Otter Tail Power Company Demonstration Project

Benefits Presentation

Power Plant Improvement Initiative

Full-Scale Retrofit of Advanced Hybrid[™] Technology Fabric Filter and Perforated Electrostatic Precipitator

John Rockey – Major Projects Division National Energy Technology Laboratory

Outline

- Executive Summary
- Project Information
 - Plant, fuel, location, cost, and schedule
 - Team members
 - Advanced Hybrid[™] technology process
 - Advanced Hybrid[™] filter schematic

450 MW Big Stone Power Plant

Outline (continued)

• Estimated Benefits

- Approach
- Market penetration assumptions
- Technology
- Pollutant reductions from commercialization
- Emissions removed
- Regional
- National
- Conclusions

Benefits Presentation: Otter Tail Power Company. PPII – J. Rockey, 321, 03/2007

Executive Summary

- Otter Tail Power Company designed, constructed and operated an Advanced Hybrid Particulate Collector (Advanced Hybrid[™]) at the existing Big Stone Power Plant, near Big Stone, SD
- Advanced Hybrid[™], tested on a 450 MWe cyclone boiler, had potential to raise fine particulate matter (PM_{2.5}) capture for coal-fired power plants up to 99.99%
- The first six months of operation (November 2002 April 2003) showed better than 99.99% particulate removal; however, Advanced Hybrid[™] was not able to consistently meet project goals due to unresolved issues
 - Higher than anticipated pressure drop in the membrane filter bags
 - Membrane filter bag failures
 - Poor electrostatic precipitator (ESP) performance

Project Information *Plant, Fuel, Location, Cost, and Schedule*

- A 450 MWe demonstration of Advanced Hybrid[™] technology installed on a cyclone boiler firing coal from Wyoming's Powder River Basin
- Location: Otter Tail Power's Big Stone Power Plant, Big Stone City, SD
- Project cost: \$21,359,336;
 (DOE share: \$6.5 million)
- Schedule:
 - 2002 Project Start
 - 2002 Construction
 - 2002 to 2005 Operation
 - 2006 Completion

Project Information (continued) *Team Members*

- Otter Tail Power Company
- Montana-Dakota Utilities (Bismark, ND) and NorthWestern Public Service (Sioux Falls, SD)

- Big Stone co-owners

• W.L. Gore & Associates, Inc. (Newark, DE)

Advanced Hybrid[™] licensee, membrane filter bag supplier

- University of North Dakota Energy and Environmental Research Center (Grand Forks, ND)
 - Advanced Hybrid[™] concept developer, patent holder, licenser
- Fuel: Power River Basin (PRB) sub-bituminous coal

Project Information (continued) Advanced HybridTM Filter Schematic

Flue gas first flows by electrodes to electrically charge the particulate, then through perforated plates where particulate are collected, and then to membrane filter bags to capture ultra-fine particulate

During bag cleaning, dust cake is projected through plates and captured in ESP zone

Project Information (continued) Advanced HybridTM Technology Process

- A description of project process is given below, recognizing that additional development by private sector would be required to achieve commercialization
 - A potentially high efficiency particulate control device with membrane filter bags interspersed with perforated electrostatic precipitator (ESP) plates and electrodes in same housing
 - Metal plates run the length of collector and contain numerous circular openings
 - Behind plates are membrane filter bags
 - When flue gas enters device
 - An estimated 90% of the fly ash particles become electrostatically charged and adhere to ESP like plates
 - Particles eluding plates, flow through openings and are trapped by the membrane filter bags

Estimated Benefits *Approach*

- Assuming further development of Advanced Hybrid[™] is pursued by private sector and technology reaches maturity, benefits estimation would proceed as follows
 - Forecast market penetration
 - Quantify differences between performance of conventional technology and the anticipated performance of the Advanced Hybrid Particulate Collector being demonstrated
 - Pollutant emissions, tons per year
 - Capital cost, constant dollars

Estimated Benefits (continued) *Market Penetration Assumptions*¹

- Individual boilers most likely to install Advanced Hybrid[™] were selected² based on specific attributes that made them most likely to benefit from that technology
 - Equipped with pollution control equipment that includes a cold-side ESP but not an SO_2 scrubber
 - Capacity factor of at least 0.80
 - ESP in-service date: 1982 or before
 - Boilers that came on line after 1962
- 25,614 MWe of existing power plants selected as basis of benefits estimation
 - ¹ Assuming further development by the private sector to reach commercialization is successful

² NETL Coal Power Data Base

Benefits Presentation: Otter Tail Power Company. PPII – J. Rockey, 321, 03/2007

Estimated Benefits (continued)

Potential Pollutant Reductions from Commercialization¹

Pollutant	AHPC Emission Reductions, tons/year	All Boiler Emissions, tons/year
Total Particulate Matter	52,580 ¹	522,400
PM ₁₀	35,670 ¹	360,900
PM _{2.5}	16,230 ¹	167,100
SO ₂ ²	202,700 ¹	10,770,000

¹ Assuming further development by the private sector to reach commercialization is successful

² Basis: AHPC technology would facilitate 4.7 GWe of generating capacity to switch to low sulfur coal.

Note: PM10 and PM2.5 emissions were estimated using generalized emissions factors.

Estimated Benefits (continued) Emissions Removed¹

Status	Total Particulate Emissions, tons/year	
Before Retrofit	360	
After Retrofit ¹	130	
Emissions Avoided ¹	230	

An early project emissions test revealed a stack dust loading of 0.00003 pounds/million Btu, which is equivalent to a removal efficiency of 99.998%

¹ At a nominal 450 MWe cyclone-fired boiler fueled primarily by PRB coal and assuming further development by the private sector to reach commercialization is successful

Estimated Benefits (continued) *Regional*

- Commercialized¹ version of Advanced Hybrid[™] technology could provide greater fuel flexibility to plant operations (can use PRB coal)
 - Boiler operations would no longer be curtailed due to opacity limits being exceeded
 - Region would benefit due to lower particulate emissions

¹ Assuming further development by the private sector

to reach commercialization is successful

Benefits Presentation: Otter Tail Power Company. PPII – J. Rockey, 321, 03/2007

Estimated Benefits (continued) *National*

- Additional development by private sector is required to ready this technology for commercialization
- Advanced Hybrid[™] technology, once commercialized, could save capital costs when compared to the installation of conventional fabric filter systems to achieve the same low particulate emissions

Conclusions

- Assuming further development by the private sector to reach commercialization is successful, Advanced Hybrid[™] technology could potentially enable the following benefits:
 - PRB coal burned in units where existing ESP's cannot effectively capture high-resistivity dust;
 - Additional fuel switching options
 - Avoiding plant peak load deratings

Full Scale Advanced Hybrid[™] Retrofit At Big Stone

Visit the NETL web site for information on all Power Plant Improvement Initiatives and Clean Coal Power Initiative projects

www.netl.doe.gov/technologies/coalpower/cctc

Benefits Presentation: Otter Tail Power Company. PPII – J. Rockey, 321, 03/2007