Chukchi Sea Play 23: Northeast Chukchi Basin—Franklinian

Geological Assessment

<u>GRASP UAI</u>: AAAAA DAX <u>Play Area</u>: 10,269 square miles <u>Play Water Depth Range</u>: 110-200 feet <u>Play Depth Range</u>: 3,000-20,000 feet <u>Play Exploration Chance</u>: 0.12096

Play 23, Northeast Chukchi Basin-Franklinian, Chukchi Sea OCS Planning Area, 2006 Assessment, Undiscovered Technically-Recoverable Oil & Gas													
Assessme	nt Results as o	f November 2	005										
Resource	F	Resources	*										
Commodity (Units)	F95	Mean	F05										
BOE (Mmboe)	0	332	1,360										
Total Gas (Tcfg)	0.000	1.277	5.081										
Total Liquids (Mmbo)	0	105	456										
Free Gas** (Tcfg)	0.000	1.219	4.814										
Solution Gas (Tcfg)	0.000	0.058	0.267										
Oil (Mmbo)	0	39	180										
Condensate (Mmbc)	0	66	276										
* Risked, Technically ** Free Gas Includes		Von-Associate	ed Gas										
F95 = 95% chance th given quantity	at resources w	vill equal or ex	ceed the										
F05 = 5% chance tha quantity	t resources wil	l equal or exc	eed the given										
BOE = total hydrocar equivalent, where 1 b gas	0,	•											
Mmb = millions of bai													
Tcf = trillions of cubic	feet												

Table 1

Play 23, the "Northeast Chukchi Basin— Franklinian" play, is the 15th-ranking play (of 29 plays) in the Chukchi Sea OCS Planning Area, with 1.1% (332 Mmboe) of the Planning Area energy endowment (29,041 Mmboe). The overall assessment results for play 23 are shown in table 1. Oil and gas-condensate liquids form 32% of the hydrocarbon energy endowment of play 23. Table 5 reports the detailed assessment results by commodity for play 23.

Table 3 summarizes the volumetric input data developed for the *GRASP* computer model of Chukchi Sea play 23. Table 4 reports the risk model used for play 23. The location of play 23 is shown in figure 1.

Play 23 includes probable carbonates of lower Paleozoic to Precambrian age and overlying slope-deposited (seismically clinoformal) clastic rocks (sandstones and shales), probably Devonian in age. These rocks occur in a fault-bounded relict of a basin beneath the northeast parts of Chukchi shelf. This structurally-isolated feature is termed the "Northeast Chukchi basin". Within Northeast Chukchi "basin", seismic records show a stratified sequence at least 30,000 feet in aggregate thickness. These rocks are coherently deformed, and seismic data identify a northwest-vergent thrust complex that overlies a southeast-dipping but undeformed subthrust sequence. The subthrust sequence contains the inferred Lower Paleozoic carbonates, which are approximately 15,000 feet thick. Elsewhere beneath Chukchi shelf, Franklinian rocks (or at least pre-Ellesmerian rocks) are seismically transparent or featureless in seismic records) and are inferred to be very complexly deformed and to offer little potential for hydrocarbons. An analog for oil and gas in Northeast Chukchi basin may be the oil pools found in folded Devonian rocks, the oils apparently sourced from organic-rich Cape Phillips shales of Silurian age, that are known from possibly correlative sequences in the Franklinian basin of the Canadian Arctic Islands. In

Northeast Chukchi basin, potential hydrocarbon traps are recognized as anticlines and thrust-faulted anticlines involving the clastic sequence in the central part of the play area and normal-fault truncations of dipping strata of the older carbonate sequence in the northwest parts of the play area. The rocks of play 23 play have not been tested anywhere by wells nor are they observed in outcrop. The Northeast Chukchi basin is known only from seismic reflection data.

Play 23, Northeast Chukchi Basin-Franklinian, Chukchi Sea OCS Planning Area, 2006 Assessment, Conditional BOE Sizes of Ten Largest Pools													
Assessme	nt Results as o	f November 2	005										
Pool Pank	BOE Resources *												
PUULKalik	F95	Mean	F05										
1	34	335	901										
2	13	142	410										
3	8	83	238										
4 6 55 164													
5	41	121											
6	4.0	32	96										
7	3.6	27	80										
8	3.2	24	70										
9	3.0	21	63										
10	2.8	20	59										
* Conditional, Techni Energy-Equivalent (N													
F95 = 95% chance th given quantity	at resources w	vill equal or ex	ceed the										
F05 = 5% chance tha quantity	at resources wil	l equal or exc	eed the given										
BOE = total hydrocar equivalent, where 1 k	0,	•											

Table 2

gas

A maximum of 32 hypothetical pools is forecast by the aggregation of the risk model and the prospect numbers model for play 23. These 32 pools range in mean conditional (un-risked) recoverable volumes from 4 Mmboe (pool rank 32) to 335 Mmboe (pool rank 1). Pool rank 1 ranges in possible conditional recoverable volumes from 34 Mmboe (F95) to 901 Mmboe (F05). Table 2 shows the conditional sizes of the 10 largest pools in play 23.

In the computer simulation for play 23 a total of 27,266 "simulation pools" were sampled for size. These simulation pools can be grouped according to the USGS size class system in which sizes double with each successive class. Pool size class 12 contains the largest share (5,018, or 18%) of simulation pools (conditional, technically recoverable BOE resources) for play 23. Pool size class 12 ranges from 64 to 128 Mmboe. The largest 13 simulation pools for play 23 fall within pool size class 17, which ranges in size from 2,048 to 4,096 Mmboe. Table 6 reports statistics for the simulation pools developed in the GRASP computer model for play 23.

GRASP Play Data Form (Minerals Management Service-Alaska Regional Office)

<u>Basin</u>: Chukchi Sea Planning Area <u>Play Number</u>: 23 <u>Assessor</u>: K.W. Sherwood <u>Play Name</u>: Northeast Chukchi Basin (Franklinian) <u>Date</u>: January 2005

	10,269 (6.5 0.49 - 10.0		Play Depth Range: feet 3 Expected Oil Gravity: ⁰ API						3,000 - 20,000 (mean = 10,000) 25				
				Play Water Depth Range: feet 110 - 200 (mea									
POOLS Module (Volumes of	Poole	Acro-I	Foot)										
Fractile	F100	F95	F90	F75	F50	Mean/Std. Dev.	F25	F15	F10	F05	F02	F01	F00
Prospect Area (acres)-Model Input*	9700		10145		74002	246228/781398			539830				871600
Prospect Area (acres)-Model Output**	9726	13481	17739	33311	81660	149209/172392	191927	298493	390374	550489			866895
Fill Fraction (Fraction of Area Filled)	0.04	0.07	0.08	0.09	0.10	0.11/0.02	0.12	0.13	0.14	0.15			0.23
Productive Area of Pool (acres)***	620	1316	1808	3398	8323	15817/19271	19935	31369	41153	58171	69000	74000	149544
Pay Thickness (feet)	31	63	70	81	100	106/34	130	140	150	160	170	185	300
** output from @RISK after aggregation with fill f *** from @RISK aggregation of probability distrib MPRO Module (Numbers of	Pools)	rospect area											
Input Play Level Chance	0.56	ļ	Prospect	evel Cha	nce	0.216			Exploratio	n Chance		0.12096	
Output Play Level Chance*	0.5512	1											
* First Occurrence of Non Zero Pools As Reported in PSUM	Module												
Risk Model	Play (Chance	I		Pot	roleum System Fac	tors			Prospec	t Chance	1	
		0.7		Petroleum System Factors Reservoir Presence (unknown)							t onance	1	
						hance Porosity > 10	,			0	.3	1	
	(0.8		Source Presence (unknown)								1	
			Migration							0	.9	1	
			Preservation (risk of heating and conversion to asphalts)								.8	1	
												1	
												1	
			- T		1		T					-	
		F95	F90	F75	F50		505	F15	F10	F05	F02	F01	F00
	F99					Mean/Std. Dev.	F25						
Numbers of Prospects in Play	F99 8	11	13	16	20	22.52/9.25	26	30	33	38	44	49	90
Numbers of Prospects in Play Numbers of Pools in Play	8	11											90 32
	8 Zero Pools	11	13	16	20 2	22.52/9.25 2.72/3.19	26	30 6	33 7	38 9	44 11	49	
Numbers of Prospects in Play Numbers of Pools in Play	8	11	13		20 2	22.52/9.25	26	30 6	33	38 9	44	49	
Numbers of Prospects in Play Numbers of Pools in Play Minimum Number of Pools	8 Zero Pools 1 (F55)	11 at F55.14	13 Mean	16	20 2	22.52/9.25 2.72/3.19	26	30 6	33 7	38 9	44 11	49	
Numbers of Prospects in Play Numbers of Pools in Play Minimum Number of Pools POOLS/PSRK/PSUM Module	8 Zero Pools 1 (F55)	11 at F55.14	13 Mean	16	20 2	22.52/9.25 2.72/3.19	26	30 6	33 7	38 9	44 11	49	
Numbers of Prospects in Play Numbers of Pools in Play Minimum Number of Pools POOLS/PSRK/PSUM Module Fractile	8 Zero Pools 1 (F55) es (Play	11 at F55.14	13 Mean	16 Number o	20 2 f Pools	22.52/9.25 2.72/3.19 2.72	26 5	30 6 Maximu	33 7 m Number	38 9 of Pools	44 11 32	49 12	32
Numbers of Prospects in Play Numbers of Pools in Play Minimum Number of Pools POOLS/PSRK/PSUM Module Fractile Oil Recovery Factor (bbl/acre-foot)	8 Zero Pools 1 (F55) es (Play F100	11 at F55.14 y Resou	13 Mean JrCeS) F90	16 Number o F75	20 2 f Pools F50	22.52/9.25 2.72/3.19 2.72 Mean/Std. Dev.	26 5 F25	30 6 Maximu F15	33 7 m Number F10	38 9 of Pools F05	44 11 32 F02	49 12 F01	32 F00
Numbers of Prospects in Play Numbers of Pools in Play Minimum Number of Pools POOLS/PSRK/PSUM Module Fractile Oil Recovery Factor (bbl/acre-foot) Gas Recovery Factor (Mcfg/acre-foot)	8 Zero Pools 1 (F55) es (Play F100 22	11 at F55.14 y Resol F95 43	13 Mean JrCeS) F90 49	16 Number o F75 61	20 2 f Pools F50 82	22.52/9.25 2.72/3.19 2.72 Mean/Std. Dev. 97/55	26 5 F25 116	30 6 Maximu F15 141	33 7 m Number F10 161	38 9 of Pools F05 202	44 11 32 F02 250	49 12 F01 290	32 F00 665
Numbers of Prospects in Play Numbers of Pools in Play Minimum Number of Pools POOLS/PSRK/PSUM Module Fractile Oil Recovery Factor (bbl/acre-foot) Gas Recovery Factor (Mcfg/acre-foot) Gas Oil Ratio (Sol'n Gas)(cf/bbl)	8 Zero Pools 1 (F55) Es (Play F100 22 4	11 at F55.14 y Resol F95 43 103	13 Mean Jrces) F90 49 130	16 Number o F75 61 178	20 2 f Pools F50 82 250	22.52/9.25 2.72/3.19 2.72 Mean/Std. Dev. 97/55 286/162	26 5 F25 116 350	30 6 Maximu F15 141 430	33 7 m Number F10 161 490	38 9 of Pools F05 202 598	44 11 32 F02 250 700	49 12 F01 290 800	32 F00 665 1592
Numbers of Prospects in Play Numbers of Pools in Play Minimum Number of Pools POOLS/PSRK/PSUM Module Fractile Dil Recovery Factor (bbl/acre-foot) Gas Recovery Factor (Mcfg/acre-foot) Gas Oil Ratio (Sol'n Gas)(cf/bbl) Condensate Yield ((bbl/Mmcfg)	8 Zero Pools 1 (F55) ES (Play F100 22 4 210 13	11 at F55.14 y Resol F95 43 103 1000 29	13 Mean JrCeS) F90 49 130 1100	16 Number o F75 61 178 1250 40	20 2 F Pools F50 82 250 1500 50	22.52/9.25 2.72/3.19 2.72 Mean/Std. Dev. 97/55 286/162 1483/361	26 5 5 116 350 1700	30 6 Maximu F15 141 430 1850	33 7 m Number 161 161 490 1900 79	38 9 of Pools 202 598 2050 90	44 11 32 F02 250 700 2170 105	49 12 F01 290 800 2250	F00 665 1592 2800 200
Numbers of Prospects in Play Numbers of Pools in Play Minimum Number of Pools POOLS/PSRK/PSUM Module Fractile Oil Recovery Factor (bbl/acre-foot) Gas Recovery Factor (Mcfg/acre-foot) Gas Oil Ratio (Sol'n Gas)(cf/bbl) Condensate Yield ((bbl/Mmcfg) Pool Size Distribution Statistics from <i>POOLS</i>	8 Zero Pools 1 (F55) ES (Play F100 22 4 210 13	11 at F55.14 y Resol F95 43 103 1000 29	13 Mean μrces) F90 49 130 1100 33 μ (mu)= 10	16 Number o 61 178 1250 40 0.900	20 2 f Pools F50 82 250 1500 50 σ² (sigma	22.52/9.25 2.72/3.19 2.72 Mean/Std. Dev. 97/55 286/162 1483/361 54/19	26 5 5 116 350 1700 64	30 6 Maximu F15 141 430 1850 72	33 7 m Number 161 161 490 1900 79	38 9 of Pools 202 598 2050 90	44 11 32 F02 250 700 2170 105	49 12 F01 290 800 2250 120	F00 665 1592 2800 200
Numbers of Prospects in Play Numbers of Pools in Play	8 Zero Pools 1 (F55) ES (Play ES (Play 22 4 210 13 (1,000 BO	11 at F55.14 y Resol F95 43 103 1000 29	13 Mean JTCES) F90 49 130 1100 33 μ (mu)= 10 Probability	16 Number o F75 61 178 1250 40 0.900 y Any Poo	20 2 f Pools F50 82 250 1500 50 σ² (sigma	22.52/9.25 2.72/3.19 2.72 Mean/Std. Dev. 97/55 286/162 1483/361 54/19 squared)= 1.812	26 5 116 350 1700 64 Gas (Gas C	30 6 Maximu F15 141 430 1850 72 ap)	33 7 m Number 161 161 490 1900 79	38 9 of Pools 202 598 2050 90 Jumber Ger	44 11 32 F02 250 700 2170 105	49 12 F01 290 800 2250 120	F00 665 1592 2800 200

 Table 3. Input data for Chukchi Sea play 23, 2006 assessment.

Ass	essment Province:	Chukchi Sea OCS Planning Area	23. Northeast Chukchi Basin - Franklinian						
	Assessor(s):	K.W. Sherwood	AAAA	A DAX					
	Date:	1-Jan-05							
erta	inty) based on consid	antitative probability of success (i.e., between a eration of the <i>qualitative</i> assessment of ALL el m geologic parameter assumptions have been	ements within the component was						
1.	Hydrocarbon Fill	component (1a * 1b * 1c)		1	0.8000	0.7200			
-	Probability of effi	uality, Effective, Mature Source Rock cient source rock in terms of the existence of su quality located in the drainage area of the rese		1a	0.80	1.00			
	b. Effective Expuls	ion and Migration							
F	Probability of effe reservoirs.	ective expulsion and migration of hydrocarbons	from the source rock to the	1b	1.00	0.90			
		ective retention of hydrocarbons in the prospects	s after accumulation.	1c	1.00	0.80			
2.	Reservoir compo			2	0.7000	0.3000			
╞	a. Presence of res Probability of pre	e rvoir facies sence of reservoir facies with a minimum net th	ickness and net/gross ratio (as	r r	• - -				
		esource assessment).		2a	0.70	1.00			
ŀ		y ectiveness of the reservoir, with respect to minin specified in the resource assessment).	num effective porosity, and	2b	1.00	0.30			
3.	Trap component			3	1.0000	1.0000			
-	a. Presence of trap Probability of pre assessment).	sence of the trap with a minimum rock volume (as specified in the resource	3a	1.00	1.00			
	b. Effective seal m	echanism							
	Probability of effe	ective seal mechanism for the trap.		3b	1.00	1.00			
ve		(Marginal Probability of hydrocarbons	, MPhc)		0.5600				
	(1 * 2 * 3) Produ	ct of All Subjective Play Chance Factors							
ve	rage Conditional	Prospect Chance ¹ ct of All Subjective Conditional Prospect Chanc	- Fostoro			0.2160			
	¹ Assumes that	the Play exists (where all play chance factors stent with play chance and prospect distribu	s = 1.0)	3 of Guid	de				
хр	Ioration Chance	all Play Chance and Average Conditional Prosp	pect Chance)		0.	1210			
on		nce document for explanation of the Risk Analy							
		prosity >10%, Based on Regional M		voir T	hermal Maturit	у			

 Table 4. Risk model for Chukchi Sea play 23, 2006 assessment.

GRASP - Geologic and Economic Resource Assessment Model - PSUM Module Results

Minerals Management Service - Alaska OCS Region

GRASP Model Version: 8.29.2005)

Computes the Geologic Resource Potential of the Play	

Play UA	I: AAAAAD	AX	Play No.		23	
World	Level	-	World	Level	Resources	
Country	Level	-	UNITED	STATES	OF	AMERICA
Region	Level	-	MMS	-	ALASKA	REGION
Basin	Level	-	CHUKCHI	SEA	SHELF	
Play	Level	-	Play		23 Northeast	Chukchi Basin - Franklinian
Geologist	Kirk	W.	Sherwood			
Remarks	20	05 Assessment				
Run Date & Time:		Date	19-Sep-0	5 Time	13:56:	47

Summary of Play Potential

Product	MEAN	Standard Deviation
BOE (Mboe)	332,490	499,830
Oil (Mbo)	39,435	94,072
Condensate (Mbc)	65,882	104,190
Free (Gas Cap & Nonassociated) Gas (Mmcfg)	1,218,700	1,856,800
Solution Gas (Mmcfg)	57,981	135,240

10000 (Number of Trials in Sample)

0.5512 (MPhc [Probability] of First Occurrence of Non-Zero Resource) Windowing Feature: used

Empirical Probability Distributions of the Products

Greater Than Percentage	BOE (Mboe)	Oil (Mbo)	Condensate (Mbc)	Free (Gas Cap & Nonassociated) Gas (Mmcfg)	Solution Gas (Mmcfg)
100		0	0	0	0
99.99	0	0	0	0	0
99	0	0	0	0	0
95	0	0	0	0	0
90	0	0	0	0	0
85	0	0	0	0	0
80	0	0	0	0	0
75	0	0	0	0	0
70	0	0	0	0	0
65	0	0	0	0	0
60	0	0	0	0	0
55	5,401	572	1,022	20,615	780
50	88,886	10,087	16,851	332,650	15,497
45	163,640	20,813	30,960	598,110	30,607
40	238,800	27,031	48,086	879,810	40,068
35	317,460	34,496	61,538	1,194,300	50,106
30	407,990	43,174	81,891	1,530,900	59,105
25	517,920	57,677	102,070	1,931,600	81,323
20	633,920	79,365	123,560	2,307,300	114,880
15	776,680	91,347	153,390	2,848,600	140,930
10	990,740	122,440	195,600	3,607,100	173,450
8	1,110,400	126,840	223,840	4,078,600	191,160
6	1,257,800	151,180	250,350	4,579,000	233,060
5	1,360,200	180,300	275,700	4,814,300	267,130
4	1,461,500	166,660	296,590	5,361,300	248,990
2	1,812,200	198,440	372,560	6,681,000	294,750
1	2,240,200	281,110	447,230	8,109,600	387,130
0.1	3,380,200	227,100	670,370	13,592,000	360,670
0.01	4,052,400	411,920	623,940	16,366,000	586,810
0.001	4,462,000	232,330	955,720	18,037,000	362,320

 Table 5. Assessment results by commodity for Chukchi Sea play 23, 2006 assessment.

		SEA SHELF				Model Simul	lation "Pools	" Report	ed by "F	ieldsiz	e.out" G	RASP M	lodule										
	- Franklinia r: AAAAAD	an-Northea	st Chukch	i Basin																			
UAI Nej																							
	Classifica	tion and Size		Poo	I Count Statis	stics		Pool	Types Co	unt	Mixed P	ool Range	Oil Poo	l Range	Gas Po	ol Range	Total Po	ol Range			Pool Resource S	Statistics (MMBOE)	
Class	Min (MMBOE)	Max (MMBOE)	Pool Count	Percentage	Trial Average	Trials w/Pool Avg		Mixed Pool	Oil Pool	Gas Pool	Min	Max	Min	Max	Min	Мах	Min	Мах		Min	Max	Total Resource	Average Resource
1	0.0312	0.0625	0	0	0	0		0	0	0	0	0	0	0	0	0 0	0	0		0.000000	0.000000	0.000000	0.00000
2	0.0625	0.125	2	0.007335	0.0002	0.000363		0	0	2	0	0	0	0	1	1	1	1		0.079463	0.087604	0.167066	83.53310
3	0.125	0.25	3	0.011003	0.0003	0.000544		0	0	3	0	0	0	0	1	1	1	1		0.160126	0.228437	0.577786	192.59540
4	0.25	0.5	18	0.066016	0.0018	0.003265		0	0	18	0	0	0	0	1	1	1	1		0.271080	0.496166	7.367975	409.33191
5	0.5	1	55		0.0055	0.009976		0	0	55	0	0	0	0	1	1	1	1		0.503196		41.699363	758.17024
6	1	2	141	0.517128	0.0141	0.025576		7	0	134	1	1	0	0	1	2	1	2		1.009952	1.993750	218.378672	1.54878
7	2	4	481	1.764102	0.0481	0.087248		59	0	422	1	1	0	0	1	2	1	2		2.000076	3.999514	1501.443000	3.12150
8	4	8	1532	5.618719	0.1532	0.277889		319	0	1213	1	2	0	0	1	5	1	5		4.001880	7.995400	9397.283000	6.13399
9	8	16	3121	11.44649	0.3121	0.566116		812	0	2309	1	3	0	0	1	5	1	6		8.000200	15.999814	37154.248000	11.90459
10	16	32	4372	16.034622	0.4372	0.793035		1241	0	3131	1	4	0	0	1	6	1	8		16.001670	31.999342	102303.697000	23.39974
11	32	64	4935	18.099464	0.4935	0.895157		1534	0	3401	1	4	0	0	1	6	1	7		32.006814	63.979405	227815.621000	46.16324
12	64	128	5018	18.403873	0.5018	0.910212		1607	0	3411	1	6	0	0	1	5	1	8		64.002574	127.977537	461786.680000	92.02603
13	128	256	4070	14.927015	0.407	0.738255		1378	0	2692	1	4	0	0	1	5	1	7		128.011896	255.989397	740033.219000	181.82634
14	256	512	2433	8.923201	0.2433	0.441321		840	0	1593	1	3	0	0	1	5	1	5		256.004206	511.864661	865427.810000	355.70397
15	512	1024	892	3.271474	0.0892	0.161799		308	0	584	1	2	0	0	1	2	1	3		512.007889		608369.396000	682.02844
16	1024	2048	180	0.660163	0.018	0.03265		74	0	106	1	1	0	0	1	2	1	2		1032.836000	2027.022000	239042.824000	1.32801
17	2048	4096	13	0.047678	0.0013	0.002358		6	0	7	1	1	0	0	1	1	1	1		2101.564000	3037.825000	31772.589000	2.44404
18	4096	8192	0	0	0	0		0	0	0	0	0	0	0	0	0 0	0	0		0.000000	0.000000	0.000000	0.00000
19	8192	16384	0	0	0	0		0	0	0	0	0	0	0	0	0 0	0	0	- 1	0.000000	0.000000	0.000000	0.00000
20	16384	32768	0	0	0	0		0	0	0	0	0	0	0	0	0	0	0		0.000000	0.000000	0.000000	0.00000
21	32768 65536	65536 131072	0	0	0	0		0	0	0	0	0	0	0	0	0	0	0	4	0.000000	0.000000	0.000000	0.0000
22 23	65536 131072	262144	0	0	0	0		0	0	0	0	0	0	0	0	0	0	0	4	0.000000	0.000000	0.000000	0.00000
23	262144	524288	0	0	0	0		0	0	0	0	0	0	0	0	0	0	0	4	0.000000	0.000000	0.000000	0.00000
24	524288	1048576	0	0	0	0		0	0	0	0	-	0	0	0	0	0	0	4	0.000000	0.000000	0.000000	0.00000
25 Not Class		1046576	0	0	0	0	Below Class	0	0	0	0	0	0	0	0	0	0	0	Below Class	0.000000	0.000000	0.000000	0.00000
101 0103.		Totals	27266	100.000008	2.7266	4.945764	Above Class	0	0	0									Above Class	0.000000	0.000000	0.000000	0.00000
		not Classifie										Max refe				he releva n.	nt size cl	ass that			fer to aggregate n any single trial ir	esources of the rele the simulation.	vant size cla
		vith Pools:																					

 Table 6. Statistics for simulation pools created in computer sampling run for Chukchi Sea play 23, 2006 assessment.

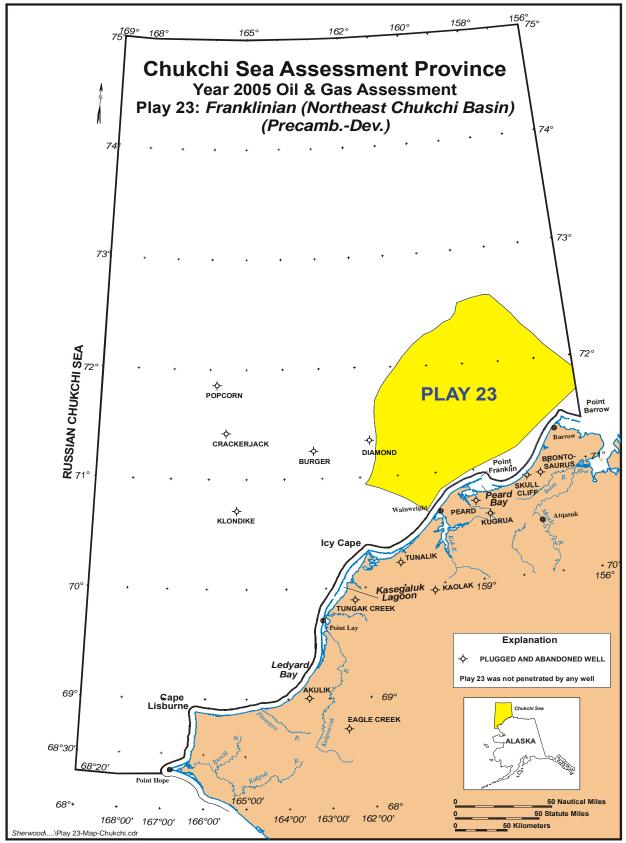


Figure 1. Map location of Chukchi Sea play 23, 2006 assessment.