
A standardized drug nomenclature
links systems that use different
vocabularies, so the patient gets what
the doctor ordered.

Simon Liu, Wei Ma, Robin Moore,

Vikraman Ganesan, and Stuart Nelson

RxNorm: Prescription
for Electronic Drug
Information Exchange

T oday’s commercial drug information sys
tems follow a variety of naming conven
tions. For example, cooperating hospitals
might use different systems, and find

their data incompatible. Even within a hospital,
there might be one system for ordering, another
for inventory management, and still another for
recording dose adjustments or checking drug
interactions.A smooth electronic exchange of the
information in these systems—not only between
organizations but even within a single organiza
tion—is crucial in assuring patient safety. This
exchange requires a standardized nomenclature.

To meet this need, the National Library of
Medicine (NLM) created RxNorm, a standard
ized nomenclature for clinical drugs that is one of
a suite of standards designated for use in US fed
eral government systems for the electronic
exchange of clinical health information.The goal
of RxNorm is to let various systems using differ
ent drug nomenclatures share and exchange data
efficiently. It provides a way to link standard clin
ical drug names to many of the drug vocabularies
commonly used in pharmacy management and
drug interaction software, including those of First
DataBank,Micromedex,Medi-Span,and Multum.

By linking these vocabular
ies, RxNorm can mediate
messages between systems
that use different vocabular
ies.These linkages ease inter-
operability among the com
puterized systems that record

For More Information

Inside

or process data dealing with clinical drugs.
RxNorm will eventually cover all prescription

medications approved for use in the United States.
In addition, when authoritative information is
available about prescription medications from
other countries and over-the-counter medications,
RxNorm will add and cover these drugs as well.

DATA REPRESENTATION
RxNorm is based on a model developed at the

NLM in consultation with the Health Level 7
vocabulary technical committee and with the
Veterans Administration. It expresses what a
clinician might order for a patient, and the type
of order a pharmacy might recieve. In the
RxNorm nomenclature, a clinical drug’s name is
a semantic normal form (SNF) that reflects its
active ingredients, strength, and form (the phys
ical form in which the drug is administered or
specified to be administered in a prescription or
order). When any of these elements varies, we
add a new RxNorm drug name to the nomen
clature.Thus, RxNorm includes a name for every
strength and dose of every available combina
tion of clinically significant ingredients.

Concepts
RxNorm organizes data by concept.A concept is

a collection of names identical in meaning at a spec
ified level of abstraction; using concepts, RxNorm
can recognize strings of characters from disparate
sources as the same thing. For example, Accuneb,
0.042% inhalation solution and Albuterol 0.417

1520-9202/05/$20.00 © 2005 IEEE P u b l i s h e d b y t h e I E E E C o m p u t e r S o c i e t y September ❘ October 2005 IT Pro 17

M E D I C A L S E R V I C E S

Cetirizine oral tablet (Zyrtec)
RXCUI = 367925

TTY = SBDF

Cetirizine oral tablet
RXCUI = 371364

TTY = SCDF

Oral tablet
RXCUI = 317541

TTY = DF

Cetirizine 5 MG oral tablet (Zyrtec)
RXCUI = 210597

TTY = SBD

Cetirizine 5 MG oral tablet
RXCUI = 315025

TTY = SCD

Cetirizine 5 MG (Zyrtec)
RXCUI not available

TTY = SBDC

Cetirizine 5 MG
RXCUI = 328987

TTY = SCDC

Zyrtec
RXCUI 38930

TTY = BN

Cetirizine
RXCUI = 20610

TTY = IN

Cetirizine dihydrochloride
RXCUI = 203150

TTY = IN

tradename_of

has_tradename

form_of

has_form

tradename_of

has_tradename

tradename_of

has_tradename

tradename_of

has_tradename

constitutes

consists_of

dose_form_of

has_dose_form

dose_form_of

has_dose_form

ingredient_of has_ingredient

consitutes consists_of

isa inverse_isa

ingredient_of has_ingredient

in
g

re
d

ie
n

t_
o

f

h
as

_i
n

g
re

d
ie

n
t

consitutes consists_of

isa inverse_isa

dose_form_of

has_dose_form

dose_form_of

has_dose_form

precise_ingredient_of

has_precise_ingredient

in
g

red
ien

t_o
f

h
as_in

g
red

ien
t

in
g

red
ien

t_o
f

h
as_in

g
red

ien
t

Figure 1. Semantic network example.

RxNorm
release

RxNorm
database

ProductionEditingInsertionInversion

Source
provider

files

Figure 2. RxNorm data life cycle.
form of the name. Drugs whose names
map to the same RXCUI are taken to
be the same drug—identical in ingre
dients, strengths, and dose forms.
Conversely, drugs that differ in any of
these particulars are conceptually dis
tinct and have different RXCUIs.

RxNorm follows a standard format in
naming clinical drugs, and it uses the
RxNorm naming conventions to nor
malize drugs named differently in vari
ous other vocabularies.The normalized
form of a clinical drug name includes
several elements, each of which can be
identified by the value of the term type
(TTY). Major TTY values include,

MG/ML Inhalant Solution [Accuneb] name the same con- • IN—ingredient.This is a compound or moiety that gives

cept. RxNorm designates the second of these the preferred the drug its distinctive clinical properties. Examples:

form of the name and assigns this concept an RxNorm con- Fluoxetine, Insulin, and Isophane.

cept unique identifier (RXCUI)—in this case, 352051. This • DF—dose form. Example: Oral Solution.

RXCUI always designates the same concept, no matter the • SCDC—semantic clinical drug component. This repre

18 IT Pro September ❘ October 2005

sents the ingredient plus strength.
Example: Fluoxetine 4 MG/ML.

•	 SCDF—semantic clinical drug
form.This represents the ingredient
plus dose form. Example: Fluoxetine
Oral Solution.

•	 SCD—semantic clinical drug. This
represents the ingredient plus
strength and dose form. Example:
Fluoxetine 4 MG/ML Oral Solution.

•	 BN—brand name. This is a propri
etary name for a family of products
containing a specific active ingredi
ent. Example: Prozac.

•	 SBDC—semantic branded drug
component. This represents the
branded ingredient plus strength.
Example: Prozac 4 MG/ML.

•	 SBDF—semantic branded drug
form. This represents the branded
ingredient plus dose form. Example:
Prozac Oral Solution.

•	 SBD—semantic branded drug.This
represents the ingredient, strength,
and dose form, plus brand name.
Example: Fluoxetine 4 MG/ML
Oral Solution [Prozac].

Relationships
Various relationships exist among

RxNorm concepts, and, together, con
cepts and relationships form a semantic network.
Relationships between concepts in RxNorm are recipro
cal. For example, a clinical drug consists of components,
and the components constitute the clinical drug. This
means that a concept with a TTY field value of SCD bears
the relationship “consists_of” to certain other concepts
with a TTY value of SCDC, and each of these, in turn, bears
the relationship “constitutes” to the first concept.

RxNorm uses the following relationships:

• constitutes/consists_of,
• contains/contained_in,
• dose_form_of/has_dose_form,
• form_of/has_form,
• ingredient_of/has_ingredient,
• isa/inverse_isa,
• precise_ingredient_of/has_precise_ingredient, and
• tradename_of/has_tradename.

Figure 1 illustrates a semantic network with associated
concepts and their relationships.

RXNORM DATA LIFE CYCLE
Figure 2 diagrams the life cycle of RxNorm data, which

EJB
container

Web
container

JDBC
convection

pool

Jrun J2EE server

EJB
container

Web
container

JDBC
convection

pool

Jrun J2EE server

RxNorm editing

Big IP
(fall over)

HTTP
HTTP

HTTP

Firewall

RxNorm
editors

FTP

Licensed
corporate

users

RxNorm
production

(Java)

RxNorm
inversion

and
insertion
(PL/SQL) RxNorm

database

JDBC
connection

pools

JDBC

Insert/update/delete
Data

sources

FDA

MDDB

MMSL

MMX

NDDF

SNOMED

VANDF

Figure 3. RxNorm system architecture.

consists of four major steps.The first step, inversion, is the
process of converting source provider files in their native
format to the RxNorm common format. Inversion begins
with a set of files that come from a source provider.Those
files run through a series of processes to produce a Rich
Release Format (RRF) file that RxNorm can use.The sec
ond step, insertion, is the process of loading inversion RRF
data files into the RxNorm database.

Third, editing is the process of resolving conflicts
between a source’s view and the RxNorm view. It is a
human editor’s task to incorporate all the different source
provider views into a homogenous single representation.
Editors receive work lists that are collections of concepts.
An editor typically looks at one or more RxNorm con
cepts at a time to resolve the issues causing the conflicts.
Once a concept is consistent, an editor approves it.

Fourth, production, an automated process, involves
extracting releasable data from the RxNorm database and
then producing and validating the release. Validated
releases, in RRF, are then available for download by the
user community.

RXNORM SYSTEM ARCHITECTURE
Figure 3 diagrams the RxNorm system architecture,which

September ❘ October 2005 IT Pro 19

M E D I C A L S E R V I C E S

Inversion/insertion
(PL/SQL)

RxNorm
database

SQLNET

Communicates with RxNorm dataBase
using type four JBC driver

RxNorm Web (Java)

RxNorm framework (Java)

RxNorm
releases

Communicates using
type four JBC driver

RxNorm release
generator (Java)

RxNorm application
(Java)

Java and
RxNorm objects

Java and
RxNorm objects

Java and
RxNorm objects

Remote call to EJBs, Java,
and RxNorm objects

Figure 4. Software component architecture.

Table 1. Components used by the RxNorm
subsystems.

RxNorm subsystem

Inversion/
Component insertion Editing Production

RxNorm Framework (Java) ✓ ✓

RxNorm Web (Java) ✓

RxNorm App (Java) ✓

Inversion/insertion (PL/SQL) ✓

consists of three major subsystems.
The inversion/insertion subsystem

includes PL/SQL processes that invert
data from various sources into com
mon RRF format and then insert the
processed data into the RxNorm data
base. (PL/SQL is a procedural lan
guage extension to SQL, Structured
Query Language.) RxNorm editors
then use the editing subsystem to edit
these inserted data.

The editing subsystem is the core of
the RxNorm system. It provides a Web
interface that lets RxNorm editors
create or edit semantic normal
forms—SBD, SCD, SBDC, and the
others. It has a three-tier implementa
tion with an application server archi
tecture, which allocates the main body
of an application to run on a shared
host rather than in the user system
interface client environment. The
application server does not drive the
graphical user interfaces (GUIs);
rather, it shares business logic, com
putations, and a data retrieval engine.

The production subsystem, imple
mented in a two-tier architecture,
includes Java applications that gener
ate the RxNorm release files in RRF.
The two-tier architecture, which is fre
quently used for noncomplex,
non–time-critical information pro-

RxNorm ReleaseGenerator (Java)

RxNorm utilities–Service locators, RxNorm jogger,
RxNorm exception, Property handler, Text and File utilities

RxNorm cache–SemanticType, TermType, DoseForms,
Sources, and Relationship

RxNorm domain
objects

(SBD, SCD, SCDC,
SBDC …)

Figure 5. RxNorm framework.

RxNorm factories

RxNorm business
objects (BO)

RxNorm data access
objects (DAO)

cessing systems, requires minimal✓
operator intervention.The production
applications produce three varieties of
release files for download by licensed

users: interval, cumulative, and full content.

RxNorm Software Component Architecture
Figure 4 shows the various RxNorm software compo

nents, their respective technologies, and how they interact
with each other through a Type Four Java Database
Connectivity (JDBC) driver.The Type Four JDBC driver
converts JDBC technology calls into the network protocol
used by database management systems (see the “For
Further Information” sidebar for more on JDBC). This
allows a direct call from the client machine to the DBMS
server, making it a practical solution for intranet access.
Table 1 shows the components that each RxNorm subsys
tem uses.

RxNorm Framework
The RxNorm framework is the support structure around

which the NLM team organized and developed the other

20 IT Pro September ❘ October 2005

RxNorm Java components, and it
encapsulates the core RxNorm busi
ness rules. The framework consists of
RxNorm classes that are closely related
in terms of function and data and that
form an independent, reusable prod
uct. The RxNorm framework is a lay
ered architecture: All other RxNorm
Java components depend on the appli
cation logic layer (containing business
objects), which in turn depends on a
persistence layer (containing data
access objects). Separating the code
into these components and layers pro
vides a level of encapsulation that
makes the code more transparent and
easier to maintain. Figure 5 shows the
various layers within the RxNorm
framework.

RxNorm business objects (BOs) rep
resent tangible entities within an appli
cation that the user creates, accesses,
and manipulates while performing a
use case. BOs interact with each other
to offer a range of functionalities. The
term CRUD—“create, retrieve, update, and delete”—
refers to the basic functions of a database or persistence
layer in a software system. RxNorm BOs have clearly
defined CRUD methods, which in turn use corresponding
data access objects (DAOs). For example, an SBDBO has
CRUD methods that use the SBDDAO’s method for

➤ Java Database Connectivity (JDBC)—an API for the Java program
ming language that defines how a client may access a database. JDBC
provides methods for querying and updating data in a database. See
http://java.sun.com/j2se/1.5.0/docs/guide/jdbc/getstart/intro.
html#1018466.

➤ Type Four JDBC driver—a native-protocol driver, fully enabled with
Java technology, that converts JDBC technology calls into the network
protocol directly used by database management systems (DBMSs).
This allows a direct call from the client machine to the DBMS server
and is a practical solution for intranet access. Since many of these pro
tocols are proprietary, database vendors themselves will be the pri
mary sources for this style of driver. See http://java.sun.com/
products/jdbc/driverdesc.html.

➤ “A Semantic Normal Form for Clinical Drugs in the UMLS: Early
Experiences with the VANDF,” Stuart J. Nelson, Steven H. Brown,
and colleagues; http://www.nlm.nih.gov/mesh/semanticnorm.html.

For More Information

actual persistence operations such as creating, retrieving,
updating, or deleting tangible entities. RxNorm BOs are
all implemented as stateless, which means that their states
do not persist between transactions.

RxNorm DAOs implement the access mechanism
required to work with the RxNorm database.The BOs use

September ❘ October 2005 IT Pro 21

M E D I C A L S E R V I C E S

Entity beans–Attribute, SemanticType, TermType

Session beans–SAAEditing, Editing

RxNorm app

Handlers–Authority,
Management, SAAEditing

Servlets–Logic, Editing...

JSPs, html, JavaScript,
and CSS

Value
objects–

TradeComponent,
NonTrade

Component

RxNorm Web

Runners–ReleaseGenerator,
RxnConso, RxnRel...

RRF generators–
RxnCONSOfilegenerator,

RxnRelFilegenerator,
RxnSABFileGenerator

DAOs–ReleaseDAO,
ReleaseDAO, ReleaseDAO

Release
domain
objects–
Release,

RelatedAtomPair

RxNorm release generator

Figure 6. RxNorm component
overview.

the simpler interface exposed by these DAOs, and the
DAO completely hides the data source implementation
details from its clients. Because the interface exposed by
the DAO to clients does not change when the underlying
data source implementation changes, RxNorm DAOs can
adapt to different storage schemes without affecting clients
or business components. Essentially, a DAO acts as an
adapter between the component and the data source.

RxNorm domain objects encapsulate persistent data.
These are the real-world entities that the RxNorm frame
work manages—for example, SBD, SCD, TermType,
SemanticType, and so on.The BOs create instances of this
class, which the DAOs convert transparently into new rows
in the database.The DAOs return instances of the appro
priate domain class for each retrieved row of data.

The RxNorm factories layer constructs RxNorm domain
or factory objects during runtime. The purpose of this
design is to insulate the creation of objects from their
usage.The factory object might decide the created object’s
class (if applicable) dynamically, return it from an object
pool, do complex configurations on the object, or perform
other operations. RxNorm factories contain the imple
mentation of both the abstract factory pattern and the fac

tory methods pattern.
RxNorm caches maintain the domain objects in a pool,

providing a gateway for instant access to the system’s per
sistent data,which is mostly static.RxNorm maintains caches
of the following domain objects:TermTypes,SemanticTypes,
DoseForms,relationships,sources,and attributes.Caches use
the corresponding DAOs to retrieve these data from per
sistent store in the form of domain objects.

RxNorm utilities are classes that provide utility meth
ods.The most frequently used utilities include,

•	 RxNormServiceLocator, which looks up remote home
and local home interfaces for Enterprise Java Beans,
data sources, and logging service from the underlying
application container;

• StringUtil, which provides various string operations;
• RxNormLogger, used for logging purposes; and
•	 RxNormPropertyHolder, which loads properties defined

in the property files into the runtime environment.

RxNorm Components
Each of these Java components built around the

RxNorm framework has specific functionalities and fol
lows the tiered (layered) architecture. Figure 6 shows the
layers inside each of these three RxNorm components.

RxNorm Web is implemented in the Model-View-
Controller (MVC) software architecture, which separates
an application’s data model, user interface, and control
logic into three distinct components so that modifications
to the view component can be made with minimal impact
to the data model component.The views are the JSPs (Java
servlet pages), HTML, and so on, and controllers are the
servlets and handlers.

RxNorm App provides entity beans and stateless session
beans. The RxNorm Release Generator generates the
release file for RxNorm in RRF format.

THE RxNORM RECIPE
In creating RxNorm, our team followed best practices

and design strategies.We adopted and implemented vari
ous design patterns proposed by Erich Gamma and col
leagues (Design Patterns, Addison-Wesley, hardcover,
1995; CD, 1997).We also worked with J2EE patterns pro
posed by Deepak Alur, John Crupi, and Dan Malks (Core
J2EE Patterns: Best Practices and Design Strategies,
Prentice Hall/Sun Microsystems Press,2001).Table 2 shows
the RxNorm software components technology matrix.

FUTURE RESEARCH AND ENHANCEMENTS
We began with the goal of providing one RxNorm data

release per month. This has helped us more fully under
stand the Java Technologies Web database and utility
scripting intricacies of source inversion, and has given us
the time to provide linking and files for download by our
users. As our experience in performing these tasks grew,

22 IT Pro September ❘ October 2005

Table 2. RxNorm software components technology matrix.

Java technologies Web DB and utility scripting

Core Servlets/ Java Unix
Component Java EJB JSPs JDBC Junit HTML Css script SQL PL/SQL Ant scripts

RxNorm ✓ ✓ ✓ ✓ ✓ ✓
framework

RxNorm Web ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

RxNorm ✓ ✓ ✓ ✓ ✓ ✓
application

RxNorm ✓ ✓ ✓
inversion/insertion

RxNorm ✓ ✓ ✓
production

we identified data anomalies and inconsistencies, which
we then worked with to create a usable model for con
sumer data use over time.

Future work will include expanding the RxNorm edit
ing subsystem to give data editors streamlined method
ologies for processing data in the system, providing a Web
services interface to the RxNorm components, inserting
new source vocabularies, and expanding SNF capabilities
for electronic labels and other vocabularies. New data must
be inserted and edited, pass through quality assurance, and
be released to the public quickly and accurately.Thus, the
editing subsystem must let the editors create and modify
SNFs for new and existing data efficiently enough to yield
data releases every week.Web services will give other med
ical systems (internal and external) the ability to access
RxNorm data in real time.

Ultimately, our future research will concentrate on the
data and how to make it clean, usable, highly available, and
accurate.We will also focus on the practical use of the data
produced; this, in turn, will yield insights into how to fine-
tune our approach.

A lthough the electronic exchange of clinical infor
mation promises to be a multidepartmental, multi
disciplinary endeavor, creating standards and tools

to make clinically accurate, up-to-date data highly avail
able is the right first step. Our work on the RxNorm proj
ect will help make this happen. We hope the RxNorm
system will become a hub for medical—specifically phar
maceutical—vocabularies. ■

Simon Liu is the director of Information Systems at the
National Library of Medicine. Contact him at simon_liu@
nlm.nih.gov.

Wei Ma is the chief of the Application Branch at the
National Library of Medicine. Contact her at wei_ma@
nlm.nih.gov.

Robin Moore is a project manager at the National Library
of Medicine. Contact her at robin_moore@nlm.nih.gov.

Vikraman Ganesan is a software developer at the
National Library of Medicine. Contact him at gane
sav@mail.nih.gov.

Stuart Nelson is the head of the Medical Subject Headings
Section at the National Library of Medicine. Contact him at
stuart_nelson@nlm.nih.gov.

For further information on this or any other computing
topic, visit our Digital Library at http://www.computer.org/
publications/dlib.

Do you have a
story locked up
inside you?
Send us an e-mail at
itpro@computer.org
and tell us what you
do that might interest
other IT pros.

September ❘ October 2005 IT Pro 23

http:nlm.nih.gov
http:nlm.nih.gov
http:robin_moore@nlm.nih.gov
http:sav@mail.nih.gov
http:stuart_nelson@nlm.nih.gov
http://www.computer.org/

