340 or accepted relationships between the measured radionuclide and unmeasured radionuclides.

341 Survey Unit for M&E is the specific lot, amount, or piece of equipment on which measurements
342 are made to support a disposition decision concerning the same specific lot, amount, or piece of
343 equipment.

344 Total Efficiency is the product of the instrument efficiency and the source efficiency. See in
345 this glossary *instrument efficiency* and *source efficiency*.

346 **Type I Decision Error** occurs when the null hypothesis is rejected when it is actually true. The

Type I decision error rate, or significance level, is represented by α. See in this glossary *null* 

348 *hypothesis* and *significance level*.

349 Type II Decision Error occurs when the null hypothesis is not rejected when it is actually false.
350 The Type II decision error rate is denoted by β. See in this glossary *null hypothesis*.

351 Unrestricted Release is the removal of radiological regulatory controls from materials and

352 equipment. Clearance is a subset of release. See in this glossary *release* and *clearance*.

Upper Bound of the Gray Region (UBGR) is the radionuclide concentration or level of
radioactivity that corresponds with the highest value from the range where decision errors are not
controlled for statistical hypothesis testing. For Scenario A the UBGR corresponds to the action
level. For Scenario B the UBGR corresponds to the discrimination limit. See in this glossary *action level, discrimination limit, gray region, Scenario A*, and *Scenario B*.
Volumetric Radioactive Material is radioactive material that is distributed throughout or within
the materials or equipment being measured, as opposed to a surficial distribution. Volumetric

360 radioactive material may be homogeneously (e.g., uniformly activated metal) or heterogeneously

361 (e.g., activated reinforced concrete) distributed throughout the M&E.

Wilcoxon Rank Sum (WRS) Test is a non-parametric statistical tests used to evaluate
 disposition survey results if the radionuclide being measured is present in background by
 comparing the results to measurements performed using an appropriately chosen reference

365 material.

| NRC FORM 335<br>(9-2004)<br>NRCMD 3.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1. REPORT NUMBER<br>(Assigned by NRC, Add Vol., Supp., Rev.,<br>and Addendum Numbers, if any.) |             |  |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------|-------------|--|
| BIBLIOGRAPHIC DATA SHEET<br>(See instructions on the reverse)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | NUREG-1575, Supp. 1<br>EPA 402-R-06-002<br>DOE/EH-707                                          |             |  |
| 2. TITLE AND SUBTITLE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 3. DATE REPORT PUBLISHED                                                                       |             |  |
| Multi-Agency Radiation Survey and Assessment of Materials and Equipment Manual                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | MONTH                                                                                          | YEAR        |  |
| (MARSAME): Draft Report for Comment                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 12                                                                                             | 2006        |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 4. FIN OR GRANT NUMBER                                                                         |             |  |
| 5. AUTHOR(S)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 6. TYPE OF REPORT                                                                              |             |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Technical                                                                                      |             |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 7. PERIOD COVERED (Inclusive Dates)                                                            |             |  |
| <ol> <li>PERFORMING ORGANIZATION - NAME AND ADDRESS (If NRC, provide Division, Office or Region, U.S. Nuclear Regulatory Commission, and mailing address; if contractor, provide name and mailing address.)</li> </ol>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                |             |  |
| Department of Defense, Washington, DC 20301-3400<br>Department of Energy, Washington, DC 20585-0119<br>Environmental Protection Agency, Washington, DC 20460-0001<br>Nuclear Regulatory Commission, Washington, DC 20555-0001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                |             |  |
| 9. SPONSORING ORGANIZATION - NAME AND ADDRESS (If NRC, type "Same as above"; if contractor, provide NRC Division, Office or Region, U.S. Nuclear Regulatory Commission, and mailing address.)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                |             |  |
| Department of Defense, Washington, DC 20301-3400<br>Department of Energy, Washington, DC 20585-0119<br>Environmental Protection Agency, Washington, DC 20460-0001<br>Nuclear Regulatory Commission, Washington, DC 20555-0001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                |             |  |
| 10. SUPPLEMENTARY NOTES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                |             |  |
| 11. ABSTRACT (200 words or less)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                |             |  |
| The Multi-Agency Radiation Survey and Assessment of Materials and Equipment Manual (MARSAME) is a supplement to the Multi-Agency Radiation Survey and Site Assessment Manual (MARSSIM). MARSAME provides information on planning, conducting, evaluating, and documenting radiological measurements and decisions on the disposition of materials and equipment based on action levels for release or interdiction. MARSAME is a multi-agency consensus document that was developed collaboratively by four Federal agencies having authority and control over radioactive materials: Department of Defense (DOD), Department of Energy (DOE), Environmental Protection Agency (EPA), and Nuclear Regulatory Commission (NRC). MARSAME's objective is to describe consistent and technically defensible approaches for radiological measurements of materials and equipment, while at the same time encouraging an effective use of resources. |                                                                                                |             |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                |             |  |
| 12. KEY WORDS/DESCRIPTORS (List words or phrases that will assist researchers in locating the report.)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 13. AVAILABI                                                                                   |             |  |
| Measurement, Radiological, Planning, Data Quality Objectives, Survey, Materials, Equipment,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 14 SECURIT                                                                                     |             |  |
| Statistics, Quality Assurance                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | (This Page)                                                                                    |             |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | UT<br>(This Report                                                                             |             |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ur                                                                                             | nclassified |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 15. NUMBE                                                                                      | R OF PAGES  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 16. PRICE                                                                                      |             |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | DRINTE                                                                                         |             |  |

PRINTED ON RECYCLED PAPER



## **JULTI-AGENCY RADIATION SURVEY AND ASSESSMENT OF MATERIALS AND EQUIPMENT MANUAL (MARSAME) DRAFT REPORT FOR COMMENT**

