Beaufort Sea Play 16: Brookian Foldbelt

Geological Assessment

<u>GRASP UAI</u>: (AAAAABBA) <u>Play Area</u>: 4,521 square miles <u>Play Water Depth Range</u>: 5 – 1600 feet <u>Play Depth Range</u>: 14000 – 25000 feet <u>Play Exploration Chance</u>: 0.258

Play 16, Brookian Foldbelt, Beaufort Sea OCS Planning Area, 2006 Assessment, Undiscovered Technically-Recoverable Oil & Gas												
Assessment Results as of November 2005												
Resource	Resource Resources *											
(Units)	F95	Mean	F05									
BOE (Mmboe)	0	3,645	9,647									
Total Gas (Tcfg)	0.000	4.161	11.348									
Total Liquids (Mmbo)	0	2,905	7,628									
Free Gas** (Tcfg)	0.000	3.552	9.743									
Solution Gas (Tcfg)	Solution Gas 0.000 0.609 1.605											
Oil (Mmbo)	0	2,748	7,228									
Condensate (Mmbc)	0	157	401									
* Risked, Technically- ** Free Gas Includes	Recoverable Gas Cap and I	Von-Associate	ed Gas									
F95 = 95% chance that resources will equal or exceed the given quantity												
F05 = 5% chance that resources will equal or exceed the given quantity												
BOE = total hydrocarbon energy, expressed in barrels-of-oil- equivalent, where 1 barrel of oil = 5,620 cubic feet of natural												

Mmb = millions of barrels

Tcf = trillions of cubic feet

Play 16, the Brookian Foldbelt, is the Beaufort Sea province's richest play containing 28% of the province's hydrocarbon endowment (3645 Mmbl mean BOE). The overall assessment results for play 16 are shown in table 1. Liquid hydrocarbons likely make up 80% of these resources. Table 5 reports the detailed assessment results by commodity for play 16.

Table 3 summarizes the volumetric input data developed for the *GRASP* computer model of Beaufort Sea play 16. Table 4 reports the risk model used for play 16. The location of play 16 is shown in figure 1.

Play 16 includes Tertiary Sagavanirktok Formation topset sequences and Cretaceous to Tertiary Canning Formation topset and prodelta sequences complexly structured by both Brooks Range folding and coeval faulting along the hinge line fault system. The hinge line fault zone obliquely intersects the foldbelt within the Brookian Foldbelt play. The large number of mapped closures among these structures accounts in large part to the size of this play. Major offshore structural features in the play include Herschel high, Demarcation subbasin, and Camden anticline. Onshore, the corollary play includes the Marsh Creek anticline and other shallow structures in the coastal plain of the Arctic National Wildlife Refuge (ANWR). Reservoir sandstones are very sparse in the three offshore wells (Belcher, Corona, and Aurora) that tested prospects in this play. However, in Canadian waters, the Natsek well, at the southeast end of the Herschel high encountered reservoir-quality sandstones in Upper Cretaceous and Paleocene rocks. Potential oil sources include the Hue Shale and Canning Formation, which probably underlie many offshore structures in the Foldbelt play. However, wells testing the play penetrated only Tertiary shales with gas-prone kerogen. The dominant recognized trap types include anticlines, faulted anticlines and fault closures. Also

Table 1

likely are stratigraphic traps occurring in syn- and post-tectonic sediments that fill basins developed between folded uplifts. Late stage structuring may have disrupted some earlier-formed hydrocarbon pools.

Three offshore wells tested the play but failed to find pooled hydrocarbons. Belcher well was drilled on an anticline on the Herschel high and encountered neither sandstones nor hydrocarbon shows. Corona was drilled on the crest of Camden anticline, and encountered only sparse thin sandstones with no hydrocarbon shows. Aurora was drilled on an anticlinal feature adjacent to ANWR. It encountered primarily shales with no hydrocarbon shows in the Brookian sequence.

There is a high level of uncertainty in this play due to the complex structuring of the sequence and the lack of success of wells testing this play. Accordingly risk has been applied to the seal, timing, source, migration, presence of formation, and adequacy of reservoir facies.

A maximum of 49 hypothetical pools is forecast by the aggregation of the risk model and the prospect numbers model for play 16. These pools range in mean conditional (unrisked) recoverable volumes from 1.6 Mmboe (pool rank 49) to 2,144 Mmboe (pool rank 1). Pool rank 1 ranges in possible conditional recoverable volumes from 289 Mmboe (F95) to 6,044 Mmboe (F05). Table 2 shows the conditional sizes of the 10 largest pools in play 16. Play 16, Brookian Foldbelt, Beaufort Sea OCS Planning Area, 2006 Assessment, Conditional BOE Sizes of Ten Largest Pools

Assessment Results as of November 2005										
Pool Rank	BOE Resources *									
1 OOI Ruink	F95	Mean	F05							
1	289	2144	6044							
2	178	795	2287							
3	129	437	1106							
4	99	289	644							
5	79	211	478							
6	65	164	317							
7	53	132	259							
8	44	109	207							
9	37	92	175							
10	31	78	148							
* Conditional Techni	cally-Recovera	hle Millions o	f Barrels							

Energy-Equivalent (Mmboe), from "PSRK.out" file

F95 = 95% chance that resources will equal or exceed the given quantity

F05 = 5% chance that resources will equal or exceed the given quantity

BOE = total hydrocarbon energy, expressed in barrels-of-oilequivalent, where 1 barrel of oil = 5,620 cubic feet of natural gas

Table 2

Table 6 reports statistics for the simulation pools developed in the GRASP computer model for play 16. In the computer simulation, a total of 204,262 "simulation pools" were sampled for size. These simulation pools can be grouped according to the USGS size class system in which sizes double with each successive class. Pool size class 11 contains the largest share (37,191 or 18%) of simulation pools (conditional, technically recoverable BOE resources) for play 16. Pool size class 11 ranges from 32 to 64 Mmboe. The largest pool among the 204,262 simulation pools falls within pool size class 20, which ranges in size from 16,384 to 32,768 Mmboe.

GRASP Play Data Form (Minerals Management Service-Alaska Regional Office) Basin: Beaufort Date: Assessor: Johnson/Scherr 10/17/2005 Play Number: 16 Foldbelt Play Name: Play UAI Number: AAAAABBA Play Depth Range: feet Play Area: mi² (million acres) 4521 (2893.2) 1400 25000 6,200 Expected Oil Gravity: ⁰ API **Reservoir Thermal Maturity: % Ro** 30 Play Water Depth Range: feet 5 160 1600 **POOLS Module (Volumes of Pools, Acre-Feet)** Fractile F100 F95 F90 F75 F50 Mean/Std. Dev. F25 F15 F10 F05 F02 F01 F00 Prospect Area (acres)-Model Input 108 1107 3286 7000 14911 44259 95023 200000 Prospect Area (acres)-Model Output Fill Fraction (Fraction of Area Filled) 0.1 0.29 0. 0.76 0.95 0.99 0.14 Productive Area of Pool (acres) 371 607 1365 3365 0829.725/26345.9 8340 13450 29629 195214 13 19542 Pay Thickness (feet) 7.0 21.9 26.6 36.9 61.486/36.492 76.2 92.6 105.6 128.4 160.0 185.3 391.9 53.0 **MPRO** Module (Numbers of Pools) Prospect Level Chance 0.258048 Play Level Chance 0.32256 Exploration Chance 0.8 **Risk Model Play Chance** Petroleum System Factors **Prospect Chance** 0.8 Adequate Reservoir Adequate Seal 0.9 Adequate timing 0.7 Adequate migration 0.8 Adequate formationi 0.8 Adequate source 0.8 Fractile F99 F95 F90 F75 F50 Mean/Std. Dev. F25 F15 F10 F05 F02 F01 F00 Numbers of Prospects in Play 78.00 79.06/5.43 67.00 70.50 72.00 75.00 82.00 90.00 92.00 100.50 84.00 86.00 88.00 Numbers of Pools in Plav 24 20.43/10.98 28 30 31 33 35 40 49 19 0@F79.99 Minimum Number of Pools 0 Mean Number of Pools 20.43 Maximum Number of Pools 49 POOLS/PSRK/PSUM Modules (Play Resources) Fractile F100 F95 F90 F75 F15 F10 F50 Mean/Std. Dev. F25 F05 F02 F01 F00 Oil Recovery Factor (bbl/acre-foot) 266.779/106.446 462 539 598 1012 61 133 153 192 248 320 367 403 233.5 3537. Gas Recovery Factor (Mcfg/acre-foot) 51.0 304.9 476.4 1283.7 1674.9 2005. 2619.3 4322.0 7577.0 782.0 1029.210/874.273 Gas Oil Ratio (Sol'n Gas)(cf/bbl) 38.0 96.0 112.9 148.0 200.0 221.428/105.929 270.2 317.6 416.6 500.0 1051.0 354.3 564. Condensate Yield ((bbl/Mmcfg) 7.60 19.21 22.58 29.61 40.00 44.286/21.197 54.04 63.51 70.85 83.31 99.98 112.90 210.20 Pool Size Distribution Statistics from POOLS (1,000 BOE): Random Number Generator Seed= 753316 μ (mu)= 10.7242928 σ^2 (sigma squared)= 2.54337846 Probability Any Pool Contains Both Oil and Free Gas (Gas Cap) BOE Conversion Factor (cf/bbl) 5620 0 Probability Any Pool is 100% Oil Fraction of Pool Volume Gas-Bearing in Oil Pools with Gas Cap 0.25 0 Probability Any Pool is 100% Gas 0

 Table 3. Input data for Beaufort Sea play 16, 2006 assessment.

	Risk Analysis Form - 20	006 National Assessn	nent									
Assessment Province:	Beaufort	Play Number, Name:	16, F	i, Foldbelt								
Assessor(s):	Assessor(s): Johnson/Scherr Play UAI: AAA/											
Date												
For each component, a q certainty) based on consi probability that the minim	<i>uantitative</i> probability of success (i.e., between zero a deration of the <i>qualitative</i> assessment of ALL elemer um geologic parameter assumptions have been met of the superior of the sup	and one, where zero indicates ts within the component was or exceeded.	no con assigne	fidence and one ind ed. This is the asse	licates absolute ssment of the							
				Play Chance Factors	Averge Conditional Prospect Chance ¹							
1. Hydrocarbon Fil	component (1a * 1b * 1c)		1	1.0000	0.4480							
a. Presence of a Probability of ef rock of adequat b. Effective Expu	Quality, Effective, Mature Source Rock ficient source rock in terms of the existence of sufficie e quality located in the drainage area of the reservoirs ision and Miaration	nt volume of mature source	1a	1.00	0.80							
Probability of ef reservoirs.	fective expulsion and migration of hydrocarbons from	the source rock to the	1b	1.00	0.80							
C. Preservation Probability of ef	fective retention of hydrocarbons in the prospects afte	er accumulation.	1c	1.00	0.70							
2. Reservoir compo	onent (2a * 2b)		2	0.8000	0.8000							
a. Presence of re	servoir facies	es and net/gross ratio (as	r									
specified in the	resource assessment).		2a	0.80	1.00							
b. Reservoir qual Probability of ef permeability (as	ity fectiveness of the reservoir, with respect to minimum or specified in the resource assessment).	effective porosity, and	2b	1.00	0.80							
3. Trap component	(3a * 3b)		3	1.0000	0.9000							
a. Presence of tra Probability of pr assessment).	np esence of the trap with a minimum rock volume (as sp	pecified in the resource	3a	1.00	1.00							
b. Effective seal r	nechanism				-							
Probability of ef	fective seal mechanism for the trap.		3b	1.00	0.90							
Overall Play Chance	(Marginal Probability of hydrocarbons, MP	Phc)		0 8000								
(1 * 2 * 3) Prod	uct of All Subjective Play Chance Factors			0.0000								
Average Conditiona	Prospect Chance ¹ uct of All Subjective Conditional Prospect Chance Fact	otors			0.3226							
Assumes that Must be cons	the Play exists (where all play chance factors = 1. istent with play chance and prospect distribution -	.0) See discussion on Page 3	of Gui	de								
Exploration Chance (Product of Ove	rall Play Chance and Average Conditional Prospect C	Chance)		0.	2580							
Comments: See guid	ance document for explanation of the Risk Analysis Fo	orm										

 Table 4. Risk model for Beaufort Sea play 16, 2006 assessment.

GRASP - Geologic and Economic Resource Assessment Model - PSUM Module Results

Minerals Management Service - Alaska OCS Region

GRASP Model Version: 8.29.2005)

Computes the Geologic Resource Potential of the Play

Play	UAI: AAAAAB	BA	Р	lay No.		16	
World	Level	-	V	Vorld	Level	Resources	
Country	Level	-	L	INITED	STATES	OF	AMERICA
Region	Level	-	N	1MS	-	ALASKA	REGION
Basin	Level	-	E	BEAUFORT	SHELF		
Play	Level	-	P	lay		16 -	Brookian Foldbelt
Geologist	Peter	Johnson					
Remarks	Play		16	2005	5 Assessment		
Run Date & Time	e:	Date		19-Sep-05	5 Time	13:50:	28

Summary of Play Potential

Product	MEAN	Standard Deviation			
BOE (Mboe)	3,645,100	3,187,800			
Oil (Mbo)	2,747,900	2,404,900			
Condensate (Mbc)	156,910	183,700			
Free (Gas Cap & Nonassociated) Gas (Mmcfg)	3,552,200	3,853,800			
Solution Gas (Mmcfg)	608,580	572,920			

10000 (Number of Trials in Sample)

0.8006 (MPhc [Probability] of First Occurrence of Non-Zero Resource) Windowing Feature: used

Empirical Probability Distributions of the Products

Greater Than Percentage	BOE (Mboe)	Oil (Mbo)	Condensate (Mbc)	Free (Gas Cap & Nonassociated) Gas (Mmcfg)	Solution Gas (Mmcfg)		
100	0	0	0	0	0		
99.99	0	0	0	0	0		
99	0	0	0	0	0		
95	0	0	0	0	0		
90	0	0	0	0	0		
85	0	0	0	0	0		
80	423,030	323,000	16,963	394,340	72,504		
75	1,551,500	1,182,700	64,481	1,455,800	254,080		
70	1,901,600	1,442,300	80,185	1,807,900	323,040		
65	2,199,700	1,668,200	92,489	2,089,900	377,510		
60	2,496,200	1,884,400	109,220	2,412,900	411,630		
55	2,780,700	2,097,300	119,850	2,705,000	462,040		
50	3,094,600	2,328,200	132,930	3,039,000	520,990		
45	3,431,900	2,588,000	149,830	3,322,300	578,770		
40	3,761,000	2,847,800	158,420	3,597,300	644,660		
35	4,175,800	3,142,200	172,890	4,123,700	713,210		
30	4,634,400	3,524,400	191,280	4,374,400	788,790		
25	5,174,400	3,972,900	203,680	4,720,000	888,040		
20	5,829,700	4,421,700	254,250	5,524,400	959,400		
15	6,628,200	5,045,300	292,690	6,145,600	1,105,200		
10	7,687,100	5,787,600	338,150	7,474,500	1,300,400		
8	8,309,200	6,277,000	349,150	8,000,900	1,457,800		
6	9,105,000	6,923,400	356,720	8,677,600	1,578,100		
5	9,647,400	7,227,500	400,710	9,742,600	1,605,400		
4	10,319,000	7,600,300	470,170	10,862,000	1,776,200		
2	11,967,000	9,216,900	462,930	10,712,000	2,141,900		
1	14,392,000	10,639,000	718,640	14,792,000	2,258,800		
0.1	21,677,000	16,557,000	766,070	19,750,000	4,722,300		
0.01	27,611,000	20,569,000	1,014,300	28,223,000	5,651,800		
0.001	29,323,000	13,652,000	1,718,600	75,508,000	2,905,700		

Table 5. Assessment results by commodity for Beaufort Sea play 16, 2006 assessment.

Basin: Play 10 UAI Ke	BEAUFOR - Brookian y: AAAAAE	T SHELF Foldbelt 3BA				Model Simu	lation "Pools	" Report	ed by "	Fieldsiz	e.out" G	RASP M	odule										
Classification and Size Pool Count Statis			stics	lics			ount	Mixed P	ool Range	Oil Poo	l Range	Gas Pool Range		Total Po	ool Range			Pool Resource	Statistics (MMBOE)				
Class	Min (MMBOE)	Max (MMBOE)	Pool Count	Percentage	Trial Average	Trials w/Pool Avg		Mixed Pool	Oil Poo	Gas Pool	Min	Max	Min	Мах	Min	Мах	Min	Max		Min	Мах	Total Resource	Average Resource
1	0.0312	0.0625	9	0.004406	0.0009	0.001124		9	0	0	1	1	0	0	C	0 0	1	1		0.044175	0.050408	0.440721	48.969034
2	0.0625	0.125	62	0.030353	0.0062	0.007743		62	0	0	1	1	0	0	C	0 0	1	1		0.069204	0.123969	6.272360	101.167090
3	0.125	0.25	232	0.11358	0.0232	0.028975		232	0	0	1	2	0	0	C	0 0	1	1 2	2	0.128132	0.249921	44.681317	192.591891
4	0.25	0.5	726	0.355426	0.0726	0.090671		726	0	0	1	2	0	0	C	0 0	1	1 2	2	0.250302	0.499632	277.661839	382.454336
5	0.5	1	1279	0.626157	0.1279	0.159735		1279	0	0 0	1	3	0	0	C	0 0	1	1 3	5	0.503047	0.999797	968.470166	757.208884
6	1	2	2912	1.42562	0.2912	0.363682		2912	0	0 0	1	4	0	0	C	0 0	1	1 4		1.000106	1.999409	4329.656000	1.486832
7	2	4	6593	3.227717	0.6593	0.823405		6593	0	0 0	1	5	0	0	C	0 0	1	5	5	2.002680	3.999896	19958.324000	3.027199
8	4	8	14070	6.888212	1.407	1.757212		14070	0	0 0	1	8	0	0	0	0 0	1	8	5	4.000141	7.999426	84270.582000	5.989380
9	8	16	24498	11.993421	2.4498	3.059573		24498	(0 0	1	11	0	0	0	0 0	1	11		8.001054	15.999746	289031.758000	11.798178
10	16	32	33886	16.589478	3.3886	4.232047		33886	(0 0	1	13	0	0	(0 0	1	13	5	16.000549	31.996232	790293.506000	23.322125
11	32	64	3/191	18.207499	3.7191	4.644811		37191			1	16	0	0		0 0		16		32.001240	63.998889	1706041.000000	45.872402
12	64	128	33216	16.261469	3.3216	4.14837		33216			1	12	0	0	U C			1 12		64.003585	127.998715	3029869.000000	91.21/1/1
13	120	200	23493	11.501405	2.3493	2.934056		23493					0	0					-	126.000317	200.944476	4219034.000000	179.000000
14	200	1024	6122	0.290323	0.6122	0.764706		6122			1	0	0	0					5	200.000009	1022 011000	4346014.000000	303.472039
16	1024	20/18	3030	1 024	0.0123	0.704700		3030			1	6	0	0						1024.056000	2047 535000	5677951 000000	1 444771
17	2048	4096	2314	1 132850	0.333	0.430021		2314			1	4	0	0					·	2050 613000	4094 833000	6552541 000000	2 831605
18	4096	8192	772	0.377946	0.2314	0.096416		772			1	2	0	0			1			4097 431000	8184 770000	4176552 000000	5 410042
19	8192	16384	89	0.043571	0.0089	0.011115		89	0		1	2	0	0	0	0	1			8253 772000	14454 114000	887773 353000	9 974981
20	16384	32768	6	0.002937	0.0006	0.000749		6	(1	1	0	0	0	0 0		1		17641.106000	20027.997000	115394,198000	19.232367
21	32768	65536	0	0	0	0		0	0	0	0	0	0	0	C) 0) ()	0.000000	0.000000	0.000000	0.000000
22	65536	131072	0	0	0	0		0	0	0	0	0	0	0	C) 0) ()	0.000000	0.000000	0.000000	0.000000
23	131072	262144	0	0	0	0		0	C	0	C	0	0	0	C	0 0) ()	0.000000	0.000000	0.000000	0.000000
24	262144	524288	0	0	0	0		0	0	0 0	0	0	0	0	C	0 0) ()	0.000000	0.000000	0.000000	0.000000
25	524288	1048576	0	0	0	0		0	0	0	0	0	0	0	C) 0) ()	0.000000	0.000000	0.000000	0.000000
Not Clas	sified		0	0	0	0	Below Class	0	C	0 0									Below Class	0.000000	0.000000	0.000000	0.000000
		Totals	204262	99.999992	20.4262	25.510429	Above Class	0	0	0									Above Class	0.000000	0.000000	0.000000	0.000000
Numbe Numbe Numbe	Number of Pools not Classified: 0 Min and Max refer to numbers of pools of the relevant size class that occur within any single trial in the simulation. Min and Max refer to aggregate resources of the relevant size class that that occur within any single trial in the simulation. Number of Pools below Class 1: 0 Number of Trials with Pools: 8007									ant size class													

Table 6. Statistics for simulation pools created in computer sampling run for Beaufort Sea play 16, 2006 assessment.

Figure 1. Map location of Beaufort Sea play 16, 2006 assessment.