

2005 Minerals Yearbook

GERMANY

By Steven T. Anderson

In 2005, Germany remained a leading global exporter of industrial goods and services (including processed and fabricated mineral products). However, the country's mineral industry depended almost entirely on imported mineral raw materials. Germany did produce almost enough lignite to satisfy domestic consumption. The international competitiveness of the country's nonfuel mineral processing and fabrication sectors relied primarily on such factors as a highly skilled labor force, rapid assimilation of new technology (especially metal and other mineral materials recycling technologies), and the development and maintenance of liberal trade relationships both within and outside of the European Union (EU), which officially expanded to 25 members in May 2004. Through 2004 and 2005, rising global demand for fossil fuels and associated price increases for imports of mineral fuels into Germany have had a significant effect on the operating costs for the country's mineral industry. During this same timeframe, rapid development of mineral processing operations in economically less developed or lower cost (for mineral extraction, processing, and transportation) regions of the world placed increased pressure on the mineral industry to minimize energy, labor, and material costs within the country (U.S. Library of Congress, Federal Research Division, 2005, p. 10; Bundesverband der Deutschen Industrie e.V., 2006c).

In 2005, Germany's gross domestic product (GDP) based on purchasing power parity was about \$2,522 billion, which was 3.33% higher than that of 2004. The real GDP (adjusted only for inflation) increased by just 0.9% compared with that of 2004, and the rate of inflation was about 2%. In 2004 (the latest year for which reliable trade data were available), Germany spent 3% of its nominal GDP (or about \$76 billion) on imports of mineral raw materials, including crude petroleum (\$31 billion), natural gas (\$18 billion), nonferrous metals (\$9.4 billion), ferroalloys (\$4 billion), ferrous metals (\$3.7 billion), all types of coal (\$3.6 billion), precious metals and stones (\$3.2 billion), industrial minerals (\$1.5 billion), and other mineral fuels, including uranium (\$1.4 billion).¹ In 2005, the nominal value of Germany's production of basic ferrous and nonferrous metals (not including production of finished metal products, such as castings from German foundries) increased to about \$86.74 billion from \$76.95 billion in 2004 mainly because of higher metal prices (Bundesanstalt für Geowissenschaften und Rohstoffe, 2005, p. 24, 29-30; Statistisches Bundesamt, 2006, p. 15; International Monetary Fund, 2006§²).

In current dollars, the value of the country's mine output of industrial minerals was about \$4.4 billion and contributed about 0.16% of Germany's GDP compared with \$4.2 billion and about 0.15% of the GDP in 2004. Mine production of bituminous and anthracite (hard) coal was economical compared with importing

these types of coal to meet domestic demand but only because producers received Government subsidies. Because of these subsidies, it is not possible to accurately interpret publicly available figures concerning the total value of production of these types of coal and its contribution to the GDP. Domestic production of lignite was not subsidized. In 2005, the nominal value of the country's mine production of lignite was about \$195 billion and contributed about 7.11% of Germany's nominal GDP, which was a slight decrease compared with \$199 billion and about 7.25% of the GDP in 2004. In terms of tonnage, Germany was the world's leading producer of lignite. The country was also the fourth ranked producer of potash in the world and the leading producer in the EU. Germany led the EU and was the world's second ranked producer of salt (NaCl content). Germany was ranked only slightly below the Czech Republic in production of kaolin in the 25-member EU and was the fourth ranked producer in the world. Germany was also a leading producer of barite, bentonite, crude gypsum, and feldspar in the EU. Germany's metal processing sector was the leading producer of aluminum metal, refined copper, and crude steel in the EU and the EU's second leading producer of refined lead and zinc metal (Bundesanstalt für Geowissenschaften und Rohstoffe, 2005, p. 138, 150, 155, 157, 159, 161, 165; Kostick, 2006; Statistik der Kohlenwirtschaft e.V., 2006; Statistisches Bundesamt, 2006, p. 12; Virta, 2006; International Monetary Fund, 2006§).

In 2005, Germany's economy continued a trend begun in 1993 of increased expenditures on imports of mineral raw materials. Previously, the expenditure for net imports of nonprecious metals (mostly ores and concentrates) had decreased to 0.09% of Germany's real GDP by 1993 from about 0.5% in 1970 partially owing to more-efficient use of these materials in manufacturing and to evolution of the overall economy toward relatively greater added value from the services sector. In 2004 (the latest year for which reliable data were available), the cost of importing nonprecious metals (including rapidly increasing amounts of scrap metal) had increased to about 0.62% of the real GDP, which placed Germany among the upper one-third of industrialized countries that imported nonprecious metals and the country was estimated to have maintained that rank in 2005. For comparison, China spent about 1.5% of its real GDP on imports of nonprecious metals in 2004, and France spent -0.003%; Sweden, -0.012%; the United States, -0.026%; Canada, -0.158%; and India -0.217% (Bundesverband der Deutschen Industrie e.V., 2006a, d).

In 2004 (the latest year for which reliable statistics were available), the percent contribution of all industrial production to gross value added in the German economy was 25.1% compared with 30.6% in 1991. This value added by industrial production was led by, in decreasing order of percent contribution, the automobile industry, machinery production, production of chemicals (including those derived from domestically mined industrial minerals), and production of iron and steel products and nonferrous metals. From 1991 to 2005, the industrial sector

THE MINERAL INDUSTRY OF GERMANY

¹Where necessary, values have been converted from euros (€) to U.S. dollars (US\$) at an annual average exchange rate of €0.80431=US\$1.00 for 2004 and €0.80273=US\$1.00 for 2005.

 $^{^2} References that include a section mark (§) are found in the Internet References Cited section.$

was losing its relative share in domestic gross value added to the services sector at a much lower rate than from 1970 to 1991, and industry's share appeared to be leveling off at about 25% in 2005. For at least the next 15 to 20 years, the value added by industrial production was expected to continue to retain its relative importance within the German domestic economy at above a 20% share. The gross domestic value added by the metals processing sector was an estimated \$60 billion through the foundry stage (amount does not include further stages in production of finished metal products, the services associated with selling metal products, or any processing and production of precious metals in Germany) (Bundesverband der Deutschen Industrie e.V., 2006c, d; Statistisches Bundesamt, 2006, p. 15; International Monetary Fund, 2006§).

Government Policies and Programs

In 2005, the Government continued to implement its "Agenda 2010," which was a series of policy objectives aimed at increasing international competitiveness and employment and decreasing expenditures on healthcare and welfare by both the Government and private firms, including those companies involved in the mineral industry. Germany's Agenda 2010 was being implemented alongside a set of reforms known as the Lisbon Strategy that was approved in 2000 by the European Commission to increase the competitiveness in global markets of all members of the EU. The series of changes in Germany's labor market associated with Agenda 2010 are known as Hartz I, II, III, and IV, after Peter Hartz (the head of the German commission that was set up in 2002 to draft these reforms). Hartz IV came into effect at the beginning of 2005. In 2005, the unemployment rate in Germany was 9.1%, which represented a slight decrease compared with an unemployment rate of 9.2% in 2004. Real wages in the country continued to fall after already falling in 2003 and 2004. In 2005, domestic employment levels increased only slightly, if at all, for most industries. Some companies increased investment in mineral-related development projects in foreign countries with lower labor costs and reduced their domestic production capacity. An incentive to invest abroad for firms in the processing sector (not just the extractive sector) of the mineral industry was the high cost of transporting ores and concentrates to Germany for further processing, which was at a record level in 2005. Traditionally, investment abroad by German mineral industrial companies had been more focused on investing only in mineral extraction in foreign countries to help secure those deposits of mineral raw materials for further processing and some end consumption in Germany (Berger and Danninger, 2006; Bundesverband der Deutschen Industrie e.V., 2006c; International Monetary Fund, 2006§).

Industrial representatives advocated that, because private companies—including those heavily involved in the mineral industry—had consolidated and restructured to cut costs extensively by the end of 2005, the Government should continue to follow through on its proposed Agenda 2010 reforms. These industrial leaders suggested that the Government still needed to make further reductions in the corporate tax in order to lower it to an internationally competitive level. They also lobbied for policymakers to not follow through on plans to implement an increase of 3% (to 19% from 16%) in the value-added tax rate, to implement a proposed trade tax, or to increase taxes to supplement the national healthcare system in 2007. In 2005, the Government and industrial leaders did agree on some reforms, which included increasing the eligibility age for social security to 67 and increasing grants for industrial research and development. Industrial representatives continued to lobby for reducing such nonwage labor compensation as company financing of the social security system, company contributions to unemployment insurance, and company funding of the national healthcare system. These representatives basically continued to adopt the position that it was still too expensive to employ more workers in Germany. Companies also lobbied for more flexibility in hiring and firing, including reducing the trial period that firms must wait before dismissing a new employee to substantially below the Government's proposed period of 24 months (U.S. Library of Congress, Federal Research Division, 2005, p. 9-11; Berger and Danninger, 2006; Bundesverband der Deutschen Industrie e.V., 2006b).

In March 2005, the EU revised its Lisbon Strategy, including eliminating the target date for required completion of reforms (2010). The revised strategy set general guidelines for 3-year nation-specific economic reform programs to be more fully developed by each EU member state. By the end of 2005, the German Government was still debating implementation of the planned Agenda 2010 reforms of nonwage worker compensation by firms, and the Hartz IV reforms had not yet achieved the designed goals of reducing social welfare costs or the number of persons unemployed after the first full year of implementation. The Government was also considering proposals for a revised economic reform program to replace Agenda 2010, in compliance with the revised Lisbon Strategy (Sykes, 2005).

In 2005, some of the 10 newest members of the EU [the EU (10) countries], which were officially admitted on May 1, 2004, had already implemented extensive reforms to improve the efficiency and international competitiveness of their economies, including reforms of mineral industries that had been predominantly state-run before these market reforms were enacted. Even after implementation of Hartz IV, the mineral industry of Germany still had more-generous unemployment and other social benefits than were in effect in such new EU countries as the Czech Republic and Poland. In 2005, the mineral industries in some of the EU (10) countries were taking advantage of lower labor costs and a surprisingly attractive climate for investment, including foreign direct investment (FDI) by companies based in the 15 older EU countries [EU (15), including Germany], to create stronger competition within the EU (15) member countries for EU imports of raw mineral materials and exports of refined mineral products (U.S. Library of Congress, Federal Research Division, 2005, p. 2, 10, 14; Bundesverband der Deutschen Industrie e.V., 2006b, c, d; Norddeutsche Affinerie AG, 2006, p. 2-3).

In 2005, the Government was considering removing or reducing labor quotas that Germany and some other EU (15) countries had hitherto kept in place to restrict imports of labor from the EU (10) countries until 2011 (in Germany). Such a policy change could reduce incentives for companies to transfer operations to or develop new mineral producing or processing projects in the EU (10) countries by speeding up equalization of labor costs for companies among the EU (15) and EU (10) countries. The German Government expressed a preference for EU (10) countries to raise wages and taxes more quickly, however, given the difficulty of lowering these costs in Germany. On December 29, the German finance minister called for the EU (10) countries to reform their tax systems to promote fair fiscal competition and to reduce the flow of EU (15) investment and relocations of German firms into EU (10) countries (Bundesverband der Deutschen Industrie e.V., 2006b; EUbusiness Ltd., 2005§).

Trade policy was another important policy issue for the mineral industry of Germany. In 2005, industrial representatives in Germany continued to be concerned about securing primary mineral raw materials (ores and concentrates) for the country's metals processing sector and other industries, and they lobbied specifically for better EU trade protection rules against exports of scrap metal. They suggested that Germany possesses some of the most efficient and environmentally friendly technology in the world to extract metals from scrap materials, but that the current EU trade guidelines were resulting in increased outflows of scrap metals from Germany and other EU countries as the international markets for these metals continued to experience shortages during the year. These industrial advocates cited Russia as an example of a nearby competitor for scrap metals that was utilizing a 15% tariff on exports of scrap steel and a 50% tariff on exports of scrap aluminum and copper to retain more of that country's scrap for recycling of these strategically important metals. Well before scrap metals became such a scarce commodity and China accounted for such a significant proportion of global demand for scrap, many EU-based metallurgical companies had replaced open hearth operations with mainly scrap-fed electric arc furnaces (Bundesverband der Deutschen Industrie e.V., 2006a, c, d; Norddeutsche Affinerie AG, 2006, p. 2-3).

Structure of the Mineral Industry

In 2005, small- to medium-scale producers (SMEs) still represented the most common scale of production within the mineral industry of Germany, although more in the mining, quarrying, and processing of industrial minerals than in the processing of metals. The German term for describing most of the companies in the mineral industry is "Mittelstand," which is commonly used to describe a firm of 100 to 1,000 employees. Many metal processing companies have become quite large with increased consolidation of ownership in the EU and Germany, although some of these companies were still considered part of the Mittelstand either because of the historic workforce levels or because they were producers of intermediate goods, regardless of the scale of production or the number of employees. In 2005, mineral industry firms still labeled as part of the Mittelstand included companies with 5 to 5,000 employees, although the Institut für Mittelstandsforschung Bonn (in cooperation with the EU) was attempting to redefine Mittelstand firms to be only those that hire fewer than 500 employees and are almost entirely family owned (Hartmann, 2005).

The major companies involved in the mineral industry of Germany that employ more than 1,000 people are the coal producers RAG Aktiengesellschaft (hard coal) and RWE Power AG (lignite). About 35,000 of RAG Aktiengesellschaft's 98,000 employees were employed by the company's coal mining subsidiary, Deutsche Steinkohle AG, and 18,923 of these were employed "subsurface" (RAG Aktiengesellschaft, 2006, p. 1, 22). In 2005, RWE Power was the subsidiary of RWE Aktiengesellschaft, which was still in charge of lignite production, and 5,572 of RWE Power's approximately 18,700 employees contributed to mine production of lignite on a fulltime basis (RWE Power AG, 2006).

Most of the metal processing companies, especially the steel producers, employed substantial numbers. In 2005, the major steel producers were ThyssenKrupp Steel AG (28,400 employees in production of crude steel within Germany), Salzgitter AG (17,600 employees), and Arcelor S.A. (about 6,000, which included only employees at EKO Stahl GmbH and Stahlwerke Bremen GmbH). The nonferrous metal processing companies that were large employers in Germany were Hydro Aluminium Deutschland GmbH (5,600 in Germany) and Norddeutsche Affinerie AG (2,424). Xstrata plc was a prominent example of a metal processor in Germany that ranked solidly in the Mittelstand, because about 300 people were employed by its zinc smelter in Nordenham, Germany. The company that employed the most people to produce industrial minerals in Germany was HeidelbergCement AG (4,400). On average from 2001 through 2005, the metal processing sector employed roughly 800,000 people per year within Germany, and the industrial minerals sector employed about 150,000 people per year (HeidelbergCement AG, 2006, p. 49; Norddeutsche Affinerie AG, 2006, p. 71; Norsk Hydro ASA, 2006, p. 86; Salzgitter AG, 2006, p. 5; Sigge, 2006; ThyssenKrupp Steel AG, 2006, p. 96; Arcelor Eisenhüttenstadt GmbH, 2006§).

Almost all sectors of the mineral industry of the EU have undergone increased concentration in ownership, and this trend continued in 2005. In the steel sector, consolidation of ownership took a big step in 2006 with the acquisition of Arcelor (based in Luxembourg) by Mittal Steel Co. NV of the Netherlands. In Germany, Arcelor completely owned EKO Stahl, Stahlwerke Bremen, and Stahlwerk Thüringen GmbH in addition to a majority interest (51.25%) in AG der Dillinger Hüttenwerke. Mittal had already acquired a steel plant in Hamburg through acquisition of Hamburger Stahlwerke GmbH in 1995 and two steel plants near Duisburg through acquisition of Thyssen Duisburg GmbH in 1997. Arcelor was formed in 2002 by the merger of ARBED S.A. (Luxembourg), Aceralia Corporación Siderúrgica (Spain), and USINOR S.A. (France). ARBED contributed its ownership of Stahlwerke Bremen (acquired in 1995) and Stahlwerk Thüringen (acquired in 1992) to Arcelor's properties in Germany, and USINOR contributed its ownership of EKO Stahl (acquired in 1998) and its interest in Dillinger Hüttenwerke (acquired in 1989) (Businessworld, 2005; AG der Dillinger Hüttenwerke, 2005§; Arcelor S.A., 2006§; Arcelor Thüringen GmbH, undated§).

The merger of Thyssen Stahl AG and Krupp Stahl AG in 1999 to form ThyssenKrupp Stahl AG (the name was changed to ThyssenKrupp Steel AG in 2005) provided the leading German-based counterweight to foreign ownership of crude steel production capacity. In 2005, the second ranked producer was Salzgitter AG whose indirect interests in Hüttenwerke Krupp Mannesmann GmbH (HKM) enabled it to outrank Arcelor during the year. Salzgitter owned about 7.9 million metric tons per year (Mt/yr) of crude steel production capacity in Germany. Arcelor, which ranked a close third with about 7.7 Mt/yr of capacity, was expected to move up in the rankings in 2006 because of its merger with Mittal. In June 2005, Salzgitter formed a joint venture with Vallourec S.A. of France. This resulted in Salzgitter's 45% share of Vallourec & Mannesmann Tubes S.A. (VMT) being transferred to Vallourec, which in turn reduced its share in HKM to 20% compared with 30% in 2004. Also as part of this deal, Salzgitter increased its direct share in HKM to 30% from 20% through Salzgitter's wholly owned subsidiary, Mannesmannröhren-Werke GmbH (for which it had just finished acquiring the last 7% interest from ThyssenKrupp in December 2004). By the end of 2005, Salzgitter's share of Vallourec (and VMT) was 17.2% (table 2; Salzgitter AG, 2006, p. 6, 10-11, 12, 14, 19; ThyssenKrupp Steel AG, 2006, p. 9, 13; Thyssen AG, 1998, p. 27).

In 2005, Norsk Hydro ASA of Oslo, Norway, owned the largest share of combined primary and secondary aluminum production capacity in Germany, but production still remained competitive because of lower entry costs for potential producers of secondary metal. Primary production in Germany required additional investment in negotiating contracts with foreign alumina and bauxite mineral providers and paying transportation costs to import the necessary raw mineral materials from a much greater distance than that required to transport scrap to the country's secondary smelters, on average. Along with domestic energy costs, international transportation costs were at record levels during the year. Norsk Hydro also targeted replacement of primary production capacity with secondary at its wholly owned subsidiary Hydro Aluminium Deutschland GmbH mainly because secondary production of aluminum metal was estimated to require about 95% less energy. Since completing its acquisition of Hüttenwerke Kayser AG in 2003, Norddeutsche Affinerie controlled production of almost all the secondary refined copper in Germany and was essentially the only producer of primary refined cathodes in the country (Norddeutsche Affinerie AG, 2006, p. 12, 56-58; Norsk Hydro ASA, 2006, p. 5, 33, 35, 39, 55).

Consolidation in ownership of the production capacities for producing industrial minerals also continued to increase in 2005. In January, Buzzi Unicem SpA (Italy) increased its share of the total share capital of Dyckerhoff AG to about 76.7% compared with 64.9% in 2004. Buzzi Unicem began its acquisition of Dyckerhoff in August 2003 and was the second ranked producer of cement in Germany in 2005. This was partly owing to Dyckerhoff's acquisition of Deuna Zement GmbH in 1991. HeidelbergCement AG was the leading cement producer in Germany after the company completed its acquisition of Anneliese Zementwerke AG in March 2003 by purchasing the remaining 48.8% interest held by Dyckerhoff. WBB Minerals Limited of the United Kingdom acquired Fuchs'sche Tongruben GmbH & Co. KG in 1974 and was the leading producer of kaolin in Germany until it was acquired by S.C.R.-Sibelco NV of Belgium through Sibelco's merger with Watts Blake Bearne & Co. of the United Kingdom in 2001. Kali und Salz GmbH has been the only producer of potash in Germany since acquiring Mitteldeutsche Kali Aktiengesellschaft in 1993, and of rock salt since merging the company's salt business with that of Solvay S.A. (Belgium), including the Solvay subsidiary esco GmbH, in 2004. At the beginning of 2005, K+S Salz GmbH was separated from Kali und Salz as a separate company focused on the increased rock salt business, and Kali und Salz was renamed K+S Kali GmbH to reflect its focus on potash ("Kali") production (WBB Minerals Limited, 2005; Dyckerhoff AG, 2006, p. 44-45; HeidelbergCement AG, 2006, p. 48, 82, 141; King, 2006; K+S Aktiengesellschaft, 2006§).

In 2005, Sibelco was the world's leading producer of silica sand and ball clay with more than 225 plants on 5 continents. Increased concentration of ownership of mineral commodity production capacity globally could continue to contribute to the ongoing increase in the ownership concentrations in the industrial minerals and metals sectors of the mineral industry of Germany. Mergers and acquisitions in the metals processing sector appear to take place in waves of increased activity followed by lulls of very little activity. The surge in consolidation activity that was ongoing in 2005 appears to have resulted from an increased emphasis on privatization of industry in the EU and less restrictions on FDI, especially after the Lisbon Strategy was adopted in 2000. In 2006, consolidation in the metals processing sector of the mineral industry of the EU was still continuing even following EU approval of the merger of Arcelor and Mittal, and it was not clear when the pace of consolidation would subside to negligible levels again. A similar level of consolidation in ownership of mining and quarrying capacities for production of industrial minerals in Germany and the EU appears to have already taken place substantially earlier than in the metals sector. This was at least partially because the ownership rights to extract industrial minerals from existing sites were under less control by EU-member Governments, on average, although acquiring new lands and opening new areas for the extraction of industrial minerals has recently become more difficult owing to increased levels of environmental protection in EU land-management legislation (Sykes, 2005; WBB Minerals Limited, 2005; MEPS International Ltd., 2006a, b; Okes-Voysey and Forbes, 2006, p. 1).

Environmental Issues

EU environmental directives require that the member nations reach certain environmental objectives by a set date, and that the provisions of the directives have to be included as part of the national laws of all members. These EU directives usually outline general rules but seldom set out any detailed requirements and do not regulate how the directive is to be implemented. Directives are the most frequently used policy instruments in EU environmental policy. In 2005, the EU environmental directives that were of particular concern to companies involved in the mineral industry of Germany were the Greenhouse Gas Emission Trading Scheme (EU-ETS Directive), Mining Waste Directive, and Groundwater Directive. Based on a 2004 study, steel industry officials claimed that the uneven implementation of the EU-ETS by individual EU member states had placed steel companies operating in Germany at a disadvantage in 2005 compared with those operating in almost every other EU member country, including steel companies in Austria, Finland, Luxembourg, the Netherlands, and the United Kingdom. This was because the emissions trading scheme allowed companies with high emissions in other countries to acquire a greater number of EU permits to continue lower-cost (higher-emissions) production, while companies based in Germany still had to install required scrubbers to lower emissions as part of Germany's own domestic emissions reduction program and could not use the permits. The evaluation in the study determined that the costs associated with acquiring and renewing these permits would add less to other EUcountry-based companies' operating costs than the costs to companies based in Germany of using and maintaining the cleaner technologies (Steel Institute VDEh and German Steel Federation, 2004; Sykes, 2005; European Communities, 2006§).

Mineral and metals companies were also required to comply with the EU's Pollutant Release and Transfer Register (EU-PRTR) in order for the EU to track the emission, transportation, and disposal of potential pollutants. During autumn 2005, the EU parliament began formal debate on the EU's new chemical control directive-Registration, Evaluation, Authorization and Restriction of Chemicals (REACH). Although other EU safety and environmental regulations already cover such mine products as minerals, ores, and concentrates, the REACH proposal was designed to more directly require mineral producers to prove that these substances should not be classified as hazardous materials by testing and registering all contents of these chemically complex substances rather than leave this task to EU regulators. REACH could allow classification of many industrial minerals and metals (including metals contained in scrap) as hazardous chemicals until proven otherwise by the producers. For mine production of metals, representatives of mineral industries in Africa and South America were attempting to defend the producers in those countries against the additional costs that REACH would impose on mineral companies that export to Germany and other EU states. German steel producers were also lobbying for steel scrap to no longer be declared as waste, according to the European Waste Directive, or defined as a hazardous material, according to REACH (Mining Journal, 2004; Sykes, 2005; Wall Street Journal, The, 2005; Association of German Steel Recycling and Disposal Companies and German Steel Federation, 2006; Azzopardi, 2006§).

Production

In 2005, most mineral producing and processing companies in Germany were able to demonstrate higher productivity, in accordance with the provisions of the Lisbon Strategy and Agenda 2010, but these claims were based on reduced costs through restructuring coupled with high prices for most of the mineral commodity output of these firms. Levels of production of processed metals mostly remained the same or decreased in 2005 compared with those of 2004. The few exceptions were recovery of refined copper from secondary sources, primary production of lead metal, secondary production of magnesium metal, recovery of platinum-group metals (PGM) (mostly as a byproduct of copper refining, including from secondary sources), and recovery of a bit more uranium from the ongoing cleanup of the former Wismut Mine (table 1; Kidd, 2005). Decreased production of metals was not primarily caused by constraints on production capacity, however, although limiting excess capacity was a goal in the restructuring efforts of many metal processing companies during this timeframe in Germany. The largest constraints on production were the high costs of energy and mineral raw material inputs, most of which were imported (Okes-Voysey and Forbes, 2006, p. 4, 10, 16-18).

In 2005, demand for industrial minerals by the chemical industry of Germany, which was mostly export-oriented, helped encourage increased production of a few industrial minerals compared with 2004, such as boron compounds, fluorspar, synthetic soda ash, and marketable sulfur. Demand for industrial minerals by the domestic agricultural and construction sectors remained mostly stagnant, however, and production of cement, lime, nitrogen, phosphoric acid, and dimension stone decreased. In Germany and the EU, production of natural industrial minerals was becoming increasingly constrained by limited land access to mineral resources. Advocates of the industrial minerals sector claimed that operations that extracted these minerals in 2005 occupied about 0.02% of the total land area regulated by the EU, while agriculture occupied more than 30%. An estimated 20% of the EU's surface area was environmentally protected to a level that prohibited raw mineral extraction, and German officials claimed that the European Commission considered minerals to be of low importance, relative to the environment, in land-use planning for the EU (table 1; Sykes, 2005).

Trade

In 2005, a leading concern of the metal processing sector was the amount of scrap that was leaving the country. In 2004, Germany exported about 9.2 million metric tons (Mt) of iron and steel scrap, 614,000 metric tons (t) of scrap aluminum, 408,000 t of refined copper scrap, and significant quantities of most other marketable scrap metals. For aluminum, copper, and ferrous metals, scrap was the leading export of each metal, respectively. Scrap exports of aluminum and ferrous metals were shipped mostly to other EU countries, but Germany's most important customer for copper scrap metal was China. The rest of Germany's trade in metals reflected its primary role in the global mineral industry as an importer of metallic ores and concentrates and an exporter and consumer of processed metal. Germany did export small amounts of some metallic ores and concentrates as an important transshipping hub. Even refined metal commodities were mostly not exported but further used in German industrial production of automobiles, machinery, and other finished products, of which the metal content is not contained in the tables of this chapter. The United States was generally not a significant consumer (importing at least 5%) of Germany's metal exports, but was the top ranked importer of arsenic; bismuth; cobalt contained in scrap; ferrochromium; iridium, osmium, and ruthenium; mercury; PGM (waste); palladium; rhodium; and zirconium. U.S. imports of nickel contained in scrap, tungsten contained in scrap, and zinc powder ranked it as second among Germany's export markets for these metals. The United States was also the third ranked importer of German exports of refined copper and platinum metal (tables 3, 4; Bundesverband der Deutschen Industrie e.V., 2006c).

In 2004, the mineral industry of Germany was an important primary producer of industrial minerals and supplier for the EU, although a considerable amount of the country's exports in this sector were also part of its extensive role as a transshipper. As a primary producer, Germany was an important supplier of cement, kaolin, feldspar, peat, salt, silica sand, and sulfur, almost entirely to other EU countries. The United States was a top ranked importer only of mullite from Germany; otherwise the U.S. market was not a leading destination for industrial minerals from Germany. Mullite is an important product of ceramic clay producers in the Westerwald region of Germany, however. As Germany continues gradually to reduce the Government's subsidy on mine production of hard coal, the country has become more dependent on imports. The steel manufacturing sector has become especially dependent on imports of hard coking coal as domestic supplies continue to decrease. Before Poland officially joined the EU in 2004, Germany's most important sources of hard coal and coke were all outside of the EU, including, in order of quantity imported, Australia, Canada, China, South Africa, and Russia. Germany is basically self-sufficient in lignite but substantially import dependent on all other mineral fuels. The only mineral fuel for which the United States is a significant importer from Germany is enriched uranium (tables 3, 4; Taylor, 2005; Bundesverband der Deutschen Industrie e.V., 2006c; King, 2006).

Commodity Review

Metals

Aluminum.—At the end of 2005, Norsk Hydro closed the smelter and carbon capacity of the Hamburger Aluminium-Werke GmbH (HAW) in agreement with the two other joint owners of HAW. Hydro also announced that it planned to close its Elbewerk primary aluminum plant at Stade at the end of 2006. These closures and announcements of further closures were reportedly in response to the inability of the company to secure energy contracts for these plants at rates that would sustain profitable production for a sufficient period into the future. The company expressed optimism that these two closures would improve the international competitiveness of its primary aluminum production operations (Norsk Hydro ASA, 2006, p. 35, 54).

Copper.—In 2005, Norddeutsche Affinerie AG (NA) still had the largest capacity for producing refined copper in the EU, even after restructuring in 2003 and the first quarter of 2004. This restructuring resulted in a relative decrease in primary production, such that only 60% of its copper cathode production was produced from inputs of imported ores and concentrates and 40% was from recycled materials (which were much more available and less costly domestically). Although NA still did not venture into owning a majority interest in any foreign copper mines, the company secured two new contracts in July 2005 to process concentrates from the Ok Tedi Mine in Papua New Guinea and the Batu Hijau Mine in Indonesia. The company expected these contracts to result in increased production of primary refined copper in 2006 and a more-efficient utilization of existing production capacity. The production of primary refined PGM increased substantially in 2004 compared with that of 2003 and increased significantly again in 2005. These increases in production are related to the PGM content of copper ores and concentrates processed by NA (unpublished). Total German imports of copper ores and concentrates increased to 1,142 t in 2004 compared with 880 t in 2003 and were expected to increase again (slightly) to about 1,150 t in 2005 (table 1; Bundesanstalt für Geowissenschaften und Rohstoffe, 2005, p. 86; Mining Journal, 2005; Norddeutsche Affinerie AG, 2006, p. 12, 63).

Iron and Steel.—In 2005, Germany accounted for about one-fourth of total crude steel production in the EU (25), and was ranked sixth in world production. ThyssenKrupp Steel was the 10th ranked producer in the world (Bundesministerium für Wirtschaft and Technologie, 2006§). ThyssenKrupp continued to restructure to reduce its crude steel production costs in response to decreasing availability and increasing costs of importing the necessary mineral raw materials in Germany. During the year, ThyssenKrupp's cost-cutting efforts included cutting back production of crude steel by 100,000 Mt in the second quarter and by another 200,000 Mt in the third quarter from levels planned at the beginning of the year. The cuts were primarily owing to an unexpected buildup in company inventories during the first quarter (AFX News Limited, 2005).

The company agreed to invest in an expansion of its crude steel production capacity, but in Sepetiba, Brazil, rather than in Germany. In Brazil, costs were considerably lower and the availability of mineral raw materials, especially iron ore, was substantially higher. Companhia Vale do Rio Doce of Brazil had a 10% interest in the new Brazilian steel mill, and ThyssenKrupp expected the mill to have a production capacity of 4.4 Mt/yr of crude steel and be completed by about the middle of 2008. The company expected eventually to expand its production capacity of coated steel and rolled products in Germany after securing this additional, lower-cost supply of crude steel from this project in Brazil, although no timeline for this capacity expansion in Germany was provided in 2005. In addition to vertically integrating downward into securing energy sources for metals processing by owning controlling shares in mineral fuel production facilities, which was taking place in the aluminum and copper refining sectors in Germany, ThyssenKrupp also had secured the exclusive services of at least one existing hard coal mine in Germany that had provided energy and coking coal for the steel company since 2003 (Statistik der Kohlenwirtschaft e.V., 2004; ThyssenKrupp Steel AG, 2006, p. 11, 37, 48-49).

Zinc.—Since purchasing the zinc smelter and refinery in Duisburg in 2003, Sudamin MHD GmbH invested in restructuring the operation to convert it into a more-modern processing facility that could produce high-quality zinc and other minor metals from 100% recycled sources of feed (itelligence AG, 2004). This modernization process was scheduled to be completed in 2005, but the restructuring was reportedly not sufficient to keep pace with increasing energy costs in Germany. Instead, the company officially closed the smelter on August 8, 2005 (Thurtell, 2005; BaseMetals.com, 2005§).

Industrial Minerals

Cement.—HeidelburgCement AG was the leading producer of cement in Germany and the fourth ranked producer in the world. In 2005, the company's operations in Germany still exhibited a lower use of capacity than company leaders wanted. These leaders also expressed dissatisfaction with high costs (especially for energy) and high taxes in Germany. The company did increase domestic production by 7% to 7.6 Mt in 2005 compared with 7.1 Mt in 2004 after acquiring Teutonia Zementwerk AG, Hannover, in December 2004. In 2005, the company continued restructuring its operations in Germany to increase capacity utilization and reduce costs. The company estimated that its domestic production from the same plants that it operated in 2004 (excluding Teutonia Zementwerk) decreased by about 2% in 2005. New methods to reduce costs included substituting blast furnace slag (recycled from steel production) and fly ash (recovered from coal driven power stations) for clinker in some of the company's domestic cement production. These recycled inputs were less costly than the natural raw mineral inputs that are traditionally used in the production of clinker. Other cement companies also substituted these inputs in their cement production in Germany. Of the total cement produced in Germany in 2005, about 3 Mt (9.8%) was produced using fly ash and 2.5 Mt (8.2%) was produced using blast furnace slag (HeidelburgCement AG, 2006, p. 2, 22, 28, 36, 42-43, 48; ICR Research, 2006).

Clay and Shale.-In 2005, not much restructuring was going on in the clays sector of the mineral industry of Germany because most ownership consolidation and reorganization had already taken place long before. The leading producer was WBB Fuchs GmbH & Co. KG (a subsidiary of WBB Minerals and a specialist in kaolinitic clays), but some other significant German companies were still family-owned SMEs, such as Goerg & Schneider GmbH & Co. and Stephan Schmidt KG. Germany was one of the leading producers of kaolin in Western Europe. All these producers were able to remain internationally competitive by producing relatively valuable customized blends, which was still cost effective because up to 25 different clays could be extracted from any one pit operated by these companies, which were located predominantly in the Westerwald region. WBB Fuchs specialized in high alumina blue clays, light firing refractory clay, and kaolins for refractories. The company produced about 200 different blends of clays, many for specific ceramic applications, such as isostatic pressing and pressure casting. Stephan Schmidt produced white- and light-firing clays, red-firing clays with high mechanical strength, special clays for engobes and glazes, binding clays, granulated clays, and spray-dried clay bodies. Georg & Schneider specialized in refractory clays, especially chamotte (or firebrick clay) and ball clays (or plastic clays). All these clay blends contained kaolins, but WBB Fuchs produced the highest grade kaolin, on average, with about 38% Al₂O₂ content (Taylor, 2005; King, 2006).

Mineral Fuels

Relative to its consumption, Germany has relatively insignificant domestic mineral fuel sources, other than coal, and must rely on imports to meet its energy needs. As a result of energy-saving measures, energy efficiency (the amount of energy required to produce a unit of gross domestic product) has been improving since the beginning of the 1970s. Oil was expected to remain the primary energy source, but Germany planned to reduce import reliance and reliance on nuclear energy by increasing the energy consumption share of renewable sources (mostly wind-generated energy and some biomass projects) to 20% by 2020 from 7% in 2005. The Government's policy to accomplish this goal centered around "feed-in tariffs," which are included in prices paid by electricity distribution companies to companies that generate electricity from renewable sources. The "tariff" portion of the premium price paid by distributors for renewable power is then subsidized by the Government. In 2004, the share of Germany's primary energy consumption that was provided by oil was about 36% followed by natural gas (23%), hard coal (14%), nuclear power (13%), and lignite (11%); the remainder was provided by nonmineral-fuel energy sources. In 2000, the Government agreed to phase out all nuclear powerplants by 2022 and this policy resulted in the closure of the Obrigheim plant on May 11, 2005 (U.S. Energy Information Administration, 2005, U.S. Library of Congress, Federal Research Division, 2005, p. 11-12; Energy Research Centre of the Netherlands, 2005§). In 2005, industrial leaders in Germany asserted that there is an essential compatibility between Germany's obligation to protect the environment and a strategy to maintain diversity in the country's energy supply, including nuclear fuel (Bundesverband der Deutschen Industrie e.V., 2005).

Coal.—Hard coal mining is centered in the Ibbenbüren, the Ruhr, and the Saar coalfields in Germany and is uneconomical without subsidies because the current resources lie prohibitively far underground (SPG Media Limited, 2005§). As the hard coal subsidy is phased out, more mines are being closed resulting in greater imports of hard coal, coking coal, and coke. The Lohberg-Osterfeld Mine was scheduled to be closed, which resulted in only eight active hard coal mines being left operational. The Walsum and the Lippe Mines were also scheduled to be closed in 2009 and 2010, respectively (Bundesministerium für Wirtschaft und Arbeit, 2005, p. 66). In the second quarter of 2005, however, the price of imports of hard coal was 22% higher than that of the second quarter of 2004. In 2004, 99% of the coal imported into Germany was hard coal, and the country imported even more hard coal in 2005. If the price of imports continues to rise, then production of hard coal could potentially become economically viable again without a subsidy. The amount of the subsidy was about \$3.36 billion in 2005, which was about \$130 per metric ton of combined anthracite and bituminous coal produced during the year. Companies in the mineral industry of Germany did not expect this to be the case before the Walsum and Lippe Mines are closed, however. RAG's energy subsidiary, STEAG AG, planned to build a new coal-fired powerplant at Walsum, which is located close to the Rhine River, because the river

offers efficient access to imports of hard coal. Norddeutsche Affinerie also was interested in entering the electricity supply sector in Germany by building a hard coal-fired powerplant in the Hamburg area that would be accessible to imports of hard coal through the harbor there (Frondel and others, 2006; RWE Aktiengesellschaft, 2006, p. 97-98; Rzeznitzeck, 2006).

Outlook

In 2005, a reconsideration of industrial competitiveness policies in the EU and Germany was underway, the outcome of which could greatly affect how the mineral industry of Germany will evolve. Costs for labor, energy, and mineral raw materials continued to increase in the country and even surpassed those in many fellow members of the EU, especially the new EU (10) countries. The response of companies has been to restructure internally to reduce these costs and to invest in developing new capacity abroad rather than domestically. Additionally, vertical integration and concentration of ownership has increased, even across sectors of the mineral industry. In the metal processing sector, it can be expected that more of the metals companies that have so far been mostly left out of the recent wave of mergers and acquisitions will be attempting to find additional partners in 2006 and 2007 (Bundesverband der Deutschen Industrie e.V., 2006c).

Even as the scarcity of domestic minerals in Germany is increasing, the Government's hard coal subsidy and the EU's land-use policy is being debated. Together with all of the other high costs in Germany, the higher cost of imports of hard coal, coking coal, and coke for steel manufacturing encouraged steel manufacturers to lobby for keeping existing mines open in the country. Representatives of the industrial minerals sector also lobbied the EU for increased access to environmentally protected lands and areas currently occupied by subsidized agricultural interests. Some metal processing companies established new long-term contracts with producers of natural mineral materials (mines and quarries) outside of the EU, to secure a flow of the necessary mineral raw materials. This traditional approach for companies in Germany continued to become more costly in 2005, however, primarily because transportation costs continued to attain record levels. The primary concern for maintaining an economically important mineral industry in Germany will be to reduce the cost burdens on the companies, including energy, labor, and taxes, in order to encourage investment in continuing mineral production and at least maintaining processing capacity domestically.

References Cited

- AFX News Limited, 2005, ThyssenKrupp cuts Q3 steel output by 200,000 tonnes, will not hike prices in Q3: London, United Kingdom, AFX News Limited, June 8, 1 p.
- Association of German Steel Recycling and Disposal Companies and German Steel Federation, 2006, Scrap steel should no longer be declared as waste: Düsseldorf, Germany, Association of German Steel Recycling and Disposal Companies and German Steel Federation joint statement and press release, September 5, 1 p.
- Berger, H., and Danninger, S., 2006, Germany—Is too much regulation preventing faster growth?: Washington, DC, International Monetary Fund, IMF survey, v. 35, no. 2, January 23, p. 28-29.

- Bundesministerium für Wirtschaft und Arbeit, 2005, Annual economic report for 2005: Berlin, Germany, Bundesministerium für Wirtschaft und Arbeit, March 22, 100 p.
- Bundesverband der Deutschen Industrie e.V., 2005, Trade and competitiveness— Old issues repackaged?: Berlin, Germany, BDI International Policy Brief, Issue 1/05, Bundesverband der Deutschen Industrie e.V., 2 p.
- Bundesverband der Deutschen Industrie e.V., 2006a, BDI—Potenziale bei Secundär- und nachwachsenden Rohstoffen besser nutzen—Standard für Recycling europaweit harmonisieren: Berlin, Germany, BDI Pressemitteilung, Bundesverband der Deutschen Industrie e.V., September 14, 2 p.
- Bundesverband der Deutschen Industrie e.V., 2006b, Broad-based upturn: Berlin, Germany, Bundesverband der Deutschen Industrie e.V., BDI Economic Report, Issue 2/06, April 24, 5 p.

Bundesverband der Deutschen Industrie e.V., 2006c, Export champion and Bazaar economy—How Germany is coping with globalization: Berlin, Germany, Bundesverband der Deutschen Industrie e.V., BDI Foreign Economic Report, September, 4 p.

Bundesverband der Deutschen Industrie e.V., 2006d, German exports grow strongly: Berlin, Germany, Bundesverband der Deutschen Industrie e.V., BDI Foreign Economic Report, Issue 2/06, April 24, 10 p.

Businessworld, 2005, Recasting global steel: Kolkata, India, ABP Pvt. Ltd., August 15, p. 30-38.

- Dyckerhoff AG, 2006, Annual report 2005: Wiesbaden, Germany, Dyckerhoff AG, March 3, 155 p.
- Frondel, M., Kambeck, R., and Schmidt, C.M., 2006, Hard coal subsidies—A never-ending story?: Essen, Germany, Rheinisch-Westfälisches Institut für Wirtschaftsforschung, RWI discussion papers, no. 53, November, 19 p.

Hartmann, Karsten, 2005, German Mittelstand deals—Dead, or alive and kicking?: London, United Kingdom, Acquisitions Monthly, Thomson Financial Limited, September, p. 2-3.

- HeidelbergCement AG, 2006, Annual report 2005: Heidelberg, Germany, HeidelbergCement AG, March 22, 164 p.
- ICR Research, 2006, Take a deep breath: Surrey, United Kingdom, International Cement Review, Tradeship Publications Ltd., June, p. 20-26.
- itelligence AG, 2004, Sudamin MHD GmbH chooses itelligence as SAP consultancy: Bielefeld, Germany, itelligence AG press release, August 17, 1 p.

Kidd, Stephen, 2005, Uranium prices still to make impact: London, United Kingdom, Mining Communications Ltd, July 1, p. 18-22.

King, Laura, 2006, Ball clays dig deep: Industrial Minerals, no. 464, Industrial Minerals Information, Metal Bulletin plc., May, p. 30-39.

- Kostick, D.S., 2006, Salt, in Metals and minerals: U.S. Geological Survey Minerals Yearbook 2004, v. I, p. 63.1-63.24.
- MEPS International Ltd., 2006a, After Arcelor/Mittal more consolidation is inevitable: Sheffield, United Kingdom, International Steel Review (monthly), MEPS (International) Ltd., June, 10 p.
- MEPS International Ltd., 2006b, Hostile Mittal bid for Arcelor may hinder future steel consolidation: Sheffield, United Kingdom, International Steel Review (monthly), MEPS (International) Ltd., July, 10 p.
- Mining Journal, 2004, Controversial EU directive closes in: London, United Kingdom, Mining Communications Ltd., October 8, p. 3.
- Mining Journal, 2005, NA settles term TC/RCS: London, United Kingdom, Mining Communications Ltd., July 1, p. 3.
- Norddeutsche Affinerie AG, 2006, Annual report 2004/05: Duisburg, Germany, Norddeutsche Affinerie AG, January 31, 120 p.
- Norsk Hydro ASA, 2006, Annual report and Form 20-F 2005: Oslo, Norway, Norsk Hydro ASA, March 7, 105 p.

Okes-Voysey, Mark, and Forbes, Jim, 2006, Forging ahead—Mergers and acquisitions activity in the global metals industry, 2005: New York, New York, PricewaterhouseCoopers International Limited, May 24, 22 p.

- RAG Aktiengesellschaft, 2006, 2005 annual report: Essen, Germany, RAG Aktiengesellschaft, May, 115 p.
- RWE Aktiengesellschaft, 2006, Facts & figures 2006: Essen, Germany, RWE Aktiengesellschaft, October, 291 p.
- RWE Power AG, 2006, RWE Power in the Rhenish lignite mining area: Essen-Cologne, Germany, RWE Aktiengesellschaft, 2 p.
- Rzeznitzeck, Peter, 2006, STEAG AG reports record results, sales and profit boosted once again—New power plant projects planned: Essen, Germany, STEAG Aktiengesellschaft, press release, May 24, 3 p.
- Salzgitter AG, 2006, Annual report 2005: Salzgitter, Germany, Salzgitter AG, March 30, 234 p.

- Sigge, Petra, 2006, Neue perspective für 300 stahlwerker: Bremen, Germany, Weser Kurier, Bremer Tageszeitungen AG, January 12, p. 17.
- Statistik der Kohlenwirtschaft e.V., 2004, Zur lage des kohlenbergbaus in der Bundesrepublik Deutschland, Jahr 2003: Essen-Cologne, Germany, Statistik der Kohlenwirtschaft e.V., March, 14 p.
- Statistik der Kohlenwirtschaft e.V., 2006, Zur lage des kohlenbergbaus in der Bundesrepublik Deutschland, Jahr 2005: Essen-Cologne, Germany, Statistik der Kohlenwirtschaft e.V., March, 14 p.
- Statistisches Bundesamt, 2006, Fachserie 4, reihe 3.1—Produzierendes gewerbe, produktion im produzierenden gewerbe—Jahr 2005: Wiesbaden, Germany, Statistisches Bundesamt, November 5, 322 p.
- Steel Institute VDEh and German Steel Federation, 2004, New report shows that emissions trading will harm the steel industry in Germany internationally: Düsseldorf, Germany, Medieninformation, Steel Institute VDEh and German Steel Federation, May 19, 1 p.
- Sykes, Christophe, 2005, Minerals key to a competitive Europe: Industrial Minerals, no. 453, Industrial Minerals Information, Metal Bulletin plc., May, p. 82-85.
- Taylor, Lindsey, 2005, Clays on fire: Industrial Minerals, no. 459, Industrial Minerals Information, Metal Bulletin plc., November, p. 30-35.
- Thurtell, David, 2005, CBA Commodities—The base party rages on: Sydney, Australia, Commonwealth Bank of Australia, October 28, 14 p.
- Thyssen AG, 1998, The Thyssen Krupp merger: Düsseldorf, Germany, Thyssen AG, October, 34 p.
- ThyssenKrupp Steel AG, 2006, Annual report 2004-2005: Duisburg, Germany, ThyssenKrupp Steel AG, February 24, 99 p.
- U.S. Energy Information Administration, 2005, Country analysis brief— Germany: Washington DC, U.S. Energy Information Administration, November, 14 p.
- U.S. Library of Congress, Federal Research Division, 2005, Country profile— Germany: Washington DC, U.S. Library of Congress, December, 25 p.
- Virta, R.L., 2006, Clay and shale, *in* Metals and minerals: U.S. Geological Survey Minerals Yearbook 2004, v. I, p. 18.1-18.37.
- Wall Street Journal, The, 2005, Europe—EU chemicals bill worries Africa's miners: The Wall Street Journal, October 31, p. A14.
- WBB Minerals Limited, 2005, Plastic clays and kaolins—Summary of technical data: Sandbach, United Kingdom, WBB Minerals Limited, 12 p.
- World Cement, 2004, HeidelbergCement vs. German laws—Germany, world cement business: World Cement, v. 35, no. 9, September, p. 6.

Internet References Cited

- AG der Dillinger Hüttenwerke, 2005, The most important partnerships of Dillinger Hütte, accessed October 16, 2006, at URL http://www.dillinger.de/ dh/unternehmen/struktur/index.shtml.en.
- Arcelor Eisenhüttenstadt GmbH, 2006, Zahlen & Fakten, accessed October 16, 2006, at URL http://www.arcelor-eisenhuettenstadt.com/content/ pages/company_facts.php?lang=de.
- Arcelor S.A., 2006, History, accessed October 16, 2006, at URL http://www.arcelor.com/index.php?lang=en&page=77.
- Arcelor Thüringen GmbH, [undated], ARCELOR THÜRINGEN Unterwellenborn, accessed October 16, 2006, via URL http://www.arcelor-thueringen.de/ euntern.html.
- Azzopardi, Tom, 2006 (October 6), Copper, other concs not subject to EU chemicals law—Argentina, Metals Place, accessed October 11, 2006, at URL http://metalsplace.com/metalsnews/?a=7552.
- BaseMetals.com, 2005 (June 5), Bullish sentiment seems to be waning in the metals, accessed June 8, 2005, at URL http://www.basemetals.com/content/ reports/bm/william/basemetalsreport-W06052005.htm.
- Bundesministerium für Wirtschaft und Technologie, 2006, Stahl und Metall, accessed October 4, 2006, at URL http://www.bmwi.de/BMWi/Navigation/root,did=31320.html.

- Energy Research Centre of the Netherlands, 2005 (October 18), Germany Fact Sheet—Feed-in tariffs, accessed October 20, 2005, at URL http://www.renewable-energy-policy.info/relec/germany/policy/feed-in.html.
- EUbusiness Ltd., 2005 (December 29), German finance minister calls for Eastern Europe to raise taxes, accessed October 26, 2006, at URL http://www.eubusiness.com/archive/Finance/051229113232.mhl00zmq.
- European Communities, 2006 (June), Overviews of the European Union activities—Environment, accessed October 26, 2006, at URL http://europa.eu/ pol/env/overview_en.htm.
- International Monetary Fund, 2006 (September), Germany, World economic outlook database, accessed October 7, 2006, via URL http://www.imf.org/external/pubs/ft/weo/2006/02/data/index.htm.
- K+S Aktiengesellschaft, 2006, Historie, accessed October 18, 2006, at URL http://www.k-plus-s.com/de/about/historie.html.
- SPG Media Limited, 2005, Ruhr, Saar and Ibbenbüren hard coal mining, Germany, accessed October 3, 2005, at URL http://www.mining-technology.com/ project_printable.asp?ProjectID=1256.

Major Sources of Information

Bundesanstalt für Geowissenschaften und Rohstoffe [Federal Institute for Geosciences and Natural Resources] Stilleweg 2, Postfach 51 01 53 30631 Hannover, Germany
Bundesministerium für Wirtschaft und Technologie [Federal Ministry for Economics and Technology] Scharnhorststr. 34-37 D-10115 Berlin, Germany Telephone: 49 (0) 30-2014-9 FAX: 49 (0) 30-2014-7010
Statistisches Bundesamt, Deutschland [Federal Statistics Office, Germany] Gustav-Stresemann-Ring 11 65180 Wiesbaden, Germany

Major Publications

Bundesanstalt für Geowissenschaften und Rohstoffe: Rohstoffsituation, 2004, Hannover, Germany.

Bundesministerium für Wirtschaft und Technologie: Der Bergbau und der Bundesrepublik Deutschland, Bergwirtschaft und Statistik—56. Jahrgang 2005, Berlin, Germany.

Mineralölwirtschaftsverband e.V.: Jahresbericht, Mineralöl-Zahlen, 2005, Hamburg, Germany.

Statistik der Kohlenwirtschaft e.V.: Zur Lage des Kohlenbergbaus in der Bundesrepublik Deutschland, 2003-2005, Essen-Cologne, Germany.

Statistisches Bundesamt: Fachserie 4, Reihe 3.1— Produzierendes Gewerbe, Produktion im Produzierenden Gewerbe—Jahr 2003-2005, Wiesbaden, Germany.

TABLE 1 GERMANY: PRODUCTION OF MINERAL COMMODITIES¹

(Metric tons unless otherwise specified)

Commodity		2001	2002	2003	2004	2005
METALS						
Aluminum:						
Alumina, Al_2O_3 equivalent the	ousand metric tons	715	717 1	830	835	830
Metal:						
Primary		651,592	652,845	660,793	667,839	647,934
Secondary		622,907	666,148	680,385	703,756	703,545
Total		1,274,499	1,318,993	1,341,178	1,371,595	1,351,479
Arsenic, white, Ar_2O_3 content		100 1	100 1	1	1, 2	2
Cadmium, metal, refinery including secondary		539	422	640 ^r	640 ^{1, e}	640 °
Cobalt, metal, including cobalt oxide		'	'	'	1	
Copper, metal:						
Smelter:		217 700	205 100	200.000	270 (00	257.200
Primary		317,700	295,100	288,800	278,600	257,200
Secondary		240,900	283,100	306,600	262,600	251,400
Total		558,600	578,200	595,400	541,200	508,600
Refined:		202.000	227 000	2011152	2 02 (0)	
Primary		303,000	327,000	286,653	283,686	239,982
Secondary		390,773	368,791	310,925	368,956	398,778
Total		693,773	695,791	597,578	652,642	638,760
Iron and steel:						
Ore, run of mine':						
Gross weight the	ousand metric tons	407	419	429	412	360
Fe content	do.	57	59	60	58	38
Metal:						
Pig iron	do	29,184	29,427	29,461	30,018	28,854
Direct reduced iron	do.	210	540	590	610	400 °
Ferroalloys:		10.200	20.010	10 210	24.057	22 (72
Ferrochromium		19,308	20,018	18,318	24,857	22,672
Other		35,000	30,000	32,000	26,000	25,000
Steel, crude the	ousand metric tons	44,803	45,015	44,809	46,374	44,524
Semimanufactures	do.	37,011	37,763	37,174	39,976	37,771
Lead, metal, refined:		155.062	1.41.202	100 155	115.060	110 770
Primary		155,862	141,202	132,155	115,869	118,778
Secondary		217,500 *	238,700 1	224,700 ^r	243,304 2	222,932 2
Total		373,400	379,902	356,900	359,173	341,710
Magnesium, metal including castings		25,945	24,506	25,987	26,591	28,160
Platinum-group metals, metal, refined	kilograms	60,439 ¹	35,561	51,847	95,135 ¹	104,725
Selenium, metal ^e	do.	15,000	16,000	14,000	14,000	12,000
Silicon, metal		27,739 2	25,257 2	27,500	27,500	27,500
Silver, metal, refined, secondary		523 1	520 1	592 1	568 '	546
Tin, alloys		14,420	11,447	6,143	5,431	4,912
Zinc, metal:						
Primary		269,200	272,900	255,200	252,133	245,140
Secondary		89,140	105,700	132,900	129,887 -	89,751 2
Total		358,341	378,561	388,131	382,020	334,891
INDUSTRIAL MINERALS						
Abrasives:						
Natural, pumice		123,755 ^r	43,354 ^r		e	e
Artificial, corundum		56,939 ^r	56,728	59,097	72,565	73,620
Barite, marketable (contained BaSO ₄)		108,111	100,993	109,506	93,624	88,591
Boron compounds, manufactured, including bori	c acid and oxide	127,670 ^r	168,250 ^r	176,837 ^r	168,841 ^r	203,475
Bromine compounds, manufactured, including or	xide	231 ^r	413 ^r	388 ^r	248 ^r	274
Cement:						
Clinker, intended for market the	ousand metric tons	25,227	23,954	25,233	26,281	24,315
Hydraulic	do.	32,118	31,009	32,749	31,854 ^r	30,629

TABLE 1--Continued GERMANY: PRODUCTION OF MINERAL COMMODITIES¹

(Metric tons unless otherwise specified)

$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	Commodity		2001	2002	2003	2004	2005
Chails, nutural, including ground thousand metric toms 1.045 1.022 1.011 1.005 1.068 Bostonia das. 448 495 479 405 405 Coranic and efractory clays. das. 550 4.70 4.300 4.400 4.05 Order, indextable das. 550 1.67 1.67 1.67 1.76 1.76 Editor, marketable das. 3.764 3.666 3.487 3.752 3.788 Ditornitic das. 3.764 3.666 3.487 3.752 3.788 Ditornitic das. 3.417 2.817 9.91 5.44 Biomagen 3.02,660 2.03,368,12 3.000 5.900 7.719 6.875 6.540 2.213,368,12 2.000 7.12 1.22 7.12 5.208 Total Graphice, nutural thousand metric toms 1.966 1.711 1.748 1.579 1.644 Magenesion solids Graphice, nutural das. 1.222.06	INDUSTRIAL MINERALSContinued						
Chays. nutrati: Pattoring 448 495 479 405 4400 4500 Corranic and refractory closy. do. 5.500 4.700 4.300 4.400 4.500 O'I which, frequent closy and chamoute do. $-''$	Chalk, natural, including ground thousand metric	tons	1,045	1,022	1,001	1,005	1,068
Bentonine do. 448 495 479 405 405 Coranic and refracely elays do. 159 167 167 176 176 Buller search do. 159 167 167 176 176 Knoin, marketable do. -' -' -' -' - Knoin, marketable do. 3764 3666 3487 3722 3728 Diatomine do. 50 54' 55' 54' 54' Piddang ^{6*} 100 cortex 302.650'-2 243.368'-1 400.000' 500.000 500.000 Maniluycial grad* -	Clays, natural:						
Commis and refractory clays do. 5.500 4.700 4.400 4.400 4.400 Of which, for exity and hamotic do. 5.500 4.700 4.400 4.400 Faller's cards' do. 5.500 1.67 1.76 1.76 1.76 Faller's cards' do. 5.500 1.87 1.97 1.85 Other, unspecified do. 5.600 1.84 1.87 1.97 1.85 Diatomite do. 5.600 4.420 3.289 3.203 5.400 Falsers' $ -$	Bentonite	do.	448	495	479	405	405
Of which, fire (ely and channete do. 159 167 167 167 176 176 176 Fuller's carth do. - </td <td>Ceramic and refractory clays</td> <td>do.</td> <td>5,500</td> <td>4,700</td> <td>4,300</td> <td>4,400</td> <td>4,500</td>	Ceramic and refractory clays	do.	5,500	4,700	4,300	4,400	4,500
Fuller, cards ⁶ 0 -1°	Of which, fire clay and chamotte	do.	159	167	167	176	176
Kaolin, narketable do. $3,641$ $3,666$ $3,447$ $3,752$ $3,762$ $3,764$ $3,666$ $3,447$ $3,752$ $3,764$ $3,666$ $3,447$ $3,752$ $3,764$ $3,666$ $3,447$ 5367 544° 530° 54° 54° 530°	Fuller's earth ^e	do.	^r	r	^r	r	
Other unspecified do. 341° 281° 191° 177° 188 Pathomic $do.$ 50° 55° 54° 54° 54° 50° 52° $243,368^{\circ2}$ $400,000^{\circ}$ $500,000^{\circ}$ 50	Kaolin, marketable	do.	3,764	3,666	3,487	3,752	3,768
Datemite dot 50 54 * 54 * 54 * 54 * 54 * 54 * 54 * 54 * 54 * 54 * 54 * 54 * 50 00000* 500000* 500000* 500000* 500000* 500000* 500000* 500000* 500000* 500000* 500000* 500000* 500000* 500000* 500000* 500000* 500000* 50000* <t< td=""><td>Other, unspecified</td><td>do.</td><td>341 ^r</td><td>281 ^r</td><td>191 ^r</td><td>197 ^r</td><td>185</td></t<>	Other, unspecified	do.	341 ^r	281 ^r	191 ^r	197 ^r	185
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Diatomite	do.	50	54 ^r	55 ^r	54 ^e	54 °
Fluorspar: Junch	Feldspar ^{e, 6}		302,650 ^{r, 2}	243,368 ^{r, 2}	400,000 ^r	500,000	500,000
Acid-grade 30.81 r $34,429^r$ 33.289^r 33.203^r $35,400$ Mealurgical grade'	Fluorspar:						
Metallurgical-grade* -1° <	Acid-grade		30,381 ^r	34,429 ^r	33,289 ^r	33,203 ^r	35,400
	Metallurgical-grade ^e		r	^r	r	^{r, 2}	2
Graphic, natural 3,190 3,312 2,840 3,155 2,638 Gysum and mydric, natural thousand metric tors 1,966 $^\circ$ 1,761 1,748 1,579 1,644 Magnesium saits, bypoduct of potish miring do. 1,233 1,411 1,288 1,197 $^\circ$ 6,876 $^\circ$ 6,947 $^\circ$ 6,816 $^\circ$ 6,920 $^\circ$ 7,139 $^\circ$ 6,876 $^\circ$ 6,947 $^\circ$ 6,816 $^\circ$ 6,920 $^\circ$ 7,139 $^\circ$ 6,876 $^\circ$ 6,941 $^\circ$ 6,816 $^\circ$ 6,920 $^\circ$ 7,139 $^\circ$ 6,876 $^\circ$ 6,941 $^\circ$ 6,816 $^\circ$ 6,920 $^\circ$ 7,139 $^\circ$ 6,876 $^\circ$ 6,941 $^\circ$ 6,816 $^\circ$ 6,920 $^\circ$ 7,139 $^\circ$ 6,876 $^\circ$ 6,941 $^\circ$ 7.208 9,941 $^\circ$ 1,200 $^\circ$ 1,213 $^\circ$ 1,417 $^\circ$ 1,200 $^\circ$ 1,200 $^\circ$ 1,213 $^\circ$ 1,213 $^\circ$ 1,213 $^\circ$ 1,233 $^\circ$ 1,230 $^\circ$ 1,213 $^\circ$ 1,200 $^\circ$ 1,313 $^\circ$	Total		30,381 ^r	34,429 ^r	33,289 ^r	33,203 ^r	35,400
Gypeum and analydrite, natural thousand metric tons 1,966 ' 1,761 1,748 1,579 1,644 Line, quicklime, dead-burned dolonite do. 6,920 ' 7,139 ' 6,876 ' 6,947 ' 6,810 ' Nitrogen, N content of annunonia do. 2,522 2,560 ' 2,803 2,741 ' 2,280 ' 2,741 ' 2,280 ' 2,741 ' 2,280 ' 2,741 ' 2,280 ' 2,741 ' 2,280 ' 2,741 ' 2,280 ' 2,741 ' 2,280 ' 2,741 ' 2,280 ' 2,741 ' 2,280 '' 2,741 '' 2,280 '' 2,741 '' 2,280 '' 2,741 '' 2,280 '' 2,741 '' 2,280 '' 2,741 '' 2,280 '' 2,741 '' 2,280 '' 2,741 '' 2,280 '' 2,741 '' 2,280 '' 2,741 '' 2,280 '' 2,741 '' 2,280 '' 2,741 '' 2,280 '' 2,741 '' 2,280 '' 2,741 '' 2,280 '' 2,741 '' 2,280 '' 2,741 '' 2,741 '' 2,741 '' 2,741 '' 2,741 '' 2,741 '' 2,741 '' 2,741 '' 2,741 '' 2,741 '' 3,74 '' 3,74 ''<	Graphite, natural		3,190	3,312	2,840	3,155	2,638
Line, quickline, deal-burned dolomite do. $6,920^{\circ}$ $7,139^{\circ}$ $6,876^{\circ}$ $6,947^{\circ}$ $6,810^{\circ}$ Mignesium subs, byproduct of potash mining do. $1,233^{\circ}$ $1,411$ $1,288$ $1,197^{\circ}$ $1,200^{\circ}$ Nitrogen, N content of ammonia do. $2,522^{\circ}$ $2,605^{\circ}$ $2,803^{\circ}$ $2,741^{\circ}$ $2,289^{\circ}$ Peat, natural 115,470 $122,696^{\circ}$ $135,356^{\circ}$ $110,961^{\circ}$ $120,000^{\circ}$ Phosphatic fartilizes, P,O ₂ content $55,340^{\circ}$ $34,486^{\circ}$ $32,569^{\circ}$ $37,810^{\circ}$ $37,374^{\circ}$ Thomas sig. ^a - - <td< td=""><td>Gypsum and anhydrite, natural thousand metric</td><td>tons</td><td>1,966 ^r</td><td>1,761</td><td>1,748</td><td>1,579</td><td>1,644</td></td<>	Gypsum and anhydrite, natural thousand metric	tons	1,966 ^r	1,761	1,748	1,579	1,644
Magnetium sails. byproduct of potals mining do. 1,233 1,411 1.288 1,197 1.200 ° Peat, natural do. 2,232 2,560 ° 2,803 2,741 ° 2,289 Peat, natural 115,470 122,696 135,356 119,961 120,000 ° Phosphate featirilizers, P ₂ O ₅ content -	Lime, quicklime, dead-burned dolomite	do.	6,920 ^r	7,139 ^r	6,876 ^r	6,947 ^r	6,810 ^e
Nitrogen, N content of ammonia do. 2.522 2.601° 2.803 2.741° 2.289 Peat, natural Phosphate materials: 115,470 122,696 135,356 119,961 120,000 $^\circ$ Phosphate acid, manufactured, P ₂ O ₂ content '	Magnesium salts, byproduct of potash mining	do.	1,233	1,411	1,288	1,197 ^r	1,200 e
Pear, natural 115,470 122,696 135,356 119,961 120,000 $^{\circ}$ Phosphatic fertilizers, P,O ₂ content , ' </td <td>Nitrogen, N content of ammonia</td> <td>do.</td> <td>2,522</td> <td>2,560 r</td> <td>2,803</td> <td>2,741 ^r</td> <td>2,289</td>	Nitrogen, N content of ammonia	do.	2,522	2,560 r	2,803	2,741 ^r	2,289
Phosphatic materials: $-r'$	Peat, natural		115,470	122,696	135,356	119,961	120,000 ^e
Phospharic fertilizers, P ₂ O ₂ content -1^{-1}	Phosphate materials:						
Phosphoric acid, manufactured, P_2O_5 content 35,340 34,486 32,569 37,810 37,374 Thomas slag:*	Phosphatic fertilizers, P ₂ O ₅ content ^e		r	r	^r	r	
Thomas slag. ⁶ Gross weight thousand metric tons $-r$ <t< td=""><td>Phosphoric acid, manufactured, P₂O₅ content</td><td></td><td>35,340</td><td>34,486</td><td>32,569</td><td>37,810</td><td>37,374</td></t<>	Phosphoric acid, manufactured, P ₂ O ₅ content		35,340	34,486	32,569	37,810	37,374
Gross weight thousand metric tons $-1'$ <	Thomas slag: ^e						
Pgg. content -1^{-1} </td <td>Gross weight thousand metric</td> <td>tons</td> <td> r</td> <td> r</td> <td> r</td> <td> r</td> <td></td>	Gross weight thousand metric	tons	r	r	r	r	
Pigments, iron oxide" 4,000 ⁺ <	P_2O_5 content		^r	r	^r	r	
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	Pigments, iron oxide ^e		4,000 r	4,000 r	4,000 ^r	4,000 r	4,000
Crude thousand metric tons 4,337 4,278 4,413 4,439 4,439 Marketable do. 3,549 3,472 3,563 r 3,627 r 3,664 Salt, NaCl content, marketable:	Potash, K ₂ O content:						
Marketable do. $3,549$ $3,472$ $3,563^{+1}$ $3,627^{+1}$ $3,664^{-1}$ Salt, NaCl content, marketable: Evaporated salt, including marine salt do. 827^{-1} 858^{-1} $7,629^{-1}$ $8,507^{-1}$ $9,078^{-1}$ $10,432^{-1}$ $9,004^{-1}$ Rocksalt and other brines do. $5,887^{-1}$ $6,468^{-1}$ $6,501^{+1}$ $7,701^{+1}$ $8,679^{-1}$ Total do. $5,887^{-1}$ $6,468^{-1}$ $6,501^{+1}$ $7,701^{+1}$ $8,679^{-1}$ Soliceous earth, marketable 50,361 $53,711^{-1}$ $54,517^{-1}$ $54,801^{-1}$ $50,00^{-1}$ Solian compounds, n.e.s.: $50,361^{-1}$ $53,711^{-1}$ $54,801^{-1}$ $50,00^{-1}$ $14,343^{+1}$ $1,530^{-1}$ $1,438^{+1}$ $1,533^{-1}$ Subne, sand and gravel: $550e^{-1}$ $65,70^{-1}$ -1^{-1}	Crude thousand metric	tons	4,337	4,278	4,413	4,439	4,434
Salt, NaCl content, marketable: Evaporated salt, including marine salt do. Industrial brines do. Rocksalt and other brines do. Total do. Soliceous earth, marketable 5,887 Soliceous earth, marketable 50,361 Soliceous earth, marketable 50,361 Soliden compounds, n.e.s.: 50,361 Solida and gravel: 1,500 ° Stone, crude: 1,500 ° Dimension, including partially worked do. Dolomite and limestone do. Gravel, natural: 0, Building gravel do. Crude, including flint and pebbles do. Other gravel, including glass sand and quartz sand do. Silica sand, including from granite and pegnatite 7,406 ° Other, including from granite and pegnatite 1,600 Other gravel, including flat and pegnatite 60, Other gravel, including glass sand and quartz sand do. Other, including from granite and pegnatite 70,912 ° Other, including from granite and pegnatite 70,912 ° Other, revel and and gravel do. <td>Marketable</td> <td>do.</td> <td>3,549</td> <td>3,472</td> <td>3,563</td> <td>3,6271</td> <td>3,664</td>	Marketable	do.	3,549	3,472	3,563	3,6271	3,664
Evaporated salt, including marne salt do. 827 858 727 594 Industrial brines do. $7,629$ $8,307$ $9,078$ $10,432$ $9,904$ Rocksalt and other brines do. $7,629$ $8,307$ $9,078$ $10,432$ $9,904$ Total do. $5,887$ $6,468$ $6,501^{+-}$ $7,701^{+-}$ $8,679$ Solid constructed do. $14,343^{+-}$ $15,633^{+-}$ $16,306^{+-}$ $18,705^{+-}$ $19,177$ Solid constructed thousand metric tons $15,006^{}$ $15,12^{+-}$ $1,438^{+-}$ $1,533$ Solone, stand and gravel: thousand metric tons $1,500^{}$ $1,512^{+-}$ $1,493^{+-}$ $1,438^{+-}$ $1,533$ Stone, crude: thousand metric tons $1,500^{}$ 1.512^{+-} $1,493^{+-}$ $1,438^{+-}$ $1,533$ Stone, stand and gravel: thousand metric tons $1,500^{}$ $^{$	Salt, NaCl content, marketable:			0.50		570	50.4
Industrial brines do. $7,629$ $8,307$ $9,078$ $10,432$ $9,904$ Rocksalt and other brines do. $5,887$ $6,468$ $6,501$ $7,701$ $8,679$ Total do. $14,343$ $15,633$ $16,306$ $18,705$ $19,177$ Siliceous earth, marketable $50,361$ $53,711$ $54,517$ $54,801$ $50,000$ 8 Sodia ash (Na ₂ CO ₃), manufactured thousand metric tons $1,500$ $1,512$ $1,493$ $1,438$ $1,533$ Sulfate, manufactured ⁶ do. $1,500$ $1,512$ $1,493$ $1,438$ $1,533$ Stone, sand and gravel: $50,361$ $53,711$ $54,517$ 229 212 Of which, dolomite and limestone do. 69 76 106 76 75 Crushed, not including chalk do. $172,585$ $166,798$ $160,851$ $153,040$ $153,000$ $9,006$ Other gravel, including finit and pebbles do. $77,406$ $73,131$ $70,173$ $65,566$ $65,700$ $65,700$ $8,629$ $12,90$	Evaporated salt, including marine salt	<u>do.</u>	827	858	727	572	594
Rocksalt and other brines do. $3,887$ $6,498$ $6,501^{-1}$ $7,701^{-1}$ $8,679$ Total do. $14,343^{-1}$ $15,633^{-1}$ $16,306^{-1}$ $18,705^{-1}$ $19,177$ Sodium compounds, n.e.s.: $50,361$ $53,711$ $54,517$ $54,801$ $50,000^{-6}$ Sodia ash (Na ₂ CO ₃), manufactured thousand metric tons $1,500^{-6}$ $1,512^{-1}$ $1,493^{-1}$ $1,438^{-1}$ $1,533$ Sulfate, manufactured ⁶ do. $1,500^{-6}$ $1,512^{-1}$ $1,493^{-1}$ $1,438^{-1}$ $1,533$ Stone, sand and gravel: $50,06^{-6}$ $15,500^{-6}$ $1,512^{-1}$ $1,493^{-1}$ $1,438^{-1}$ $1,533$ Stone, crude: 0.0^{-7} -1^{-7}	Industrial brines	<u>do.</u>	7,629	8,307	9,078	10,432	9,904
Initial do. $14,343^\circ$ $15,633^\circ$ $16,306^\circ$ $18,705^\circ$ $19,177$ Siliceous earth, marketable 50,361 $53,711$ $54,517$ $54,801$ $50,000^\circ$ Sodium compounds, n.e.s.: 50,361 $53,711$ $54,517$ $54,801$ $50,000^\circ$ Sulfate, manufactured thousand metric tons $1,500^\circ$ $1,512^\circ$ $1,493^\circ$ $1,438^\circ$ $1,533$ Sulfate, manufactured do. $1,500^\circ$ $1,512^\circ$ $1,493^\circ$ $1,438^\circ$ $1,533$ Stone, sand and gravel: r <td>Rocksalt and other brines</td> <td><u>do.</u></td> <td>5,887</td> <td>6,468</td> <td>6,501</td> <td>7,701 ¹</td> <td>8,679</td>	Rocksalt and other brines	<u>do.</u>	5,887	6,468	6,501	7,701 ¹	8,679
Sinceous earth, marketable $50,561$ $53,711$ $54,517$ $54,801$ $50,000^{\circ}$ Sodium compounds, n.e.s.: $50,361$ $53,711$ $54,517$ $54,801$ $50,000^{\circ}$ Sodium compounds, n.e.s.: $50,361$ $53,711$ $54,517$ $54,801$ $50,000^{\circ}$ Suffate, manufactured ^o do. $1,512^{\circ}$ $1,493^{\circ}$ $1,438^{\circ}$ $1,533$ Stone, sand and gravel: $-r^{\circ}$		do.	14,343	15,633	16,306	18,705	19,177
South compounds, h.e.s.: Soda ash (Na ₂ CO ₃), manufactured thousand metric tons 1,500 ° 1,512 ° 1,493 ° 1,438 ° 1,533 Sulfate, manufactured do do. r^{-1} <td>Siliceous earth, marketable</td> <td></td> <td>50,361</td> <td>53,711</td> <td>54,517</td> <td>54,801</td> <td>50,000 °</td>	Siliceous earth, marketable		50,361	53,711	54,517	54,801	50,000 °
Sold ash (Ma_2CO_3), manufactured industrial metric tons 1,300 1,312 1,495 1,436 1,535 Sulfate, manufactured do. 1,512 1,495 1,495 1,436 1,535 Sulfate, manufactured do. 1,512 1,495 1,495 1,436 1,535 Stone, sand and gravel: Stone, crude: Image: Comparison of the store of the sto	Sodium compounds, n.e.s.:	tona	1 500 °	1 510 f	1 402 F	1 420 F	1 522
Sulfate, manufactured do. L <thl< th=""> L <thl< th=""> <thl< th=""> L <thl< th=""></thl<></thl<></thl<></thl<>	$\frac{1}{2}$ Sold ash (Na ₂ CO ₃), manufactured mousand metric		1,500 r	1,312 r	1,495 r	1,438 r	1,555
Stone, sand and gravel. Stone, crude: $\overline{Dimension, including partially worked}$ do. 315 237 167 229 212 Of which, dolomite and limestone do. 69 76 106 76 75 Crushed, not including chalk do. 172,585 r 166,798 160,851 153,040 153,000 ° Dolomite and limestone, not for cement manufacture do. 34,410 31,300 30,000 23,700 20,600 Gravel, natural: $\overline{00}$ 77,406 r 73,131 r 70,173 r 65,566 r 65,700 ° Crude, including flint and pebbles do. 16,697 r 14,505 r 13,632 r 12,889 r 12,900 ° Other gravel, including quarzite do. 11,600 11,877 13,295 10,898 10,900 ° Sand, natural: $\overline{0}$	Stone and and gravel:	<u>do.</u>					
Stole, etude. Dimension, including partially worked do. Of which, dolomite and limestone do. Of which, dolomite and limestone do. Crushed, not including chalk do. Dolomite and limestone, not for cement manufacture do. Dimension, including flint and pebbles do. Gravel, natural: 77,406 r Paulding gravel do. Other gravel, including quarzite do. Silica sand, including glass sand and quartz sand do. Total sand and gravel do. Total sand and gravel do.	Stone, said and graver.						
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Dimension including partially worked	do	215	227	167	220	212
Of which, dofinite and inflectoricdo. 100 $23,700$ $20,600$ Gravel, natural:Building guarzitedo. $10,600$ $11,877$ $13,632$ r $12,889$ r $12,900$ °Sand, natural:Building sanddo. $70,912$ r $65,414$ r $67,603$ r $63,785$ r $63,800$ °Silica sand, including glass sand and quartz sanddo. $7,835$ $7,839$ $7,953$ $8,162$ $8,200$ °Other, including from granite and pegmatitedo. $11,603$ $11,617$ $13,115$ $13,239$ $13,300$ °Total sand and graveldo. $196,053$ r $184,383$ r $185,771$ r $174,539$ r $175,000$ °	Of which dolomits and limestone	do.	515	237	107	229	212
Crustier, not including clark do. $172,383$ $100,793$ $100,831$ $133,000$ $133,000$ Dolomite and limestone, not for cement manufacture do. $34,410$ $31,300$ $30,000$ $23,700$ $20,600$ Gravel, natural:	Crushed, not including shalk	do.	172 585 ^r	166 708	160 851	152 040	152 000 °
Doforme and micsione, not for centent manufacture do. $34,410$ $34,910$ $35,500$ $25,700$ $25,700$ $25,700$ Gravel, natural: Building gravel do. $77,406$ r $73,131$ r $70,173$ r $65,566$ r $65,700$ e Crude, including flint and pebbles do. $16,697$ r $14,505$ r $13,632$ r $12,889$ r $12,900$ e Other gravel, including quarzite do. $11,600$ $11,877$ $13,295$ $10,898$ $10,900$ e Sand, natural: $0.$ $70,912$ r $65,414$ r $67,603$ r $63,785$ r $63,800$ e Silica sand, including glass sand and quartz sand do. $7,835$ $7,839$ $7,953$ $8,162$ $8,200$ e Other, including from granite and pegmatite do. $11,603$ $11,617$ $13,115$ $13,239$ $13,300$ e Total sand and gravel do. $196,053$ r $184,383$ r $185,771$ r $174,539$ r $175,000$ e	Delomite and limestone, not for cament manufacture	do.	34.410	31 300	30,000	23 700	20,600
Building gravel do. 77,406 r 73,131 r 70,173 r 65,566 r 65,700 e Crude, including flint and pebbles do. 16,697 r 14,505 r 13,632 r 12,889 r 12,900 e Other gravel, including quarzite do. 11,600 11,877 13,295 10,898 10,900 e Sand, natural:	Gravel natural:	<u>uo.</u>	54,410	51,500	30,000	25,700	20,000
During graver do. $77,400$ $75,151$ $70,175$ $50,500$ $50,700$ Crude, including flint and pebbles do. $16,697$ r $14,505$ r $13,632$ r $12,889$ r $12,900$ e Other gravel, including quarzite do. $11,600$ $11,877$ $13,295$ $10,898$ $10,900$ e Sand, natural: $70,912$ r $65,414$ r $67,603$ r $63,785$ r $63,800$ e Silica sand, including glass sand and quartz sand do. $7,835$ $7,839$ $7,953$ $8,162$ $8,200$ e Other, including from granite and pegmatite do. $11,603$ $11,617$ $13,115$ $13,239$ $13,300$ e Total sand and gravel do. $196,053$ r $184,383$ r $185,771$ r $174,539$ r $175,000$ e	Building gravel	do	77.406 ^r	73 131 ^r	70 173 ^r	65 566 ^r	65 700 °
Crude, including rinit and peoples do. $10,07$ $14,503$ $12,002$ $12,002$ Other gravel, including quarzite do. $11,600$ $11,877$ $13,295$ $10,898$ $10,900^{\circ}$ Sand, natural:	Crude_including flint and pebbles	do.	16 697 ^r	14 505 ^r	13 632 ^r	12 880 ^r	12 900 °
Sand, natural: $11,000$ $11,877$ $15,253$ $10,356$ $10,500$ Building sand do. $70,912$ r $65,414$ r $67,603$ r $63,785$ r $63,800$ e Silica sand, including glass sand and quartz sand do. $7,835$ $7,839$ $7,953$ $8,162$ $8,200$ e Other, including from granite and pegmatite do. $11,603$ $11,617$ $13,115$ $13,239$ $13,300$ e Total sand and gravel do. $196,053$ r $184,383$ r $185,771$ r $174,539$ r $175,000$ e	Other gravel including quarzite	do.	11,600	11 877	13,052	10,808	10,000 °
Building sand do. 70,912 r 65,414 r 67,603 r 63,785 r 63,800 e Silica sand, including glass sand and quartz sand do. 7,835 7,839 7,953 8,162 8,200 e Other, including from granite and pegmatite do. 11,603 11,617 13,115 13,239 13,300 e Total sand and gravel do. 196,053 r 184,383 r 185,771 r 174,539 r 175,000 e	Sand natural	<u>uo.</u>	11,000	11,077	13,275	10,070	10,200
Silica sand, including glass sand and quartz sand do. 7,835 7,839 7,953 8,162 8,200 ° Other, including from granite and pegmatite do. 11,603 11,617 13,115 13,239 13,300 ° Total sand and gravel do. 196,053 ° 184,383 ° 185,771 ° 174,539 ° 175,000 °	Building sand	do	70 912 ^r	65 414 ^r	67 603 ^r	63 785 ^r	63 800 °
$\frac{11,603}{\text{Total sand and gravel}} = \frac{1000}{10000000000000000000000000000000$	Silica sand including glass sand and quartz sand	do.	7 835	7,839	7,953	8 162	8 200 °
Total sand and gravel do. 196,053 r 184,383 r 185,771 r 174,539 r 175,000 e	Other including from granite and negratite		11 603	11.617	13,115	13 239	13 300 °
	Total sand and gravel	do.	196.053 r	184,383 ^r	185,771 ^r	174,539 ^r	175.000 °

TABLE 1--Continued GERMANY: PRODUCTION OF MINERAL COMMODITIES¹

(Metric tons unless otherwise specified)

Commodity		2001	2002	2003	2004	2005
INDUSTRIAL MINERALSContinued						
Sulfur:						
Marketable thousand metric	c tons	988	1,093	1,014	939	1,055
Byproduct:						
Metallurgy ^e	do.	684	754	701	591	600 ^e
Natural gas and petroleum	do.	1,749	1,745	1,661	1,503 ^r	1,585
Total	do.	2,433	2,499	2,362	2,094 ^r	2,190 ^e
Talc and steatite, natural ^e		r	^r	r	r	r
MINERAL FUELS AND RELATED MATERIALS						
Asphalt and bitumen, natural		9,910	8,011	1,680	r	
Coal:						
Anthracite and bituminous, marketable thousand metric	c tons	27,054	26,088	25,684	26,496 ^r	25,698
Lignite	do.	175,365	181,778	179,085	181,926	177,907
Coke:						
Of anthracite and bituminous coal	do.	7,289	7,226	7,827	8,200 ^e	8,100 ^e
Of lignite	do.	173 ^e	154 ^e	165	187	173
Fuel briquets:						
Of anthracite and bituminous coal	do.	140 ^e	124	114	102	92
Of lignite including dust and dried	do.	1,740	1,365	1,466	1,435	1,490
Gas:						
Manufactured:						
Blast furnace thousand cubic n	neters	8,749	8,781	8,936	9,100 ^e	8,800 ^e
Coke oven	do.	3,362	3,310	2,870	3,000 e	2,900 °
Total	do.	12,111	12,091	11,806	12,100 e	11,700 ^e
Natural:						
Gross	do.	21,545	21,422	22,092 ^r	20,405	19,903
Marketable	do.	20,200 ^{r, e}	20,116 ^r	20,190 ^r	19,333 ^r	18,900 ^e
Petroleum: ^{e, 7}						
Crude thousand 42-gallon b	arrels	26,200 ^r	27,600 ^r	27,900 ^r	25,800 ^r	26,200
Refinery products:						
Liquefied petroleum gas	do.	38,000 ^r	37,000 r	38,000 ^r	37,000 ^r	37,000
Distillate fuel oil	do.	350,000 ^r	350,000 ^r	360,000 ^r	370,000 ^r	390,000
Residual fuel oil	do.	70,000 ^r	65,000 ^r	69,000 ^r	77,000 ^r	74,000
Gasoline, including aviation	do.	210,000 r	210,000 r	210,000 r	210,000 r	210,000
Kerosene and jet fuel	do.	32,000 r	32,000 r	32,000 r	34,000 r	33,000
Naphtha	do.	82,000 ^r	82,000 ^r	86,000 ^r	94,000 ^r	94,000
Refinery gas	do.	45,100 ^r	48,700 ^r	51,600 ^r	51,300 ^r	50,600
Bitumen, bituminous mixtures, and other residues	do.	32,000 ^r	32,000 r	30,000 ^r	29,000 r	32,000
Lubricants and miscellaneous oils	do.	11,000 ^r	11,000 ^r	11,000 ^r	15,000 ^r	14,000
Petroleum coke	do.	9,700 ^r	9,400 ^r	10,000 ^r	10,000 ^r	11,000
Mineral jelly, waxes, and paraffins	do.	1,600 ^r	1,500 ^r	1,500 ^r	1,800 ^r	1,800
Other	do.	13,000 ^r	12,000 ^r	8,400 ^r	11,000 ^r	9,400
Total	do.	890,000 ^r	890,000 ^r	910,000 ^r	940,000 ^r	960,000
Uranium concentrate. U content		27 ^r	221 ^r	104	77	80

^eEstimated; estimated data are rounded to no more than three significant digits; may not add to totals shown. ^pPreliminary. ^rRevised. -- Zero.

¹Table includes data available through November 2006.

²Reported figure.

 47 Iron ore is used domestically as an additive in cement and other construction materials but is of too low a grade to use in the steel industry.

⁴Estimated from reported domestic sales of ferroalloys [Statistische Bundesamt, 2006, Fachserie 4, Reihe 3.1—Produzierendes Gewerbe,

Produktion im Produzierenden Gewerbe, Jahr 2005: Wiesbaden, Germany, Statistische Bundesamt, August, p. 178].

⁵Estimated by subtraction of primary from total, and rounded to four significant digits.

⁶After 2002, figures estimated from reported figures that include production of feldspar bearing rocks, but excluding the estimated

production of aggregates from these rocks where the feldspar was not extracted and the feldspar content was not measured.

⁷All figures were converted to barrels from those reported in metric tons according to data from Mineralölwirtschaftsverband e.V., 2006, Jahresbericht—Mineralöl-Zahlen, 2005: Hamburg, Germany, Mineralölwirtschaftsverband e.V., May, p. 79, and reflect significant digits of conversion factors (three digits for crude petroleum and two digits for refinery products).

TABLE 2 GERMANY: STRUCTURE OF THE MINERAL INDUSTRY IN 2005^1

(Thousand metric tons unless otherwise specified)

		Major operating companies and		Annual
Commodity	7	major equity owners ²	Location of main facilities	capacity
Alumina		Nabaltec GmbH	Plant at Schwandorf (special aluminas)	55
Do.		Aluminium Oxid Stade GmbH (DADCO	Plant at Stade	900
		Alumina & Chemicals Ltd., 100%)		
Do.		Martinswerk GmbH	Plant at Bergheim (fused alumina)	350
		(Albemarle Corporation, 100%)		
Aluminum		Hydro Aluminium Deutschland GmbH	Primary smelters: Elbewerk at Stade and Rheinwerk	300
		(Norsk Hydro ASA, 100%)	at Neuss; Primary rolling mill at Grevenbroich	
Do.		Aluminium Norf GmbH (Alcan Inc., 50%,	Lippenwerk at Lünen (secondary) and primary rolling	600
		and Norsk Hydro ASA, 50%)	mill at Neuss	
Do.		Metallhüttenwerke Bruch GmbH	Secondary foundry alloy plant at Dortmund; secondary	110
			cast alloy plants at Asperg and Bad Säckingen	
Do.		VAW-IMCO Guss und Recycling GmbH	Secondary smelters: Erftwerk at Grevenbroich	320
		(Aleris International, Inc., 100%)	and Innwerk at Töging	
Do.		Trimet Aluminium AG	Smelter at Essen-Borbeck	155 ^e
Do.		Hamburger Aluminium-Werke GmbH (Norsk	Primary smelter at Hamburg	130
		Hydro ASA, Alcoa Inc., and Austria Metall AG,		
		33.33% each)		
Do.		Corus Aluminium Voerde GmbH	Primary smelter at Voerde and rolling mill at Koblenz	100
Arsenic, metal	metric tons	PPM Pure Metals GmbH (Metaleurop S.A., 100%)	Plant at Langelsheim	5
Barite		Sachtleben Bergbau GmbH	Clara Mine in the Black Forest and plant	60
			at Wolfach	
Do.		Deutsche Baryt-Industrie Dr. Rudolf Alberti	Wolkenhügel Mine in the Harz Mountains and	50
		GmbH & Co. KG	plant at Bad Lauterberg	
Bentonite		Süd-Chemie AG	Plants at Moosburg, Duisburg, and Heufeld	500
Do.		Kärlicher Ton- und Schamotte-Werke	Quarry at Mülheim-Kärlich	50
		Mannheim & Co. KG (KTS)		
Cement		HeidelbergCement AG	Plants at Blaubeuren-Schelklingen, Burglengenfeld,	9,200 ^e
			Hannover, Hassmersheim, Kieferssfelden,	
			Leimen, and others	
Do.		Dyckerhoff AG (Buzzi Unicem SpA, 76.73%,	Plants at Amoneburg, Golheim, Neuwied,	5,600 ^e
		and other private, 23.27%)	Neubeckum, and others	
Do.		SCHWENK Zement KG	Plants at Allmendingen, Bernberg, Karlstadt,	5,000 ^e
			and Mergelstetten	
Do.		Anneliese Zementwerke AG	Plants at Ennigerloh, Geseke, and Paderborn	3,500 °
		(HeidelbergCement AG, 100%)		
Do.		Deuna Zement GmbH (Dyckerhoff AG, 100%)	Plant at Deuna	3,000 ^e
Chalk		Vereinigte Kreidewerke Dammann KG	Quarries on Rügen Island, and plants at	500
			Lägerdorf and Söhlde	
Clay, including ball and		Stephan Schmidt KG	Tonbergbau Grube Anton open pit mine, Dornburg-	1,400 ^e
refractory clays			Langendernbach, Müllenbach and Thewald Mines,	
			Höhr-Grenzhausen; Wiesa-Thonberg and Cunnersdorf	
			quarries, Kamenz-Wiesa, Westerwald region	
Do.		Marx Bergbau GmbH & Co. KG (Stephan	Lämmersbach and Meudt Mines, Ruppach-Goldhausen	300 °
		Schmidt KG, 100%)	quarry, Dornburg-Langendernbach, Westerwald	
			region	
Do.		Goerg & Schneider GmbH & Co.	Quarry and main plant at Boden, others at Mogendorf,	NA
			Goddert, Siershahn, Wirges/Staudt, and Kettenbach/	
			Taunus, Westerwald region; others in Saxony and	
			Eifel regions	
Do.		Mittelhessische Tonbergbau GmbH (Goerg &	Quarry and plant in the Gießen/Lahn region	100
		Schneider GmbH & Co., 50%, and Stephan		
		Schmidt KG, 50%)		
Do.		Rohstoffgesellschaft GmbH Ponholz	Mine and chamotte plant at Maxhütte-Haidoff, and	100
			Autotweiher Mine, Bavaria	100
<u>Do.</u>	. 1	Adolf Gottfried Tonwerke GmbH	Quarries and plant near Grossheirath, Coburg, Bavaria	100

TABLE 2--Continued GERMANY: STRUCTURE OF THE MINERAL INDUSTRY IN 2005

(Thousand metric tons unless otherwise specified)

	Major operating companies and		Annual
Commodity	major equity owners ²	Location of main facilities	capacity
Coal, anthracite and bituminous	Deutsche Steinkohle AG	West, Lohberg/Osterfeld, Walsum, Prosper-haniel,	18,000
	(RAG Aktiengesellschaft, 100%)	Lippe, Augusta Victoria/Blumenthal, and Ost Mines,	
		Ruhr region, North Rhine-Westphalia	
Do.	do.	Saar Mine, Saar Basin, Saarland	6,000
Do.	do.	Ibbenbüren Mine, Steinfurt District, North Rhine-	2,100
		Westphalia	
Coke contained in domestic coal	Deutsche Steinkohle AG	Two pitside coking plants at Ibbenbüren Mine and	3,000
	(RAG Aktiengesellschaft, 100%)	Lohberg/Osterfeld Mine	2 100
 	Inyssen Krupp Steel AG	Schweigern plant at Duisburg	2,100
Do.	do.	About 2 other pitside coking plants, Ruhr region,	2,000
 	Hüttanwarka Vrunn Mannaamann CmhH	Plant at Duisbarg Hugkingan staal complay	1 100
Do.	(Thyseen Krupp Steel AG, 50%; Vellouree	Plant at Duisberg-Hucknigen steel complex	1,100
	& Mannesmann Tubes SA 20%:		
	& Mannesmannröhren Werke GmbH 30%)		
Copper (cathodes)	Norddeutsche Affinerie AG (HSH Nordbank	Primary smelter and refinery and secondary plant at	560 ^e
copper (carloues)	AG 10%: Possehl Beteiligungsverwaltung	Hamburg	500
	GmbH 10%: Other private 80%)	Hamburg	
Do	Hüttenwerke Kayser AG (Norddeutsche	Secondary plant and refinery at Lünen	185 ^e
20.	Affinerie AG 100%)	Secondary plant and termery at Eulien	105
Fluorspar	Sachtleben Berghau GmbH	Clara Mine in the Black Forest and plant	35
Tuoispui	Sachaeben Bergbau Ginbir	at Wolfach	55
Graphite metric tons	Graphit Kropfmühl AG	Mine and plant at Kropfmühl, Passau	20.000
Do. do.	do.	Plants at Bad Godesberg and Wedel, Holstein	8.000
Gypsum	VG-ORTH GmbH & Co. KG	Mine and plant at Stadtoldendorf, and plants at	150
		Osterode, Spremberg, and Witzenhausen	
Do.	Gyproc GmbH Baustoff Production & Co. KG	Mines and plant in Lower Saxony	110
Kaolin	WBB Fuchs GmbH & Co. KG, subsidiary of	25 quarries and 8 plants, including 2 at Ransbach and	2,000
	WBB Minerals plc (S.C.R Sibelco NV, 100%)	Kannenbäckerland plant in Höhr-Grenzhausen,	
		Westerwald region; also including quarries and	
		plants of Kaolin- und Tonwerke Seilitz-Löthain,	
		Saxony region	
Do.	Amberger Kaolinwerke GmbH—Eduard Kick	Mines at Caminau, Hirschau, Kemmlitz,	300
	GmbH & Co. KG (Quarzwerke GmbH, 100%)	and Schnaittenbach	
Lead	Metaleurop Weser GmbH	Smelter and refinery at Nordenham	120
	(Metaleurop S.A., 100%)		
Do.	Berzelius Metall GmbH	Primary smelter at Stolberg and secondary smelters	200
		at Braubach am Rhein and Freiberg/Sachsen	
Do.	Sudamin MHD GmbH	Refinery at Duisburg	120
Do.	Norddeutsche Affinerie AG	Refinery at Hamburg	50
Lignite	RWE Power Aktiengesellschaft	Surface mines in Rhenish mining area: Bergheim,	105,000
		Garzweiler, Inden, and Hambach	
Do.	Vattenfall Europe Mining AG	Surface mines in Lausatian mining area:	60,000
		Jänschwalde, Schwarze Pumpe, and Boxberg	
Limestone	Harz-Kalk GmbH	Quarry at Rübeland	2,000 e
Do.	Kalkwerk Bad Kösen GmbH	Quarry at Bad Kösen	2,000 e
Do.	Fels-Werke GmbH	Quarry at Kaltes Tal	2,000 ^e
Do.	Schäfer Kalk GmbH & Co KG	Plants at Hahnstätten, Steeden, Stromberg,	3,000
		and Grevenbrück	
Magnesium, secondary metric tons	Norsk Hydro Magnesiumgesellschaft GmbH	Plant at Bottrop	26
Do. do.	IMCO GmbH	Plant at Toeging	15
Natural gas million cubic meters	BEB Erdgas-Erdöl GmbH (ExxonMobil	Plants at Clenze and Grossenkmeten	9,500
	Central Europe Holding GmbH, 50%)		
Do. do.	Mobil Erdgas-Erdöl GmbH (ExxonMobil	Plants at Scholen	4,000
	Central Europe Holding GmbH, 100%)		

TABLE 2--Continued GERMANY: STRUCTURE OF THE MINERAL INDUSTRY IN 2005

(Thousand metric tons unless otherwise specified)

		Major operating companies and		Annual
Commodity		major equity owners ²	Location of main facilities	capacity
Petroleum:	· · · · · · · · · · · · · · · · · · ·	0 1 2		
Crude		The largest companies were:	6 areas with about 85 oilfields, including:	
Do.	thousand 42-gallon barrels	BEB Erdgas-Erdöl GmbH	West of Ems River	30,000 ^e
Do.	do.	Wintershall AG (BASF AG, 100%)	Weser-Ems Rivers	21,000 °
Do.	do.	Deutsche Texaco AG	Elbe-Weser Rivers	20,000 ^e
Refined		The largest companies were:	About 20 refineries, including:	
Do.	do.	Deutsche Shell AG	Refineries at Godorf, Hamburg, and Grasbrook	256,000 ^e
Do.	do.	Esso Deutschland GmbH (ExxonMobil	Refineries at Karlsruhe and Ingolstadt	245,000 ^e
		Central Europe Holding GmbH, 100%)	-	
Do.	do.	Ruhr Oel GmbH (Petróleos de Venezuela	Refinery at Gelsenkirchen	215,500 ^e
		S.A., 50%, and BP Gelsenkirchen GmbH, 50%)		
Do.	do.	BAYERNOIL Raffineriegesellschaft mbH	Refinery at Neustadt-Donau	145,000 ^e
		(OMV AG, 45%; Ruhr Oel GmbH, 25%;		
		AGIP Deutschland GmbH, 20%;		
		Deutsche BP AG, 10%)		
Potash, K ₂	O content	K+S Kali GmbH (K+S Aktiengesellschaft, 100%)	Mines at Bergmannssegen-Hugo, Niedersachen-	6,000
			Riedel, Salzdetfurth, Sigmundshall, Hattorf,	
			Neuhof-Ellers, Sondershausen, and Wintershall	
Salt (rock)		K+S Salz GmbH (K+S Aktiengesellschaft, 100%)	Mines at Bad Friedrichshall-Kochendorf,	15,000
			Braunschweig-Luneburg, Heilbronn, Riedel,	
			Stetten, and Wesel (Borth)	
Silicon, me	etal metric tons	RW Silicium GmbH (Graphit Kropfmühl AG, 100%)	Four electric arc furnaces in plant at Pocking	27,500
Steel, crude	e	ThyssenKrupp Steel AG	Bruckhausen and Beeckerwerth plants, near Duisburg	11,000
Do.		Hüttenwerke Krupp Mannesmann GmbH	Plant at Duisberg-Huckingen	6,000
		(Thyssen Krupp Steel AG, 50%; Vallourec		
		& Mannesmann Tubes SA, 20%;		
		Mannesmannröhren-Werke GmbH, 30%)		
Do.		Salzgitter AG	Plants at Peine and Salzgitter	5,100
Do.		Stahlwerke Bremen GmbH (Arcelor S.A., 100%)	Plant at Bremen	4,000
Do.		Mittal Steel Co. NV	Plant at Hamburg and two plants near Duisburg	2,800
Do.		Saarstahl AG (Struktur-Holding-Stahl GmbH & Co	Plants at Völkingen, Burbach, und Neunkirchen	2,800
		KG, 74.9%; Dillinger Hüttenwerke AG, 25.1%)		
Do.		AG der Dillinger Hüttenwerke (Arcelor S.A.,	Plant at Dillingen	2,500
		51.25%; Saarstahl AG, 33.75%; Struktur-Holding-		
		Stahl GmbH & Co KG, 15%)		
Do.		EKO Stahl GmbH (Arcelor S.A., 100%)	Plant at Eisenhüttenstadt	2,500
Zinc, metal	1	Xstrata plc	Smelter at Nordenham	155 ^e
Do.		Ruhr-Zink GmbH	Refinery at Datteln	140
Do.		Sudamin MHD GmbH	Smelter at Duisburg	100

^eEstimated; estimated data are rounded to no more than three significant digits. NA Not available.

¹Table includes data available through November 2006.

²Many more industrial minerals companies are listed in the Industrial Minerals Directory, 2006.

TABLE 3 GERMANY: EXPORTS OF SELECTED MINERAL COMMODITIES IN 2004^1

(Metric tons unless otherwise specified)

			Destinations
Commodity	Total	United States	Other (principal ²)
METALS			
Aluminum:			
Bauxite, ore and concentrate	48.435		France 11,188; Austria 9,929; Belgium 8,670.
Oxides	294.405		Italy 87,733; United Kingdom 29,146; Netherlands 24,730.
Hydroxides thousand metric tons	529	38	Netherlands 134: United Kingdom 74: Sweden 50.
Ash and residue containing aluminum	16.992		Spain 5.828: Netherlands 4.044: Austria 2.923.
Metal including alloys:	10,002		
Primary, not alloyed	63,132		Austria 26.957: Italy 13.889: Netherlands 10.417.
Primary alloys all forms	222 578		Austria 55 199: Belgium 30 493: Italy 19 587
Secondary	179.029		France 36 343: Netherlands 33 478: Austria 28 108
Scran	613 688		Italy 152 808: Netherlands 104 327: Austria 101 872
Antimony:	015,000		101,072.
Ore and concentrate	<i>c</i> 1		Switzerland 100%
Matal including allows all forms	11		Romania 5: Taiwan 2: Janan 1
Arsonia, metal, including alloys, all forms	11		Ching 4: Penublic of Kores 2: United Kingdom 1
Arsenic, metal, including alloys, all forms	221		Italy 40: Erange 28: Crash Benublic 27
Chaming and an and an antitate	221	40	Creek Perublic 5 702: Polend 2 824: Austria 2 812
Chromium, ore and concentrate	20,837		Czech Republic 5,795, Foland 5,054, Austria 5,815.
	2/7		Einland 250, Secondary 57, Delainer 20
	367		China 77. Italy 25. Specie 21
Oxides and hydroxides	233		Unita //; Italy 55; Spain 51.
Metal, including alloys, all forms	537		United Kingdom 133; France 129; Turkey 49.
Scrap	494	158	Sweden 82; Canada 73; France 59.
Columbium (niobium), ore and concentrate,	93		Unspecified 93.
including tantalum			
Copper:			
Ore and concentrate	49,619		Sweden 47,386.
Matte and speiss, including cement copper	943		Canada 925.
Ash and residue containing copper	19,260		Belgium 10,632; Canada 4,391; Spain 1,714.
Metal, including alloys:			
Unrefined	53		Netherlands 20; Czech Republic 10; Slovenia 8.
Refined, not alloyed	148,256	24,907	France 50,259; Italy 31,430; United Kingdom 7,561.
Alloys, all forms	21,863		Italy 3,476; Switzerland 2,143; Austria 1,858.
Scrap	407,768		China 143,534; Netherlands 79,923; Belgium 39,146.
Gallium, indium, and thallium, metal including scrap	18		France 11; Netherlands 2; Denmark 1.
Germanium, oxides	433		United Kingdom 322; France 36; Italy 25.
Gold:			
Metal, including alloys, all forms kilograms	24,002		Unspecified 9,049; Thailand 3,216; Italy 2,184.
Waste and sweepings	30	6	Switzerland 16; Italy 7.
Iron and steel:			
Ore and concentrate	13,612		Slovakia 5,064; Luxembourg 4,737; Poland 1,307.
Pyrite, roasted	3,241		Switzerland 2,622; Other countries (Unspecified) 606.
Ash and residue containing iron thousand metric tons	891		France 493; Netherlands 132; Luxembourg 132.
Metal:			
Pig iron, cast iron, related materials	165,119		France 61,920; Belgium 23,282; Netherlands 22,456.
Scrap thousand metric tons	9,182		France 2,130; Luxembourg 1,680; Netherlands 1,634.
Sponge iron, powder	149,643		France 118,068; Unspecified 31,126.
Ferroalloys:			
Ferrochromium	29,288	5,184	France 4,071; Italy 3,661; Austria 3,192.
Ferromanganese	15.864		Austria 5,045; Switzerland 3,934; Hungary 1,459.
Ferromolybdenum	2.841		France 608; Belgium 435; Italy 403.
Ferronickel	625		Spain 433; France 86; Sweden 79.
Ferrosilicochromium	79		Netherlands 52: Malta 25.
Ferrosilicomagnesium	15 824		Italy 6.425: France 3.054: Netherlands 1.424.
Ferrosilicomanganese	9 340		Luxembourg 3.493: France 2.372: Switzerland 1.196
Ferrosilicon	66 995		France 18 156: Austria 13 533: Belgium 10 116
	00,775		

TABLE 3--Continued GERMANY: EXPORTS OF SELECTED MINERAL COMMODITIES IN 2004^1

(Metric tons unless otherwise specified)

				Destinations
Commodity		Total	United States	Other (principal ²)
METALSContinued				x x /
Iron and steel, metal, ferroalloysContinued:				
Ferrotungsten		183		Austria 42; Italy 36; China 27.
Ferrotitanium		3,796		Sweden 854; Italy 501; France 475.
Ferrovanadium		876		Italy 300; Spain 190; Austria 105.
Ferroniobium		1.424		Ukraine 261; Belgium 236; France 188.
Other ferroallovs		39.116		France 5,515; Italy 4,498; Japan 3,442.
Steel, crude		2.780		Romania 528; Australia 339; Mexico 264.
Lead:		,		
Ore and concentrate		3.423		Belgium 3,423.
Lead containing antimony		17.582		Czech Republic 10.831: Austria 2.848: Poland 1.776.
Metal, including allovs:				
Alloys, all forms		41.714		France 24.278: Spain 5.923: Czech Republic 5.548.
Refined		62,839		Czech Republic 19.040: France 12.882: Netherlands 11.939.
Unrefined		116		Spain 94: Greece 20.
Scrap		19.662		Belgium 9.261: Netherlands 6.017: France 2.772.
Lithium:		17,002		
Carbonate		2 660		France 702: Belgium 628: Republic of Korea 271
Oxides and hydroxides		624		France 142: United Kingdom 125: Spain 113
Magnesium metal including alloys:		021		
Scran		17 028		Czech Republic 7 067: Austria 4 904: Netherlands 1 924
Unwrought		5 214		Romania 1 496: Hungary 1 006: Austria 850
Manganese ore and concentrate		2 872		Belgium 2 375: France 181
Marganese, ore and concentrate		56	22	India 5: Liechtenstein 4: Ecuador 4
Molybdenum ore and concentrate		2 300		China 933: Netherlands 563: Belgium 480
Nickel:		2,507		China 755, Neuerands 565, Bergham 460.
Matte speiss related materials		644		Canada 644
Ovides and hydrovides		105		Japan 73: Canada 7: Sweden 6
Ash and residue containing nickel		643		Sweden 330: Netherlands 257: Austria 57
Metal including allows:		045		Sweden 550, Neulemanus 257, Ausura 57.
Allows all forms		8 775		Austria 6 994: Sweden 1 088
		5 753		Austria 1 7/0: France 863: Czech Republic 627
Scrap		0.255	1 860	Netherlands 3 360: France 824: Austria 502
Platinum_group metals:),235	1,000	Tedicitalias 5,507, France 624, Austria 572.
Weste and sweepings		010	624	United Kingdom 99: Belgium 50
Matal including allows all forms:		012	024	Ollited Kingdolii 77, Belgiulii 50.
Pletinum	kilograma	27 808	4 408	Belgium 6 221: Ching 4 603: Switzerland 4 206
	Kilografiis	12 407	4,408	Switzerland 2 162: Prozil 1 425: Jonen 027
	do.	2 966	3,112	Belgium 785: Japan 665: Switzerland 503
	do.	3,800	928	Hong Kong 621: United Kingdom 271: Italy 106
Pare conthe motols, including allows	uo.	2,312	639	Holig Kolig 051, Ullited Kligdolli 271, Italy 190.
Kale-earth metals, metuding anoys:		4		Turkay 2: Austria < 1: Crash Republic < 1
		4		Austria 12: Malaysia 10: Janan 0
Compounds, all forms		91		Austria 13; Malaysia 10; Japan 9.
		235		Belgium 40; United Kingdom 55; Mexico 20.
Silicon, metal		18,/1/		Italy 5,800; Austria 5,594; Slovenia 2,789.
Silver:				0 1 1 1 1000
Ore and concentrate		< 1		Switzerland, 100%.
Metal		1,720		Unspecified 1,013; Turkey 160; France 98.
Powder	kilograms	60,297	3,618	France 18,451; Italy 13,084; Japan 7,597.
<u>Tin:</u>				
Ore and concentrate		< 1		Czech Kepublic, 100%.
Ash and residue containing tin		931		Beigium 880.
Metal, including alloys		1,572		Netnerlands 421; Poland 156; Belgium 141.
Scrap		1,143		France 568; Austria 331; Belgium 134.
Titanium, ore and concentrate		319		Italy 82; Mexico 76; Austria 56.

TABLE 3--Continued GERMANY: EXPORTS OF SELECTED MINERAL COMMODITIES IN 2004^1

(Metric tons unless otherwise specified)

		Destinations			
Commodity		Total	United States	Other $(principal^2)$	
METALSContir	nued			· ···· (F·····F···)	
Tungsten:					
Ore and concentrate		6		Austria 6.	
Metal, including alloys:					
Metal		742		Unspecified 716.	
Scrap		1.942	456	Austria 542; United Kingdom 318; Sweden 184.	
Wolframite		3,186		Unspecified 3.186.	
Vanadium, oxides and hydroxides		296		Unspecified 296.	
Zinc:				· · · · · · · · · · · · · · · · · · ·	
Ore and concentrate		1.632		Belgium 909: United Kingdom 689.	
Matte and related materials		9,781		Belgium 1.946: Netherlands 1.790: Luxembourg 1.604.	
Blue powder		4.697	573	Switzerland 803: China 465: Austria 409.	
Ash and residue containing zinc		13 438		Belgium 8.708: Netherlands 4.058.	
Metal including alloys:		15,155			
Allovs all forms		37 897		Austria 22,852: France 4,699: Italy 3,790	
Unalloved		97,074		France 31 355: United Kingdom 26 889: Austria 7 960	
Scrap		54 284		Belgium 15 471: China 14 711: Netherlands 6 623	
Zirconium:		54,284		Berghum 19,471, China 14,711, iventeriands 0,025.	
Ore and concentrate		2 567		Austria 608: Belgium 357: France 208	
Metal including alloys		2,307	18	Japan 5: France 3	
INDUSTRIAL MINE	FRAIS	55	10	Japan 5, France 5.	
Abrasivas natural:					
Abrasives, hatural.		4 250		Swadan 1 567: Switzerland 848: Natherlands 622	
Dumiae		4,239		Netherlands 40 855: Luxembourg 34 330: Switzerland 7 755	
Pumice		94,572		Switzerland 7	
Aspestos, crude		22.282		Unconception 22 292	
Barile and witherite	-!d	32,383		Crack Depublic 20: Switzerland 10: South Africa 2	
Borates, natural, crude, including cal		33		Netherlanda 2 427: Balaium 841: Eronaa 421	
Clement	thousand metric tons	6,185		Netherlands 2,457; Belgium 841; Flance 421.	
		116,065		Netherlands 50,041; Belgium 24,142; Sweden 17,410.	
Clays, crude:		(0.052		Austria 12 926. Switzenland 12 166. Erange 9 107	
Bentonite		60,953		Austria 13,836; Switzerland 13,166; France 8,107.	
Kaolin		417,606		Austria 120,688; Italy 107,742; Netherlands 45,101.	
Other, unspecified	thousand metric tons	2,461		Italy 945; Netherlands 743; Belgium 317.	
Diamond, natural:		100.070	10.044		
Gem, not set or strung	carats	190,272	18,266	Thailand 30,634; Switzerland 25,306; Hong Kong 21,501.	
Industrial stones	do.	7,997		Austria 3,095; Switzerland 1,256; Thailand 1,248.	
Dust and powder	kilograms	10,863		Austria 2,064; Italy 1,782; United Kingdom 1,238.	
Diatomite and other infusorial earth		21,073		Switzerland 13,676; Austria 3,772.	
Feldspar		131,383		France 59,385; Italy 25,488; Spain 12,481.	
Fluorspar:					
Acid-grade		8,953		Sweden 1,934; Hungary 1,603; Belgium 1,155.	
Metallurgical-grade		8,676		Luxembourg 2,212; Czech Republic 2,048; Poland 2,022.	
Graphite, natural		14,652		Czech Republic 2,974; France 2,198; Sweden 1,114.	
Gypsum and plaster	thousand metric tons	1,349		Belgium 325; Netherlands 224; Norway 186.	
Kyanite and related materials:					
Andalusite, kyanite, sillimanite		1,968		Hungary 661; Italy 529; Austria 244.	
Mullite		12,879	3,104	United Kingdom 2,705; Italy 1,700; Hungary 1,494.	
Lime, hydrated	thousand metric tons	1,036		Netherlands 663; France 132; Belgium 102.	
Magnesium compounds:					
Magnesite, crude, including burned	d	73,127		Austria 24,936; France 21,426; Slovakia 5,777.	
Epsomite		713,247		France 178,312; Malaysia 153,348; Indonesia 104,134.	
Mica, crude, including splittings and	waste	3,890		Italy 1,039; Brazil 1,031; Austria 490.	
Peat, natural	thousand metric tons	2,737		Netherlands 1,322; France 317; Italy 293.	

TABLE 3--Continued GERMANY: EXPORTS OF SELECTED MINERAL COMMODITIES IN 2004¹

(Metric tons unless otherwise specified)

				Destinations
Commodity		Total	United States	Other $(principal^2)$
INDUSTRIAL MINERAL	SContinued			o their (printerpair)
Phosphates:				
Crude		< 1		Poland, 50%; Switzerland, 50%.
Milled		43		Czech Republic 21; Kazakhstan 10; Russia 6.
Precious and semiprecious stones, na	atural			•
(other than diamond):				
Gem, not set or strung		776		Hong Kong 367; India 148; Thailand 57.
Industrial stones	grams	5,608		United Kingdom 3,656; France 1,952.
Pyrite, unroasted		339		France 119; Poland 62; Saudi Arabia 60.
Salt and brine	thousand metric tons	3,207		Belgium 638; Netherlands 552; Czech Republic 468.
Stone, sand and gravel:				
Basalt, lava rocks, etc.		195,561		Netherlands 166,618; Switzerland 24,250.
Dimension stone:				
Dolomite and limestone	thousand metric tons	744		Luxembourg 504; Netherlands 80; Belgium 45.
Granite		68,438		Switzerland 57,899.
Marble, travertine, etc.		191,278		Switzerland 65,800; Netherlands 53,558; Belgium 28,500.
Foundation sand and gravel		190,492		Switzerland 99,818; Austria 68,196; France 19,621.
Limestone for cement		119,765		Luxembourg 87,069; France 10,539; Netherlands 9,581.
Quartz and quartzite		114,619		Netherlands 87,454; Austria 7,565.
Quartz sand	thousand metric tons	10,229		Netherlands 7,078; Belgium 1,913.
Sandstone		8,358		Netherlands 5,650; Austria 1,028.
Schist and shale		21,330		Belgium 8,148; Netherlands 3,711; Austria 2,837.
Unworked stone, natural	thousand metric tons	10,279		Netherlands 7,113; Belgium 1,264; Switzerland 884.
Other natural stone, unspecified	do.	5,561		Netherlands 3,887; France 790; Switzerland 295.
Sulfur, crude, including native and b	opproduct do.	931		Belgium 129; Morocco 111; Senegal 110.
Talc, steatite, soapstone, pyrophyllit	e	3,890		France 657; Romania 529; Netherlands 331.
Vermiculite, perlite, chlorite		3,172		Austria 1,050; Poland 374; France 352.
MINERAL FUELS AND RELA	TED MATERIALS			
Asphalt and bitumen, natural		110,261		Netherlands 18,965; Luxembourg 14,665; Denmark 12,680.
Coal:				
Anthracite		8,761		Croatia 5,239; Austria 850; Netherlands 534.
Lignite	thousand metric tons	49		Austria 29; United Kingdom 16.
Other bituminous, including briqu	iets	231,708		France 109,366; Belgium 74,610; Austria 31,512.
Coke:				
Of anthracite and bituminous coal		100,824		Netherlands 39,422; United Kingdom 24,299; France 13,208.
Of lignite		10,389		Austria 4,415; Czech Republic 2,431; Canada 1,808.
Gas, natural, gaseous	thousand metric tons	20,967		Unspecified 20,967.
Petroleum, crude	do.	1,253		United Kingdom 1,131; Belgium 84.
Uranium, natural:				
Crude, U content	kilograms	135,807		Argentina 102,127; Netherlands 33,409.
Enriched, fissile isotopes	do.	15,412	8,400	Belgium 2,635; Sweden 2,481; United Kingdom 786.

-- Less than 5%.

¹Source: Bundesanstalt für Geowissenschaften und Rohstoffe, 2005, Table1.2—Rohstoffsituation, 2004: Hannover, Germany, October.

²Destination country imported at least 5% of Germany's total exports of the mineral commodity.

TABLE 4 GERMANY: IMPORTS OF SELECTED MINERAL COMMODITIES IN 2004^1

(Metric tons unless otherwise specified)

			Sources
Commodity	Total	United States	Other (principal ²)
METALS			
Aluminum:			
Bauxite, ore and concentrate thousand metric tons	2,147		Guinea 1,737; Greece 116.
Oxides do.	1,111		Jamaica 434; Ireland 207; Spain 146.
Hydroxides	205,376		Ireland 138,423; Hungary 27,931; France 11,706.
Ash and residue containing aluminum	176,613		France 54,220; Netherlands 43,094; Denmark 23,843.
Metal, including alloys:			
Primary, not alloyed thousand metric tons	648		Russia 145; Netherlands 107; Brazil 101.
Primary, alloys, all forms do.	769		Norway 170; Netherlands 168; United Kingdom 151.
Secondary	440,369		United Kingdom 107,450; Netherlands 47,560; Austria 40,954.
Scrap	497,180		Netherlands 84,023; Russia 71,594; Austria 45,741.
Antimony:			
Ore and concentrate	15		Russia 15.
Metal, including alloys, all forms	277		Belgium 100; China 99; Kyrgyzstan 41.
Arsenic, metal, including alloys, all forms	4	2	China 2.
Bismuth, metal, including alloys, all forms	1,679		United Kingdom 1,128; Mexico 480.
Chromium, ore and concentrate	132,429		South Africa 76,809; Turkey 39,861; Netherlands 6,754.
Cobalt:	,		· · · · · · · · · · · · · · · · · · ·
Ore and concentrate	21		Congo (Kinshasa) 9; Norway 5; Czech Republic 3.
Oxides and hydroxides	484		Finland 235; Belgium 64; Netherlands 36.
Metal, including alloys, all forms	2.014	266	Belgium 441; United Kingdom 236; Finland 213.
Scrap	294	36	United Kingdom 45: Netherlands 38: South Africa 37.
Columbium (niobium):	-7 .		
Ore and concentrate, including tantalum	80.659		Unspecified 80.659.
Scrap containing both niobium and tantalum	383		Belgium 240; Japan 85; Thailand 36.
Copper:			
Ore and concentrate thousand metric tons	1,142		Chile 471; Peru 161; Argentina 156.
Matte and speiss, including cement copper	15,086		Mexico 10,711; Bulgaria 1,478; Morocco 1,418.
Ash and residue containing copper	49,837	4,435	Italy 10,366; Ukraine 5,980; Netherlands 5,881.
Metal, including alloys:	,	,	
Unrefined	11,635		Armenia 6,911; Belgium 3,002.
Refined, not alloyed thousand metric tons	644		Russia 209; Chile 161; Poland 102.
Alloys, all forms	26,055		Belgium 4,664; United Kingdom 4,481; Poland 3,908.
Scrap	500,748		France 67,100; Netherlands 45,568; United Kingdom 40,060.
Gallium, indium, and thallium, metal, including scrap	39	4	China 11; United Kingdom 8; France 8.
Germanium, oxides	2,821	632	France 810; China 513; United Kingdom 378.
Gold:	,		
Metal, including alloys, all forms kilograms	39,024		Belgium 12,175; Switzerland 6,088; Sweden 5,385.
Waste and sweepings	1,379		Australia 416; United Kingdom 371; Austria 305.
Iron and steel:			
Ore and concentrate thousand metric tons	46,394		Brazil 25,981; Canada 6,959; Sweden 4,407.
Pyrite, roasted	37,194		Norway 36,153.
Ash and residue containing iron	218,465		Austria 140,036; Poland 46,533; Luxembourg 26,434.
Metal:	,		
Pig iron, cast iron, related materials	404,547		Russia 100,732; Netherlands 67,964; Canada 61,896.
Scrap thousand metric tons	6,298		Netherlands 1,568; Poland 1,020; Czech Republic 819.
Sponge iron, powder	181,153		Trinidad & Tobago 99,996; Sweden 31,883; Canada 28,622.
Ferroalloys:	,		
Ferrochromium	464,049		South Africa 329,475; Netherlands 63,575; Russia 24,595.
Ferromanganese	215.700		France 67,298; South Africa 44,219; China 28,041.
Ferromolybdenum	14.305		Belgium 5,937; United Kingdom 1,760; Armenia 1,287.
Ferronickel	129.300		United Kingdom 56,375; Venezuela 29,739; Greece 21,593.
Ferrosilicochromium	11.391		Russia 5,194; Belgium 4,294; Unspecified 1,310.
Ferrosilicomagnesium	1,735		Slovenia 989; Argentina 227; France 186.

TABLE 4--Continued GERMANY: IMPORTS OF SELECTED MINERAL COMMODITIES IN 2004^1

(Metric tons unless otherwise specified)

			Sources
Commodity	Total	United States	Other (principal ²)
METALSContinued			· · · · · · · · · · · · · · · · · · ·
Iron and steel, metal, ferroalloysContinued:			
Ferrosilicomanganese	183,564		China 32,307; Norway 25,332; Ukraine 24,965.
Ferrosilicon	248,584		Norway 77,558; Poland 45,491; France 27,344.
Ferrotungsten	480		China 312; Netherlands 90; Austria 43.
Ferrotitanium	8,141		United Kingdom 3,305; Russia 1,929; Netherlands 1,628.
Ferrovanadium	4,517		Austria 2,055; Russia 565; Netherlands 375.
Ferroniobium	4,345		Brazil 3,624; Canada 591.
Other ferroalloys	71,334		France 30,674; United Kingdom 7,419; Italy 6,063.
Steel. crude	13,489		Czech Republic 8,161; United Kingdom 3,332.
Lead:	- ,		
Ore and concentrate	207,411		Australia 48,534; Sweden 41,897; Poland 30,697.
Lead containing antimony	27,988		Sweden 7,025; Belgium 6,913; Ukraine 3,750.
Metal, including alloys:	.,		
Alloys, all forms	12.621		United Kingdom 7.686: Netherlands 1.350: Poland 1.237.
Refined	83.896		United Kingdom 24.498: Sweden 15.353: Poland 15.101.
Unrefined	19,993		Poland 9.877: Belgium 5.598: Switzerland 2.219.
Scrap	60.574		United Kingdom 28.349: Netherlands 11.691: Poland 4.180.
Lithium:	00,071		
Carbonate	7.189	827	Chile 5.823.
Oxides and hydroxides	3 698	784	Switzerland 2.278: Russia 436.
Magnesium metal including alloys:	5,070	704	
Scran	18 948		China 10 857: Austria 3 107: Switzerland 1 857
Unwrought	45 392		China 20 971: Czech Republic 7 444: Austria 7 172
Manganese ore and concentrate	8 636	760	Netherlands 3 273: Belgium 1 434: France 1 174
Margurese, ore and concentrate	81		Switzerland 51: Netherlands 11: Peru 10
Molybdenum ore and concentrate	13 590	3 112	Chile 3 574: Netherlands 2 120: China 1 332
Nickel:	15,570	5,112	
Matte speiss related materials	7 264		Netherlands 7 249
Oxides and hydroxides	603		Czech Republic 196: Canada 164: Japan 79
Ash and residue containing nickel	11 101		Netherlands 5 184: United Kingdom 1 432: Singapore 977
Metal_including allows:	11,101		
Allovs all forms	2 032		United Kingdom 772: Netherlands 343: Austria 287
Unalloved	88 288		Russia 36 110: United Kingdom 19 335: Norway 7 063
Scran	11 973	635	Austria 2 442: United Kingdom 1 293: Russia 1 137
Platinum-group metals:	11,775	055	Rustria 2, 112, Onited Ringdom 1,295, Russia 1,157.
Waste and sweepings	4 500	342	Netherlands 540: France 464: South Africa 446
Metal including alloys all forms:	4,500	542	
Platinum kilogram		5 /07	Belgium 26 193: South Africa 14 527: United Kingdom 5 497
Palladium do	25 115	1 331	South Africa 7 007: United Kingdom 6 731: Belgium 5 651
Rare-earth metals including alloys:	. 23,115	1,551	
Metal	- 288		China 137: Austria 120
Compounds all forms	1 139		China 519: France 319: Austria 222
Selenium elemental	200		Sweden 118: Russia 84: Canada 24
Silicon metal	133 144		Norway 45 535: Brazil 34 351: France 21 170
Tin	155,144		Norway 45,555, Brazin 54,551, France 21,170.
Till.	1		Kazakhetan 1
Ash and residue containing tin	1 178		Netherlands 908: Belgium 165: United Kingdom 79
Matal including alloys	21.055		Peru 5 480: Indonesia 4 103: Belgium 3 227
Scrap	421,933		France 220: Netherlands 53: Slovakia 36
	5/2 602		Norway 245 297: South Africa 133 502: Canada 125 362
Tungstan:	342,092		1101 way 2+3,277, 50000 Annea 153,302, Callada 123,302.
Tungsten.			Vietnam 81. Pussia 76. Nigeria 57
Ore and concentrate	589		violiani 01, Russia /0, ivigena 3/.

TABLE 4--Continued GERMANY: IMPORTS OF SELECTED MINERAL COMMODITIES IN 2004¹

(Metric tons unless otherwise specified)

			Sources
Commodity	Total	United States	Other (principal ²)
METALSContinued			
TungstenContinued:			
Metal, including alloys:			
Metal	1,841	125	Canada 716; Austria 569; China 134.
Scrap	3,175	876	United Kingdom 476; Austria 371; Netherlands 187.
Wolframite	815	187	China 262; Ireland 225; Russia 140.
Vanadium, oxides and hydroxides	649		South Africa 460; China 100; United Kingdom 51.
Zinc:			
Ore and concentrate	495,066	72,775	Sweden 121,786; Ireland 104,954; Belgium 64,854.
Matte and related materials	13,793		Netherlands 3,683; Belgium 3,476; United Kingdom 2,772.
Blue powder	7,341		Belgium 5,080; Norway 1,263; Switzerland 470.
Ash and residue containing zinc	18,026	1,370	Netherlands 3,010; Switzerland 2,758; Poland 2,343.
Metal, including alloys:		,	
Allovs, all forms	85,062		Belgium 51,973; France 13,525; Finland 11,739.
Unalloved	259,802		Spain 77,421; Finland 49,622; Netherlands 36,632.
Scrap	24,382		France 9,997; Netherlands 4,754; United Kingdom 2,194.
Zirconium, metal, including allovs	134		Netherlands 100; China 25.
INDUSTRIAL MINERALS			,
Abrasives natural:			
Corundum emery garnet etc	11.887		India 7.810: Netherlands 1.379: Japan 618.
Pumice	55 099		Italy 30 690: Iceland 22 480
Ashestos crude	69	10	Canada 59
Barite and witherite	228 477		China 143 941: France 49 123: Netherlands 15 308
Borates natural crude including calcined	11 335		Netherlands 3 627: Turkey 3 559: Belgium 2 936
Cement thousand metric tons	1 993		Belgium 448: Czech Republic 438: France 430
Chalk natural	256.953		Netherlands 120 254: France 86 079: Belgium 35 716
Clays crude:	230,755		1 venternands 126,25 1, 1 nance 66,677, Deigram 55,716.
Bentonite	312 160		Netherlands 144 530: Czech Republic 47 136: Italy 39 332
Kaolin thousand metric tons	801	100	Czech Republic 174: United Kingdom 151: Netherlands 143
Other unspecified	217 941	50 344	Czech Republic 61 677: United Kingdom 20 051: Netherlands 15 910
Diamond natural:	217,941	50,544	ezeen kepuole 01,077, Onied Kingdom 20,051, Neuerlands 15,910.
Gem not set or strung	513 371		Belgium 181 220: India 175 573: Israel 52 877
Industrial stores thousand carets	764	62	Ireland 241: United Kingdom 228: South Africa 108
Dust and powder	10 212	02 8 864	Ireland 6 373: China 085
Dust and powder Rilograms	19,312	12 021	Spain 40 130: Denmark 21 011: Erance 11 812
Ealdsman	72 570	12,021	Span 49,150, Dennark 21,011, Flance 11,012.
Elvergener	15,579		Norway 22,508, France 19,795, Austria 9,800.
A sid and a	28 224		China 26 841
	20,224		Cliffid 20,641.
	281,567		South Annea 92,072, China 80,441, Nathola 09,203.
Graphite, natural	53,966		China 19,806; Netherlands 19,428; Unspecified 8,581.
Gypsum and plaster	236,074		France 89,944; Austria 61,615; Poland 42,021.
Kyanite and related materials:	50 100	2 1 5 0	
Andalusite, kyanite, sillimanite	59,432	3,150	South Africa 23,832; France 10,698; Belgium 9,569.
Mullite	4,822	743	Hungary 2,252; United Kingdom 984; Luxembourg 420.
Lime, hydrated thousand metric tons	456		France 219; Czech Republic 129; Belgium 64.
Magnesium compounds:			
Magnesite, crude, including burned	399,824		China 121,546; Netherlands 83,163; Slovakia 60,773.
Epsomite	371		France 159; Netherlands 111; Belgium 101.
Mica, crude, including splittings and waste	30,576		India 11,588; France 9,815; United Kingdom 2,385.
Peat, natural	565,172		Estonia 149,771; Netherlands 146,380; Latvia 141,858.
Phosphates:			
Crude	129,848		Israel 95,438; Netherlands 20,646; Russia 13,634.
Milled	18,484		Belgium 17,227.
Potash, K ₂ O content kilograms	270,795		Israel 261,588.

TABLE 4--Continued GERMANY: IMPORTS OF SELECTED MINERAL COMMODITIES IN 2004^1

(Metric tons unless otherwise specified)

			Sources	
Commodity		Total	United States	Other (principal ²)
INDUSTRIAL MINERALSContinued				
Precious and semiprecious stones, r	natural			
(other than diamond):				
Gem, not set or strung		1,943		Brazil 729; Madagascar 402; South Africa 233.
Industrial stones	grams	16,100	1,546	United Kingdom 5,506; China 5,345; Taiwan 3,703.
Pyrite, unroasted		55,072		Finland 50,556.
Salt and brine	thousand metric tons	2,636		Netherlands 2,125.
Stone, sand and gravel:				
Basalt, lava rocks, etc.		76,308		Norway 35,941; Italy 11,294; China 7,554.
Dimension stone:				
Dolomite and limestone		704,680		Estonia 326,972; Belgium 273,416; Netherlands 69,059.
Granite		309,684		China 48,620; Sweden 45,833; Poland 41,807.
Marble, travertine, etc.	thousand metric tons	2,659		Norway 1,383; Austria 907; Italy 258.
Foundation sand and gravel		11,696		Switzerland 11,696.
Limestone for cement	thousand metric tons	2,166		Poland 1,007; Austria 520; Belgium 327.
Quartz and quartzite		87,121		Austria 41,731; Brazil 15,420; Belgium 10,890.
Quartz sand	thousand metric tons	1,831		France 1,186; Netherlands 339; Belgium 134.
Sandstone		37,309		India 11,305; Italy 9,663; Poland 5,634.
Schist and shale		31,921		France 28,537.
Natural stones, unworked	thousand metric tons	1,954		France 1,667.
Other natural stone, unspecified	do.	6,308		Norway 3,419; United Kingdom 1,167; Sweden 542.
Sulfur, crude, including native and	byproduct	57,088		Belgium 24,034; Netherlands 12,502; Czech Republic 4,852.
Talc, steatite, soapstone, pyrophylli	te	359,543		Netherlands 114,335; France 68,673; Austria 63,639.
Vermiculite, perlite, chlorite		132,013		Greece 100,858; Hungary 15,578; South Africa 11,617.
MINERAL FUELS AND RELA	ATED MATERIALS			
Asphalt and bitumen, natural		28,763	6,328	Switzerland 4,487; Austria 4,314; Trinidad & Tobago 4,084.
Coal:				
Bituminous:				
Anthracite	thousand metric tons	2,271	193	South Africa 843; Russia 456; Colombia 232.
Coke	do.	8,013	417	Poland 1,827; Australia 1,506; China 1,386.
Semicoke, coking coal	do.	5,504	732	Australia 2,554; Canada 2,036.
Other, including briquets	do.	26,516		South Africa 6,762; Poland 5,993; Russia 4,905.
Lignite, all forms	do.	104		Czech Republic 94; Poland 9.
Gas, natural, gaseous	do.	77,414		Unspecified 77,414.
Petroleum, crude	do.	112,675		Russia 35,267; Norway 20,732; United Kingdom 19,380.
Uranium, natural:				
Crude, U content		930		Canada 436; United Kingdom 238; Russia 179.
Enriched, fissile isotopes	kilograms	25,220		France 9,004; United Kingdom 7,743; Russia 4,414.

-- Less than 5%

¹Source: Bundesanstalt für Geowissenschaften und Rohstoffe, 2005, Table1.1—Rohstoffsituation, 2004: Hannover, Germany, October.

 $^2 \text{Source}$ country was responsible for at least 5% of Germany's total imports of the mineral commodity.