The TREC Conferences: An Introduction

National Institute of Standards and Technology Technology Administration, U.S. Department of Commerce

Talk Outline

- General introduction to TREC
 - TREC history
 - TREC impacts

Cranfield tradition of laboratory tests

- mechanics of building test collections
- test collection quality
- legitimate uses of test collections

IR evaluation primer

What is TREC?

- A workshop series that provides the infrastructure for large-scale testing of (text) retrieval technology
 - realistic test collections
 - uniform, appropriate scoring procedures
 - a forum for the exchange of research ideas and for the discussion of research methodology

TREC Philosophy

- TREC is a modern example of the Cranfield tradition
 - system evaluation based on test collections
- Emphasis on advancing the state of the art from evaluation results
 - TREC's primary purpose is <u>not</u> competitive benchmarking
 - experimental workshop: sometimes experiments fail!

TREC 2006 Program Committee

Ellen Voorhees, chair James Allan Chris Buckley Gord Cormack Sue Dumais Donna Harman Bill Hersh David Lewis

John Prager Steve Robertson Mark Sanderson Ian Soboroff Karen Sparck Jones Richard Tong Ross Wilkinson

TREC 2006 Track Coordinators

Blog: Ounis, de Rijke, Macdonald, Mishne, Soboroff Enterprise: Nick Craswell, Arjen de Vries, Ian Soboroff Genomics: William Hersh Legal: Jason Baron, David Lewis, Doug Oard Question Answering: Hoa Dang, Jimmy Lin, Diane Kelly Spam: Gordon Cormack Terabyte: Stefan Büttcher, Charles Clarke, Ian Soboroff

A Brief History of TREC

- 1992: first TREC conference
 - started by Donna Harman and Charles Wayne as 1 of 3 evaluations in DARPA's TIPSTER program
 - first 3 CDs of documents from this era, hence known as the "TIPSTER" CDs
 - open to IR groups not funded by DARPA
 - 25 groups submitted runs
 - two tasks: ad hoc retrieval, routing
 - 2GB of text, 50 topics
 - primarily an exercise in scaling up systems

A Brief History of TREC

1993 (TREC-2)

•

•

- true baseline performance for main tasks
- 1994 (TREC-3)
 - initial exploration of additional tasks in TREC
- 1995 (TREC-4)
 - official beginning of TREC track structure
- 1998 (TREC-7)
 - routing dropped as a main task, though incorporated into filtering track
- 2000 (TREC-9)
 - ad hoc main task dropped; first all-track TREC

TREC Tracks

- Task that focuses on a particular subproblem of text retrieval
- Tracks invigorate TREC & keep TREC ahead of the state-of-the-art
 - specialized collections support research in new areas
 - first large-scale experiments debug what the task <u>really</u> is
 - provide evidence of technology's robustness

TREC Tracks

 Set of tracks in a particular TREC depends on:

- interests of participants
- appropriateness of task to TREC
- needs of sponsors
- resource constraints
- Need to submit proposal for new track in writing to NIST

The TREC Tracks

Participation in TREC

TREC Impacts

- Test collections
- Incubator for new research areas
- Common evaluation methodology and improved measures for text retrieval
- Open forum for exchange of research
- Technology transfer

TREC Impacts

0

Text REtrieval Conference (TREC)

---- TREC-7

→ TREC-8

Ad Hoc Technologies

	TREC-2	TREC-3	TREC-4	TREC-5	TREC-6	TREC-7
Term weights	baseline start of Okapi wts	Okapi perfects "BM25" algorithm	new wts for SMART, INQUERY, PIRCS	Okapi/ SMART wts used by others	adaptations of Okapi/SMART algorithm in most systems	new Twente and BBN models
Passages	use of subdocs by PIRCS	heavy use of passages/ subdocs	decline in use	of passages use of passages multiple in relevance uses of feedback passages		multiple uses of passages
Auto query expansion		start of expansion using top X documents	heavy use of expansion using top X documents	start of more complex expansion	more sophisticated expansion experiments by many groups	
Manual query mods		manual expansion using other sources	experiments in manual editing/user- in-the-loop	extensive user-in-the- loop experiments	simpler user-specific strategies tested	
Other new areas		initial use of data fusion		start of concentration on initial topic	more complex use of data fusion continued focus on initial topic, especially the title	

TREC Impacts

Test collections

- papers in general IR literature use TREC collections
- Common evaluation methodology and improved measures for text retrieval
 - documents best practices in IR research methodology for new researchers
- Incubator for new research areas
 - PhD theses resulting from CLIR, SDR, QA participation

TREC Impacts

Open forum for exchange of research

- TREC papers figure prominently in IR syllabi on the web
- publication of all results prevents unsuccessful research from being duplicated

Technology transfer

 impact is far greater than just those who actually participate

Talk Outline

- General introduction to TREC
 - TREC history
 - TREC impacts

Cranfield tradition of laboratory tests

- mechanics of building test collections
- test collection quality
- legitimate uses of test collections

IR evaluation primer

Cranfield Tradition

- · Laboratory testing of system components
 - fine control over variables
 - abstraction from operational setting
 - <u>comparative</u> testing
- Test collections
 - set of documents
 - set of questions
 - relevance judgments

TREC approach

Topics are sent to participants, who return ranking of best 1000 documents per topic

Systems are evaluated using relevance judgments

NIST forms pools of unique documents from all submissions which the assessors judge for relevance

Creating a test collection for an ad hoc task

topic statements

Automatic: no manual intervention

Manual: everything else, including interactive feedback

queries

representative document set

Text REtrieval Conference (TREC)

ranked

list

Documents

- Must be representative of real task of interest
 - genre
 - diversity (subjects, style, vocabulary)
 - amount
 - full text vs. abstract

• TREC

- generally newswire/newspaper
- general interest topics
- fulltext

Topics

- Distinguish between stmt of user need (topic) & system data structure (query)
 - topic gives criteria for relevance
 - allows for different query construction techniques
- TREC topics are NOT all created equal
 - 1-150: very detailed, rich content
 - 151-200: method of topic creation resulted in focused, easy topics
 - 201-250: single sentence only
 - 301-450: title is set of hand-picked keywords

Relevance Judgments

- Main source of criticism of Cranfield tradition
 - In test collections, judgments are usually binary, static, and assumed to be complete.
 - But...
 - "relevance" is highly idiosyncratic
 - relevance does not entail utility
 - documents have different degrees of relevance
 - relevance can change over time for the same user
 - for realistic collections, judgments cannot be complete

Relevance Judgments

Consistency

 idiosyncratic nature of relevance judgments does not affect comparative results

Incompleteness

- the important issue is that relevant judgments be unbiased
 - · complete judgments must be unbiased
- TREC pooling has been adequate to produce unbiased judgments (until recently)

Consistency

 Mean Kendall τ between system rankings produced from different grel sets: .938

Similar results held for

- different query sets
- different evaluation measures
- different assessor types
- single opinion vs. group opinion judgments

QA Judgments

- Judging correctness, not relevance
- Assessors have differences of opinions as to what constitutes a correct answer
 - granularity of names, dates
 - assumed context

 Comparative evaluation stable despite those differences

Incompleteness

Study by Zobel [SIGIR-98]:

- Quality of relevance judgments does depend on pool depth and diversity
- TREC ad hoc collections not biased against systems that do not contribute to the pools
- TREC judgments not complete
 - additional relevant documents distributed roughly uniformly across systems but highly skewed across topics

Uniques Effect on Evaluation

Uniques Effect on Evaluation: Automatic Only

Pool Size

"Adequate" pool size is proportional to collection size

- implies that ever larger collections need ever more documents judged
- infeasible (given resource contraints) for collections the size of the terabyte collection
- terabyte track looking to develop new pooling methodology

Note: collection built in TREC 2005 Robust/HARD tracks also affected

Cranfield Tradition

- Test collections are abstractions, but laboratory tests are useful nonetheless
 - evaluation technology is predictive (i.e., results transfer to operational settings)
 - different relevance judgments almost always produce the same comparative results
 - adequate pools allow unbiased evaluation of unjudged runs

Cranfield Tradition

- Note the emphasis on <u>comparative</u> !!
 - absolute value of effectiveness measures not meaningful
 - absolute value changes as relevance judgments change
 - theoretical maximum of 1.0 for both recall and precision not obtainable by humans (inter-assessor judgments suggest 65% precision at 65% recall)
 - evaluation results are only comparable when they are from the same collection
 - a subset of a collection is a different collection
 - comparisons between different TREC collections are invalid

Sensitivity Analysis

- With archive of TREC results, have empirically determine relationship between number of topics, ∆ of scores, & error rate [Voorhees & Buckley, 2002]
 - error rates generally larger than accounted for in literature
 - confidence increases with topic set size
 - confidence also increases with larger $\Delta,$ but then power of comparison reduced
 - confidence can be increased by repeating experiment on multiple collections

Talk Outline

- General introduction to TREC
 - TREC history
 - TREC impacts
- Cranfield tradition of laboratory tests
 - mechanics of building test collections
 - test collection quality
 - legitimate uses of test collections

IR evaluation primer

trec_eval Evaluation Report

Ad hoc results - Cornell University

Sun	imary Statistics
Run Number	Cor6A3cll
Run Description	Category A, Automatic, long
Number of Topics	50
Total number of	of documents over all topics
Retrieved:	50000
Relevant:	4611
Rel-ret:	2590

Recall Level Preci	sion Averages	Document Level Averages			
Recall	Precision		Precision		
0.00 0.7013		At 5 docs	0.4480		
0.10	0.5050	At 10 docs	0.4260		
0.20	0.4150	At 15 docs	0.4013		
0.30	0.2846	At 20 docs	0.3630		
0.40	0.2187	At 30 docs	0.3200		
0.50	0.50 0.1775 0.60 0.1402		0.2010		
0.60			0.1418		
0.70 0.1015		At 500 docs	0.0823		
0.80 0.0538		At 1000 docs	0.0518		
0.90	0.0224	R-Precision (p	recision after		
1.00 0.0091		R docs retrieved (where R			
Average precision relevant docs	over all	is the number documents))	r of relevant		
non-interpolated 0.2139		Exact	0.2415		

Difference from Median in Average Precision per Topic

Evaluation Measure Criteria

- Related to a user satisfaction
- Interpretable
- Able to average or collect
- Have high discrimination power
- · Able to be analyzed

Evaluation Contingency Table

	Relevant	Non-Relevant
Retrieved	r	n-r
Non-Retrieved	R-r	N-n-R+r

- N = number docs in collection
- n = number docs retrieved
- R = number relevant docs
- r = number relevant retrieved

Single Number Summary Scores

- Precision (n): r / n
- Recall(n): r / R

•

- Average precision: Avg_{rd} (Prec(rank of rd))
 - R-Precision: Prec(R)
 - Recall at .5 precision
 - use Prec(10) if precision < .5 in top 10
 - Rank of first relevant (expected search length)

Document Level Measures

Advantage

- immediately interpretable

Disadvantages

- don't average well
 - different number of relevant implies topics are in different parts of recall-precision curve
 - theoretical maximums impossible to reach
- insensitive to ranking: only # rels that cross cut-off affect ranking
 - less useful for tuning a system

Number Relevant

Average Precision

Advantages

- sensitive to entire ranking: changing a single rank will change final score
- stable: a small change in ranking makes a relatively small change in score
- has both precision- and recall-oriented factors
 - ranks closest to 1 receive largest weight
 - · computed over <u>all</u> relevant documents
- Disadvantages
 - less easily interpreted

Runs Ranked by Different Measures

P(10)	P(30)	R-Prec	Ave Prec	Recall at	Recall	Total Rel	Rank of
				.5 Prec	(1000)		1 st Rel
INQ502	INQ502	ok7ax	ok7ax	att98atdc	ok7ax	ok7ax	tno7tw4
ok7ax	ok7ax	INQ502	att98atdc	ok7ax	tno7exp1	tno7exp1	bbn1
att98atdc	INQ501	ok7am	att98atde	mds98td	att98atdc	att98atdc	INQ502
att98atde	att98atdc	att98atdc	ok7am	ok7am	att98atde	bbn1	nect'chall
INQ501	nect'chall	att98atde	INQ502	INQ502	Cor7A3rrf	att98atde	tnocbm25
nect'chall	att98atde	INQ501	mds98td	att98atde	ok7am	INQ502	MerAbtnd
nect'chdes	ok7am	bbn1	bbn1	INQ501	bbn1	INQ501	att98atdc
ok7am	nect'chdes	mds98td	tno7exp1	ok7as	pirc8Aa2	ok7am	acsys7al
mds98td	INQ503	nect'chdes	INQ501	bbn1	INQ502	Cor7A3rrf	mds98td
INQ503	bbn1	nect'chall	pirc8Aa2	nect'chall	pirc8Ad	pirc8Aa2	ibms98a
Cor7A3rrf	tno7exp1	ok7as	Cor7A3rrf	tno7exp1	INQ501	nect'chdes	Cor7A3rrf
tno7tw4	mds98td	tno7exp1	acsys7al	Cor7A3rrf	nect'chdes	mds98td	ok7ax
MerAbtnd	pirc8Aa2	acsys7al	ok7as	acsys7al	nect'chall	acsys7al	att98atde
acsys7al	Cor7A3rrf	pirc8Aa2	nect'chdes	Cor7A2rrd	acsys7al	nect'chall	Brkly25
iowacuhk1	ok7as	Cor7A3rrf	nect'chall	INQ503	mds98td	pirc8Ad	nect'chdes

Ranked by measure averaged over 50 topics

Correlations Between Rankings

	P(30)	R Prec	Ave	Recall	Recall	Total	Rank
			Prec	at .5 P	(1000)	Rels	1 ^{s†} Rel
P(10)	.8851	.8151	.7899	.7855	.7817	.7718	.6378
P(30)		.8676	.8446	.8238	.7959	.7915	.6213
R Prec			.9245	.8654	.8342	.8320	.5896
Ave Prec				.8840	.8473	.8495	.5612
R at .5 P					.7707	.7762	.5349
Recall(1000)						.9212	.5891
Total Rels							.5880

Kendall's τ computed between pairs of rankings

Binary Preference (bpref)

- Measure designed to be robust in the face of incomplete judgments
 - tracks MAP very closely with full judgments
 - more stable than MAP when judgments noticably incomplete
 - [Buckley and Voorhees, SIGIR 2004]

Makes use of judged documents only

 normalized count of the times known relevant documents are ranked before known nonrelevant

$$\frac{1}{R}\sum_{r}\left(1-\frac{|n \text{ ranked before } r|}{\min(R,N)}\right)$$

Summary

- TREC emphasizes individual experiments evaluated on a benchmark task
 - leverages modest government investment into substantially more R&D than could be funded directly
 - improves state-of-the-art
 - accelerates technology transfer

Text REtrieval Conference (TREC)