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Functional Specificity Lies within the Properties and
Evolutionary Changes of Amino Acids
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The rapid increase in the amount of protein sequence data has created a
need for automated identification of sites that determine functional
specificity among related subfamilies of proteins. A significant fraction of
subfamily specific sites are only marginally conserved, which makes it
extremely challenging to detect those amino acid changes that lead to
functional diversification. To address this critical problem we developed a
method named SPEER (specificity prediction using amino acids' properties,
entropy and evolution rate) to distinguish specificity determining sites from
others. SPEER encodes the conservation patterns of amino acid types using
their physico-chemical properties and the heterogeneity of evolutionary
changes between and within the subfamilies. To test the method, we
compiled a test set containing 13 protein families with known specificity
determining sites. Extensive benchmarking by comparing the performance
of SPEER with other specificity site prediction algorithms has shown that it
performs better in predicting several categories of subfamily specific sites.
Published by Elsevier Ltd.
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Introduction

According to the neutral theory of molecular
evolution the majority of mutations are selectively
neutral at the molecular level and do not affect the
fitness of the organism.1 As a consequence many
protein sites undergo random amino acid changes,
which are apparently not functional and are not
conserved in evolution. Other sites are under more
stringent evolutionary constraints that are reflected
in the more prominent conservation of sequence and
structural properties. It has been argued that
changes in the conservation or evolutionary rate at
a particular site reflect functional divergence after
the gene duplication.2,3 Indeed, after duplication of
a gene, one copy evolves under relaxed evolutionary
constraints, which allow it to accumulate changes
ess:
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and develop new functions and specificities.3,4 Such
mechanisms of functional diversification have
recently been studied in proteins with promiscuous
functions,5–7 and two types of functional divergence
have been distinguished.8 Type I functional diver-
gence is the result of the change in evolutionary rate
where the site is conserved for one subfamily and is
variable in another. Type II divergence is a conse-
quence of the rate change where purifying selection
causes similar levels of conservation of different
amino acid types for different protein subfamilies.
Various site-specific conservation scores have

been offered to distinguish conserved functionally
important sites from the background of neutral
changes.9 Some of them are based on combina-
torics and information theory, including different
variations of Shannon entropy and frequency
scores.10–14 Others take into account amino acid
stereochemical properties15–19 and amino acid subs-
titution matrices.20,21 Since there is heterogeneity in
evolutionary rates between sites, models, which
account for the difference in rates and amino acid
substitution probabilities among different sites can
be very valuable as well.22,23 It has also been
shown that prediction of functional sites and site-
specific rate inference can be improved consider-
ably if phylogenetic trees and evolutionary models
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Figure 1. Distribution of different categories of sub-
family specific sites. Percentage of typeI, typeII, margin-
ally conserved (MC) and absolutely conserved (AC) sites
are shown in known subfamily specific sites (Sub site;
white bar) and non-subfamily specific sites (Non sub site;
black bar).
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are considered.24–31 Other methods attempt to iden-
tify functional sites based not only on the sequence
conservation but also on their location in the 3D
structure.26,32–38

Several computational methods have been devel-
oped which are exclusively designed to predict
specificity determinants. Earlier algorithms applied
principal component analysis to a vector representa-
tion of protein sequences39 or self-organizing maps
to retrieve sequence patterns characteristic of sub-
families.40 The evolutionary trace method, for
example, identified invariant specific residues by
partitioning the phylogenetic tree into subgroups of
similar sequences and its later versions estimate the
statistical significance of the predictions.27,41 Some
more recent methods use multiple sequence align-
ments and various conservation scores like relative
entropy, mutual entropy or “sequence harmony” to
predict subfamily specific sites.42–46 The majority of
specificity determining methods require pre-defined
grouping into subfamilies while several of them
overcome this limitation by simultaneous identifica-
tion of optimal groups and conserved positions.47,48

In the first approach the likelihood score is cal-
culated for each position using the phylogenetic tree
and a shuffling procedure.47 The second approach
uses a Bayesian-based model for identification of
specificity determinants, and in this case the Bayes
factors allow one to estimate the uncertainty level of
the solution.48

It is extremely difficult to detect amino acid
changes which lead to functional divergence. It is
indeed much easier to distinguish globally con-
served sites from the overall background rather than
differentiate between the two types of conservation
in various subfamilies. The reason is that specificity
is determined by subtle changes in residue stereo-
chemistry and the residue conservation score should
be tuned to detect these changes. Moreover, in many
cases sites responsible for specificity are located on
flexible or disordered loops that are difficult to
characterize.5 Finally, experiments on specificity de-
terminants are difficult and compiling a comprehen-
sive dataset for testing these prediction methods is a
major task.
Indeed, despite all efforts at predicting subfamily

specific sites, accuracy remains very limited and
some methods are tuned to predict only type I
functional sites while others are biased toward the
type II functional sites. In reality it is almost im-
possible to judge their performance using a few test
families, which is the case for most of the studies. In
our work we compiled a more comprehensive test
set which consisted of 13 protein families with the
pre-determined specificity sites. Using this test set
we analyzed the site attributes which can distin-
guish between different subfamilies of the same
family alignment. We developed a method named
SPEER (specificity prediction using amino acids'
properties, entropy and evolution rate) that encodes
the specific conservation pattern of amino acid types
together with their physico-chemical properties and
the evolutionary rates between the subfamilies. We
have also undertaken by far the most extensive
benchmarking analysis in this field where the
SPEER method has been compared to other avail-
able specificity site prediction methods. Comparison
results suggest better performance of SPEER with
respect to other methods. The prediction sensitivity
provided by our combinatorial approach is good
(close to 70% at 15% error rate) and our findings are
encouraging for future investigations.
Results and Discussion

Characterization of subfamily specific sites

Subfamily specific sites (110 sites altogether)
collected from 13 families are categorized into
three major classes, type I, type II and marginally
conserved (MC) sites (Figure 1). As can be seen on
this Figure, about half of subfamily specific sites are
only marginally conserved which reflects the lack of
regularity in conservation pattern and thereby
illustrates the difficulties in identifying them
through prediction methods. Another half constitute
type I and type II sites; these two types of
conservation are shown to occur more frequently
among subfamily specific rather than non-subfamily
specific sites.
We developed a scoring function (SPEER score)

that represents a linear combination of Euclidean
distances (ED score) based on amino acids' physico-
chemical properties, evolution rate (ER) and com-
bined relative entropy (CRE). All three terms
account for the variability of sites within the sub-
families in terms of their physico-chemical pro-
perties, evolutionary rates and amino acid types.
Figure 2 shows the distribution of three components
of our combined scoring scheme, ED score, CRE and
ER scores together with the combined SPEER score
calculated for subfamily specific and all other sites
in the alignments. Although not all scores demon-
strate good discrimination between subfamily



Figure 2. Distribution of three component scores, i.e. (a) ED score, (b) CRE score and (c) ER along with the combined
SPEER score (d) are shown for subfamily specific sites (Sub site; white bar) and non-subfamily specific sites (Non sub site;
black bar). X-axes represent the range of scores while Y-axes show the percentage of sites.

Table 1. Comparison of overall prediction sensitivities

Error rate

Prediction sensitivity (%)

SPEER SPEL SDP-pred

1% 12 6 3
5% 47 34 19
15% 68 54 59
ROC500 0.538±0.012 0.446±0.011 0.408±0.013
ROCtotal 0.820±0.006 0.783±0.007 0.784±0.007

SDP-pred44 and SPEL47 are other methods for prediction of
subfamily specific sites.
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determinants and other sites, the combined score
clearly has power to discriminate between these two
site populations, which suggests the complementar-
ity of the proposed scoring schemes. Indeed, the
correlation matrix calculated for different scoring
terms shows that correlation coefficients are low
(Supplementary Data, Table SM1).

Prediction of subfamily specific sites

We have used multiple alignments of thirteen
protein families to predict subfamily specific sites.
The combined SPEER score was calculated for each
gapless column of the alignment where no amino
acid type was represented more than 80% of the
times (see Materials and Methods). The prediction
sensitivities at 1, 5 and 15% error rate together with
the receiver operating characteristic (ROC) statistics
and their standard deviations are given in Table 1.
Prediction sensitivities (at 1 and 15% error rate) for
individual families are also provided in Table 2.
As can be seen from these tables and the overall
ROC curve (Figure 3), for the majority of families
(62%, 8 out of 13) the SPEER method outperforms
other methods such as SDP-pred,44 SPEL47 and
SH.45 The difference in prediction performance
between SPEER and other methods is also statis-
tically significant as suggested by ROC500, ROCtotal
and the Wilcoxon signed-ranked test p-values
(p-valueb0.004). For 3 out of 13 families (cd00120,
LacI andGST) othermethods yield better predictions
at certain error rates. SPEL and SDP-pred, overall,
yield similar performance, although SPEL seems to
show somewhat higher sensitivities at low error
rates compared to SDP-pred. The SH algorithm can
not be compared with other methods across all the
families as it can not make predictions for families
with more than two subfamilies. It should be
mentioned that this comparison does not take into
account certain strong points of the other methods
which are not directly associated with the problem
being solved here. For example, SPEL can simulta-
neously define subfamilies and predict specificity
determinants, and SDP-pred takes full advantage of
orthologous–paralogous groupings in defining the



Figure 4. Comparison of prediction performances for
different categories of subfamily specific sites. Percentage
of sites (Y-axes) predicted by SPEER, SDP-pred and SPEL
at 1, 5 and 15% error rates are shown for typeI, typeII and
marginally conserved (MC) sites.

Table 2. Comparison of prediction sensitivities for
individual families

Name of
families

Number of
specific sites SPEER SDP-Pred SPEL SH

cd00120 3 0; 45 0; 50 0; 100 0; 13
cd00264 3 0; 67 0; 33 0; 67 0; 0
cd00333 12 37; 75 30; 75 33; 71 0; 67
cd00363 6 27; 83 15; 83 0; 67 0; 0
cd00365 10 10; 60 7; 60 0; 40 0; 0
cd00423 4 25; 100 25; 100 25; 75 0; 50
cd00985 3 67; 100 67; 67 0; 67 0; 67
Gprotein 7 73; 100 61; 100 36; 92 –
GST 9 54; 67 43; 67 56; 67 –
LacI 14 36; 95 52; 86 57; 84 –
Ricin 21 0; 19 0; 10 – –
CNMyc 11 9; 27 0; 20 0; 9 0; 0
CBM9 7 0; 71 0; 43 0; 38 0; 43

Sensitivity values for predicting correct subfamily specific sites
are shown at 1% and 15% error rates. Maximum values at each
error rate are marked in bold. Cases where no results were ob-
tained are marked (−).
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subfamily specific sites. We further examine the
performance ofmethods in predicting different types
of subfamily specific sites (Figure 4). It is clear from
the Figure that SPEER performs well for all three
categories including the most difficult type I and
marginally conserved (MC) sites, which pose a
significant challenge for computational identifica-
tion of subfamily determinants. Likewise, SPEL
makes very good predictions for the MC category
as well. We have also observed that, overall, the
prediction accuracy depends on the level of con-
servation of physico-chemical properties within the
subfamilies (Pearson correlation coefficient is 0.61) as
well as between them (Pearson correlation coefficient
is −0.66) (Supplementary Data, Figure SM1).

Examples of successful predictions

We illustrate the performance of the SPEER
method on different examples (Figure 5). Figure
5(a) shows a representative structure of dihydrop-
Figure 3. Comparison of prediction performances.
ROC-curves for prediction of subfamily specific sites are
shown for SPEER, SDP-pred44 and SPEL47 methods.
teroate synthase (1AJ0) taken from the pterin
binding enzymes domain family (cd00423). This
family includes two subfamilies, dihydropteroate
synthase (DHPS) and cobalamin-dependent methyl-
transferases. DHPS catalyzes the condensation of
p-aminobenzoic acid (pABA) in the biosynthesis of
folate, which is an essential cofactor in both nucleic
acid and protein biosynthesis. DHPS represents a
very important subfamily as it can be targeted by
sulfonamide drugs, which are substrate analogs of
pABA. Both DHPS and cobalamin-dependent
methyltransferases bind to pterin substrates while
sulfonamide (pABA) acts as a specific ligand to
DHPS. SPEER and SDP-pred methods successfully
identified all four (Lys220, Arg221, Arg255 and
His257; marked as space-filling model) sites for
pABA/sulfonamide binding in DHPS.49–51 In addi-
tion to that SPEER was able to predict three addi-
tional sites (Ile20, Gly187 and Gly189) that could
be important in specific interaction and reside
within 5 Å from the specific pABA ligand.
Another example shows a representative struc-

ture of a novel NTPase fromMethanococcus jannaschii
(2MJP, chain A) belonging to Maf_Ham1 domain
family (cd00985; Figure 5(b)). Ham1-related protein
is a novel NTPase that has been shown to hydrolyze
non-standard nucleotides, such as hypoxanthine/
xanthine NTP. The Maf subfamily includes nucleo-
tide-binding proteins which have been implicated
in inhibition of septum formation in eukaryotes,
bacteria and archaea. Despite the fact that proteins
from both subfamilies share structural similarities



Figure 5. Examples of successful predictions. (a) Cartoon representation of dihydropteroate synthase (1AJ0) taken
from the pterin binding enzymes domain family. SPEER scores for this family are projected onto the 3D structure where
correctly predicted known subfamily specific sites are shown in space filling model. Three additional sites (Gly187,
Gly189 and Ile20) that could be important in specific interaction are also labeled as they have high scores by SPEER and
reside within 5 Å of the specific ligand (shown in purple). (b) A representative structure of a novel NTPase from
Methanococcus jannaschii (2MJP, chain A) belonging to Maf_Ham1 domain family. Known specific sites (Thr15, Asn17 and
Lys20) are shown in space filling model while additional high scoring sites residing closely to the specific ligand are
mapped (within 5 Å are in black font; within 10 Å are in grey font) onto the 3D structure. (c) 3D structure representative
(1FQJ, cartoon representation) of G protein α subunit family bound to PDE (purple ribbon) and RGS (black ribbon).
Known specific sites (Met236, Lys244, Cys250 and Asn252 for PDE binding; Val46, Asn145 and Thr336 for RGS binding)
are shown in space filling model while additional high scoring sites residing closely to the specific binding partners are
mapped (within 5 Å are in black; within 10 Å are in grey) onto the 3D structure. (d) Representative 3D structure (1WET)
from the PurR subfamily complexed with the effector, guanine and the ligand, DNA (shown in purple).
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in the nucleotide-binding cleft, the locations and
nature of conserved residues differ, which could lead
to adoption of different functions and ligand binding
properties. Three such conserved residues (Ser9/
Thr15, Ser11/Asn17 and Arg14/Lys20 in Maf and
Ham1, respectively) could be important for binding
to different nucleotides and therefore can be
regarded as subfamily specific.52,53 SPEER success-
fully identified all three binding sites (shown in
space filling model in Figure 5(b)) at 15% false
positive rate. Additionally, we predict seven extra
potential specificity determinants, which have high
scores and reside within 5A° (Glu23, Glu72, Gly75,
Ser89, Phe149, His177 and Arg178) from the ligand
(Figure 5(b)).
The third example constitutes the G protein α

subunit (Gα, Gprotein), which controls important
cellular signaling processes involving G protein
coupled receptors through a regulated cycle of
GTPase activity. Gα subunits can be divided into
four main subtypes where each of the subtypes
performs different biological functions through
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specific interactions with the effectors (e.g. cyclic
GMP phosophodiesterase (PDE)) and regulators
(e.g. Regulator of G protein signaling (RGS)
domains).47 Figure 5(c) shows the predicted sub-
family specific sites mapped onto the 3D structure
representative (1fqj, cartoon representation) bound
to PDE (purple ribbon) and RGS (black ribbon).
Potential specificity determinant sites that reside
within 5 Å or 10 Å from the effector and/or regula-
tor molecules are marked in black and grey
correspondingly.
The LacI/PurR family is a large family of bacterial

transcription factors (15 subfamilies) that are regu-
lated by small molecules, such as sugars and nucleo-
tides. In addition to available experimental and
structural information, the LacI/PurR family has
been widely used by researchers for prediction of
subfamily specific sites. Specific sites predicted by
SPEER are mapped onto a representative 3D struc-
ture (PDB code 1WET) from the PurR subfamily
complexed with the guanine (effector) and the
ligand, DNA (Figure 5(d)). All the predicted sites
are color-coded based on their SPEER prediction
score (see color scale in Figure 5) and the known
subfamily specific sites are marked in space filling
model.
† ftp://ftp.ncbi.nih.gov/pub/chakraba/SPEER
Conclusion

The problem of identifying specificity determi-
nants is both challenging and captivating as its
solution would point to the evolutionary and
physico-chemical mechanisms producing a wide
variety of specific functional activities based on the
same fold and overall function of a protein family.
Since proteins with similar specificities use similar
amino acids, specificity prediction methods look for
the specific distribution patterns (that could be
directly related to the biochemical function or be
characteristic of a given subfamily) of amino acids
across the subgroups or with respect to the overall
family and try to identify those sites where such a
subfamily specific distribution is observed.
Here we investigated the factors which can

distinguish between different subfamilies of the
same family. First we found that it is important to
encode the conservation of amino acids' properties
within each subfamily and differences between
subfamilies (ED term). Second, we showed that the
conservation of subfamily specific features can be
successfully described in terms of amino acid
substitution rates (ER term) which are calculated
from the phylogenetic trees and reflect the evolu-
tionary history of family divergence. Finally, we
noticed that amino acid properties can be very
similar between different subfamilies at specificity
determining sites, although their amino acid usage
can vary. Consequently, the difference in amino acid
usage between and within subfamilies should also
be encoded explicitly (CRE term).
We note that variations of many measures em-

ployed in our cost function have been used8,23,28 for
characterization and prediction of specificity de-
terminants for selected families. Here we present a
more general approach tested on a benchmark en-
compassing a diverse set of protein families, which
showed that the simple combination of seemingly
redundant but in fact complementary terms per-
forms well in prediction. Comparison with other
sensitive methods of specificity prediction showed
that although SPEER in many cases yields better
results, the methods' sensitivities are still moderate.
On the other hand, many examples of successful
predictions have been found by our method.
Considering the difficulty level and the current
state of the field, the prediction sensitivity provided
by our combinatorial approach is very much
acceptable and encouraging enough for further
future investigations. Therefore, the present study
provides a platform for future endeavors to under-
stand the critical issue of protein subfamily speci-
ficity determination.
Materials and Methods

Benchmark for prediction validation

We have performed an extensive analysis to collect
reliable alignments of protein families, for which experi-
mental evidence is available on subfamily specific sites.
Our benchmark includes seven families that have been
used for validation of previously published prediction
methods and six families from the version 2.10 of the
Conserved Domain Database (CDD54). Subfamily specific
sites for six CDD families were assigned based on an
extensive literature search (see Supplementary Data for
details). A complete list of the test set families together
with their subfamily specific site locations is provided in
Table 3. Highly conserved positions within the overall
family alignment (where any amino acid type was
represented more than 80% of the time) were not regarded
as subfamily specific and excluded from the analysis. The
resulting test set covers a wide range of families with
different functions, types of functional sites, number of
subfamilies and sequence diversity (Supplementary Data,
Table SM2). To our knowledge this is the most compre-
hensive benchmark used so far for validation of subfamily
specific site prediction. These alignments and subfamily
specific sites information can be obtained through e-mail
request or can be downloaded via ftp†.
All specificity determining sites were categorized into

three groups, type I, type II and marginally conserved
(MC). Type I functional sites were defined as those
conserved for one subfamily and variable in another
while type II sites were defined as those where different
types of amino acids were conserved across different
subfamilies. Here we considered a site to be conserved for
one subfamily if any amino acid type is represented more
than 75% of the time. The sites that failed to satisfy the
above criteria are marked as MC (none of the subfamilies
are conserved in this site). For families with more than two
subgroups, sites were categorized into different types
based on the category assigned to the majority of
subfamily pairs.

http://fiz:ftp%3A//ftp.ncbi.nih.gov/pub/chakraba/SPEER


Table 3. Description of the dataset

Code Description
No. of

subgroups
No. of subgroup

specific site
No. of family

member
Avg. sequence
identity (%)

cd00120 MADS: MCM1, Agamous, Deficiens,
and SRF box family.

2 3 90 12

cd00264 Bactericidal permeability-increasing
protein, lipopolysaccharide-binding
protein and cholesteryl ester transfer

protein domains

2 3 31 8

cd00333 Major intrinsic protein (MIP) family 2 12 27 20
cd00363 Phosphofructokinase 2 6 11 35
cd00365 Hydroxymethylglutaryl-coenzyme A

(HMG-CoA) reductase
2 10 30 24

cd00423 Pterin binding enzymes 2 4 33 16
cd00985 Maf_Ham1 family 2 3 180 17
Gprotein G protein alpha subunit 11 7 105 47
GST Glutathione S-transferase family 11 9 107 20
LacI LacI/PurR family 15 12 54 27
Ricin RICIN domain family 3 21 47 37
CNMyc C and N terminal domain of Myc

family
2 11 34 60

CBM9 Family 9 carbohydrate-binding
module

2 7 19 37

807Prediction of Subfamily Specific Sites
Cost function to distinguish subfamily specific sites

In our approach we devise a cost function, which
represents a linear combination of Euclidean distances
based on amino acids' physico-chemical properties,
evolution rate and combined relative entropy. All three
terms account for the variability of sites within the
subfamilies in terms of their physico-chemical properties,
evolutionary rates and amino acid types. The first and the
third terms also approximate the variability of physico-
chemical properties and amino acid types between the
subfamilies.

Euclidean distance based on amino acids’
physico-chemical properties (ED)

Comparison of amino acids' physico-chemical proper-
ties can be very useful to characterize subtle variations in
stereochemistry of subfamily specific sites. Matrices/
indices containing quantitative values for amino acid
physico-chemical properties (such as hydrophobicity,
polarity, charge, etc.) scaled between 0 and 1 were
obtained from the UMBC AAIndex database55 (Supple-
mentary Data, Table SM3). To quantify the variability
between different amino acid properties within or
between subfamilies, we employed different distance
metrics that to various extents encoded the distance
between subfamilies and conservation of properties
within them (Supplementary Data, Figure SM1). We
found that the ED-score performs best among the various
metrics and is calculated as shown below. To quantify the
difference between any two sequences i and j at a given
site we use a weighted Euclidean distance:

dij ¼
wiwj

wi þ wj

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
XNm

m¼1

ðxmi � xmj Þ2
vuut : ð1Þ

Here xi and xj are the normalized values of the physico-
chemical properties of amino acids at a given site from
sequences i and j;Nm is the number of different amino acid
property indices; wi and wj are the sequence weights of
corresponding sequences.56 The average variability of
properties within the subfamilies in a given column
referenced to the background variability of the whole
column is estimated as follows:

ED ¼ SED
GED

; ð2Þ

SED ¼
XNs

s¼1

1=Ns
p

XNs
p

i;j¼1

dij

8<
:

9=
; ð3Þ

GED ¼ 1
Nall

XNall

i;j¼1

dij: ð4Þ

Np
s is the number of all possible pair combinations of

residues within each subfamily, Nall is the overall number
of residue combinations in a given column and Ns is the
number of subfamilies. It should be mentioned that using
sequence weights together with the reference distribution
of all sites in the alignment attempts to decouple
subfamily specificity from the overall phylogenetic simi-
larity of proteins in the subfamilies. The ED score is
positive and its low values correspond to the situation
where amino acid properties are very well conserved
within the subfamilies (low SED values) and vary in
between them (large GED values). The ED score equals 0 if
all residues are absolutely conserved within each sub-
family but different in between. For absolutely conserved
(AC) columns the ED scores become undefined and such
columns are excluded from the prediction procedure.
Alignment columns that contain gaps are also excluded
from the prediction procedure.

Evolutionary rate

Functional divergence can be inferred from the changes
in the evolutionary rate at a particular site and evolu-
tionary rate in turn can be estimated using probabilistic
evolutionary models. A maximum likelihood approach
allows one to estimate evolutionary rates taking into
account the topology and branch lengths of the phylo-
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genetic tree as well as the rate heterogeneity over different
sites in a protein family. In our study we used the ML
approach implemented in the rate4Site25 program to
calculate the evolution rate at each site separately for
each subfamily and then average it among all subfamilies.
The low average ER value would indicate that there is a
slowly evolving site in certain subfamilies.

Combined relative entropy (CRE)

Relative entropy or Kullback–Leibler divergence is a
very important concept in information theory and has been
successfully implemented to distinguish the distributions
of amino acid types between two different subfamilies.23,28

We calculated relative entropy for each pair of subfamilies
and took an average over these values at a given site:

CRE ¼ 1
Nsp

XNsp

k;m¼1

X
x

pk xð Þlog pkðxÞ
pmðxÞ : ð5Þ

Here pk(x) and pm(x) are the probabilities to find amino
acid type x in the subfamilies k and m, respectively and
Nsp is the number of all possible combinations of sub-
family pairs. The CRE is equal to zero if all distributions of
pk and pm are the same while large values of CRE corres-
pond to large differences between amino acid distributions
of subfamilies. The relative entropy cannot be calculated if
a particular type of amino acid is absent from the sub-
family, such singularity is taken into account by adding
pseudo counts to the calculation of probabilities p.23

Normalization of scores and their statistical
significance

As the background conservation levels may vary
substantially between different protein families we nor-
malize each of the three scores by subtracting the mean
value and dividing by the standard deviation of the score
distribution obtained for all columns in a given alignment.
As a pilot project we wanted to stick to equal weighing
instead of putting arbitrary weights to three component
terms. Determination of differential weights for ED score,
CRE and ER may require a much more detailed inves-
tigation and a larger dataset to deal family specific biases
for individual terms. The linear combination of three
normalized scores is used to predict the specificity
determinants. To calculate the statistical significance of
our predictions we shuffled a given column of the
alignment 100 times disregarding subfamily annotations
(the procedure is similar to the one described by Mirny
and Gelfand43). Assuming this distribution to be normal
we estimate the probability that a site without the specific
functional constraints would have a score equal to or
higher than the observed score (P-value). The P-value
assigns statistical confidence to blind predictions but the
ranking of predictions with respect to P-value has not
improved considerably the performance of our method
(Supplementary Data, Table SM4). We think it is partially
because the cost function employed in the study uses the
reference distribution of non-specific sites (equation (4)).

Evaluation of prediction accuracy

We tested the performance of our method using the
alignments of 13 families (Table 3) by calculating the
receiver operating characteristics (ROC) curves and ROC
statistics. For a given alignment, we estimated the
sensitivity and error rate based on the number of true
positives (known specificity sites) and false positives (non-
specificity sites) found at each score cutoff. Sensitivity was
defined as the fraction of true positives found at each score
threshold over the overall number of true positives in the
family alignment and error rate was estimated as the
fraction of false positives found at same score threshold
over all false positives in the alignment (difference
between the total number of sites in the alignment and
the number of subfamily specific sites). True positives
were defined as those sites annotated as being subfamily
specific based on literature and previous studies. We have
evaluated the method's performance by estimating the
sensitivity at 1, 5 and 15% of false positive or error rates
and by calculating ROC statistics and their standard
deviations.57 A ROCn statistic was calculated as the sum of
the number of true positives found at 1,2,3, … n false
positive levels (ti) divided by the overall number of true
positives (T): ROCn=(I=1, …, n ti)/nT. To compare sets of
ROC statistics produced by different methods we used the
Wilcoxon signed rank test and calculated p-values under
the null hypothesis that the medians of two distributions
are equal.58 We compared the performance of our method
with three other independent methods, which predict
specificity determinants: SDP-pred‡,44 Sequence-Har-
mony server§45 and the SPEL program from Pei et al.47

We also analyzed and compared the performance of each
method in predicting different types of subfamily specific
sites (e.g. type I, type II and MC).
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