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Abstract—The traditional way to look for large scale
structure in very large observational or model generated
data sets is to examine maps of means and standard devia-
tions of parameters of interest on a coarse spatio-temporal
grid. This approach is popular because it is easy to im-
plement and understand, but unfortunately it throws away
almost all of the distributional information in the data.
Moreover, maps are computed for individual parameters
of interest, and therefore do not retain information about
relationships among two or more parameters. In this work,
we use a modified data compression algorithm to produce
multivariate distribution estimates for each grid cell. The
algorithms optimally mediates between data reduction and
fidelity loss using information-theoretic principles. Changes
in these distribution estimates over time, space and resolu-
tion reflect large scale data structure. This is the basis for a
data mining algorithm that characterizes those changes us-
ing a pseudo-metric for the distance between distributions.
We demonstrate using data from the Atmospheric Infrared
Sounder (AIRS) on board NASA’s Aqua satellite.

Index Terms—Massive data sets, data compression, prob-
ability distributions, AIRS.

I. Introduction

THE motivation for this work is the need to facilitate
exploratory data analysis of very large data sets pro-

duced by NASA Earth Observing System (EOS) satel-
lites. EOS intends these data to be used by the greater
research community in the study of Earth’s climate sys-
tem. However, for many researchers these data are too vo-
luminous for the type of interactive, exploratory data anal-
ysis needed to formulate hypotheses and point the way to
more detailed investigations. To ameliorate this problem,
NASA instrument teams produce low volume, lower reso-
lution, summary data sets typically comprised of means,
standard deviations and other simple statistics for certain
variables over an appropriate time period, and at coarse
spatial resolution. For example, typical summary prod-
ucts might be aggregated daily or monthly over half, one,
or five degree latitude-longitude spatial grid cells. Data
processing constraints make this strategy attractive be-
cause means and standard deviations can be calculated
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in a “streaming” mode: one simply accumulates totals for
each grid cell over the summary time period, and performs
the appropriate division. Unfortunately, almost all distri-
butional information is lost in this process, and this may
be the information of greatest interest. For instance, sub-
tle changes with time and space in the number of modes
or occurrences of outliers may reflect important physical
changes.

In [1] and [2] we proposed practical algorithms for con-
structing non-parametric, multivariate distribution esti-
mates as replacements for simple means and standard
deviations alone. The algorithms are based on entropy-
constrained vector quantization (ECVQ) [3], an algorithm
originally designed to estimate the rate-distortion function
of a stochastic information source. We use a modified ver-
sion of ECVQ designed specifically to output a set of repre-
sentative, mutlivariate vectors along with their respective
weights, for each grid cell to be summarized. These vec-
tors and their weights define a discrete probability distri-
bution that can be thought of as a coarsened version of the
empirical distribution of the raw, unsummarized data. We
place these distribution estimates in each cell of a monthly,
5◦× 5◦ coarse resolution grid, and mine the data for large
scale structure by comparing distributions across time and
space.

This paper discusses some initial investigations using At-
mospheric Infrared Sounder (AIRS) data for January 2003.

II. Atmospheric Infrared Sounder Data and

Science

Data used in this exercise are from the Atmospheric
Infrared Sounder (AIRS) experiment, consisting of the
AIRS instrument and the companion Advanced Microwave
Sounding Unit (AMSU). AIRS is an instrument on-board
NASA’s EOS-Aqua satellite, launched on May 4, 2002.
Aqua is in sun synchronous, polar orbit 705 kilometers
above Earth, and crosses the equator during the ascend-
ing, or northward, part of its orbit at 1:30 pm local time.
AIRS successively scans across a 1500 kilometer field of
view taking data in 90 circular footprints as shown in Fig-
ure 1. As the spacecraft advances, the sensor resets and
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obtains another scan line. 135 scans are completed in six
minutes, and this 90 by 135 footprint spatial array consti-
tutes a‘granule of data. AMSU observations are obtained
at 1/9 the rate of those from AIRS, with each AMSU foot-
print colocated with nine AIRS footprints as shown in Fig-
ure 1. The instrument successively scans 240 granules per
day, 120 on the day-time, ascending portions of orbits and
120 on night-time, descending portions. Granule ground
footprints precess so granule 1 on a given day is not co-
incident with granule 1 on the next day. The descending
granule map for July 20, 2002 is shown in Figure 2 as an
example.

AIRS observes Earth and its atmosphere in 2378 infrared
spectral channels. Roughly speaking, the channels sense
the surface or different altitudes in the atmosphere. The in-
strument counts photons at the different wavenumbers, or
inverse wavelengths. These counts are converted to bright-
ness temperatures ranging from zero to about 340 degrees
Kelvin. Certain atmospheric characteristics are related to
photon emission, and these characteristics can be retrieved
by solving complex sets of equations. The AIRS retrieval
is performed on each set of nine AIRS footprints and a
single, overlapping AMSU footprint, giving 1350 retrievals
per granule.

Fig. 1. AIRS scan geometry. Left: Ground-tracks for ascending
portion of orbit. Center: AIRS instrument and ground footprints in
one scan line. Right: AIRS, AMSU and HSB views of one footprint.
AMSU and HSB are two other instruments on Aqua.

Among the retrieved geophysical variables are vertical
profiles of temperature and water vapor at a subset of at-
mospheric levels scrutinized by AIRS, cloud fraction at two
vertical levels, and several other diagnostic quantities. The
variables of interest to us here are a subset of the temper-
ature and water vapor levels in the lower part of the atmo-
sphere, and the cloud fractions at those same levels. The
retrievals are most accurate in this range, and much of the
information about atmospheric state is contained therein.
Variables are shown in Table I. Levels are numbered in
order of increasing altitude, as shown in Table II Thus,
each AIRS data point is a vector of the 35 variables shown
in Table I. There are 1350 such data points in a granule,

Fig. 2. 240 AIRS granule for a single day.

Variable(s) Levels Units

Temperature 1 - 11 ◦K
Water vapor 1 - 11 gm/kg (dry air)

Cloud fraction 2 - 11 None
Land fraction NA None
Retrieval type NA 0=Good/1=not good)
Scannode type NA 0=Ascending/1=descending

TABLE I

AIRS variables included in our test data.

and 240 granules per day. In what follows, we these data
acquired over one month, January 2003, to illustrate how
distribution estimates are constructed and used.

III. Estimating Distributions

Given the 35-dimensional AIRS data for January 2003
we construct a monthly summary by partitioning the data
points into subsets according to their membership in cells
of a 5◦×5◦ spatial grid. We then apply the modified ECVQ
algorithm to each grid cell. In this section we briefly de-
scribe the modified ECVQ algorithm to aid understanding
of what the distribution estimates represent. More detail
can be found in [2].

ECVQ can be seen in at least three different ways. First,
it is a penalized clustering algorithm. It partitions a collec-
tion of multidimensional data points into disjoint groups,
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Level Pressure (mb)

1 1000
2 925
3 850
4 700
5 600
6 500
7 400
8 300
9 250
10 200
11 150

TABLE II

AIRS pressure levels.

called clusters, and reports the centroid of each cluster as
the cluster’s representative. Second, it is a density estima-
tion algorithm. The set of cluster representatives and their
associated numbers of member data points define a discrete
probability distribution, which is coarsened version of the
original, empirical distribution of the data. Third, it is a
quantization algorithm that finds the optimal encoder for a
stream of stochastic signals that must be sent over a chan-
nel with limited capacity. These three interpretations are
depicted schematically in Figure 3. Raw data points are
C-dimensional observations, x of which there are many:
N . Representative vectors are also C-dimensional, and de-
noted y. The cluster analysis assigns each s to a group,
indexed by k, via the encoding function, α(x). Cluster rep-
resentatives are the mean vectors of all data points assigned
to clusters. Cluster weights are Mk’s, and within-cluster
mean squared errors are δk’s.

The same definitions apply to the density estimation
view, except that the cluser weights are normalized to pro-
portions. Here, the original distribution is represented by
a (red) histogram in which every data point has weight
1/N . Data points are grouped to form a new distribution
(green). Here again, the α’s provide the assignments. In
the quantization view, a signal X from a stochastic infor-
mation source, f , must be sent over a channel with finite
capacity. Therefore, X can not be transmitted with per-
fect accuracy. A source encoder α, assigns every possible
realization of X to one of K groups, and only the group
index, α(x) is sent (in binary: γ[α(x)]. At the receiver,
the process is reversed to recover the group index, which
is then replace by the group representative, yβ[α(x)]. β
is called the decoder, and in this application is always the
group or cluster centroid determined by the encoder. An
optimal code minimizes the estimation error, E||x−y||2

(E(·) is the statistical expectation operator) subject to the
constraint imposed by the channel capacity, Hmax:

H(y) = −

K∑

k=1

pk logpk ≤ Hmax,

where H(y) is the entropy of the quantizer’s output, y, k is

the number of groups, and pk = Mk/
∑K

k=1 Mk. Thus, the
quantization view reveals something the other two do not:
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Fig. 3. Three interpretations of the ECVQ algorithm: as a clus-
tering procedure (top), as a quantization algorithm (middle), and as
a density estimation method (bottom). α(x) is the source encoding
function returning the index of the cluster to which x is assigned.
β(k) is the source decoding function, in this returning the centroid of
cluster k. γ(k) is the channel coder which returns the binary repre-
sentation of cluster index k. X and Y are random variables with pos-
sible realizations x1,x2, . . . ,xn and y1,y2, . . . ,yk respectively. Note
that Y = β[α(X)] and is therefore a deterministic function of X.

the problem is more complex than simply finding the op-
timal assignment N data points to K clusters or groups,
otherwise unconstrained. The best assignment will bal-
ance mean squared error against complexity, H , and find
the minimum mean squared error encoding function sub-
ject to a constraint on entropy. The practical implication
is illustrated in Figure 4. The left panels of Figure 4 show
two, two dimensional data sets as scatterplots, one with
large variance and one with small variance. The center
panels show the results of clustering the data with the K-
means algorithm using five clusters. Note that the average
squared distance from data points in the top data set to
their nearest cluster representatives is larger than the aver-
age squared distance from data points in the bottom data
set to their nearest cluster represenatives. In other words,
accuracy of the cluster in the top data set representatives
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of the raw data is greater than in bottom data set. A
quantitative measure of this accuracy is the mean squared
error, E||x−y||2, also called the distortion in the signal
processing literature. The right panel of Figure 4 the clus-
tering obtained by the ECVQ algorithm. Only two clusters
are formed for the bottom data set because only two are
needed to achieve accuracy similar to that of the set of five
clusters found for the top data set.

Fig. 4. Illustration of ECVQ clustering vs. K-means clustering.
The left panel shows scatterplots of two, bivariate data sets, one
more homogeneous than the other. The center panel projects the
scatterplots onto the floor of a three dimensional space in which the
vertical axis is number of cluster members. The locations of the pins
show where K-means would locate five cluster representatives in each
case. Pin heights show how many of the original data points on the
floor are assigned to each cluster. Note that the average squared
distance from points to the nearest pin is smaller in the bottom data
set. The right panel shows the results for ECVQ. Only two pins
are used to represent the homogeneous data set, and the average
squared distance from points to nearest pin is more nearly equal for
the two. The interpretation is that if one is satisfied a priori with the
accuracy of the pins as a proxy for the heterogeneous data, then one
needs fewer pins to be equally satisfied in the case of the homogeneous
data.

The upshot is that while there is no a priori right num-
ber of clusters for representing a single data set in isolation,
there are better clusterings and worse clusterings when ap-
plying the algorithm to more than one data set. That is
case in our application where we apply clustering to the
data belonging to each cell of a monthly, coarse resolution
spatial grid. Our objective is to compare those data sets to
one another through their clustered representations, and
we want those representations to have similar accuracy.
This is so that differences in the clusterings reflect real dif-
ferences in the underlying data, and not differences quality.
ECVQ achieves this, and the result is that entropy of the
clustered representations is modulated across grid cell data
sets. Those containing more complex data sets receive a
more information-rich representation. Here, information
is used in the rigorous sense of information theory. Of-
ten, this means more clusters are allocated to these data
sets, but in truth the real distinction is that the clusterings
of these data yield discrete probability distributions with
higher entropy, H(y).

We applied the ECVQ algorithm to data on the 35 vari-
ables described in Section II for the month of January 2003.

Algorithmic details of the procedure can be found in [2].
The original data volumes follow from 240 granules per
day for 31 days, and 4.9 MB per file. The ECVQ output is
one, 25 MB file containing latitude and longitude indices
for each 5◦ × 5◦ grid cell, cluster index within grid cell,
and for each cluster, a 35-dimensional representative vec-
tor, total cluster count, and cluster mean squared error. In
addition, we broke down the total cluster count into con-
tributions from each of six, five-day periods in the month.
(Actually, the last period has six days.) The purpose is
to retain some sub-monthly time information, the use of
which will be apparent in Section.

IV. Data Mining

The result of the procedure described in Section III is
one set of clusters for every 5◦×5◦ grid cell. The number of
clusters can vary from cell to cell depending on the number
needed to adequately capture information-theoretic data
complexity. There are no more than 50 clusters anywhere.
We divide the cluster counts by the total numbers of raw
data points in each grid cell to create discrete probabil-
ity mass functions (pmf’s). Our aim here is to quantify
the difference between any two distributions in a way that
allows us to systematically look for patterns of similarity
related to geographic location. In the future, the same will
be done for temporal relationships, i.e. look for patterns
in time series of pmf’s.

To define a difference measure for pmf’s, let P1 and
P2 be the pmf’s belonging to two different grid cells.
P1 = P (Q1 = q1 and P2 = P (Q2 = q2, where Q1 and Q2

are random vectors for which the possible realizations are
the cluster representatives in the grid cells and the prob-
abilities with which they are obtained are given by the
normalized cluster counts. We define the distance between
P1 and P2 as

∆(P1,P2) = min
p(q1,q2)

∑

ij

||q1i
−q2j

||2p(q1i
,q2j

),

where q1i
and q2j

are the ith and jth possible realizations
of q1 and q2 respectively. In other words ∆(P1, P2) is
the expected squared distance between Q1 and Q2 under
the joint distribution p(q1,q2) that minimizes this distance
subject to the constraints that p(q1,q2) is consistent with
the marginal distributions P2 and P2:

P (Q1 = q1i
) =

∑

j

p(q1i
,q2j

),

P (Q2 = q2j
) =

∑

i

p(q1i
,q2j

).

Since

∆(P1,P2) = E||Q1 −Q2||
2

= E(Q1 −Q2)
′

(Q1 −Q2)

= EQ1
′Q1 − 2EQ1

′Q2 + EQ2
′Q2,

and the first and last terms on the right are fixed because
P1 and P2 are fixed, this amounts to maximizing the co-
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variance of Q1 and Q2:

EQ1
′Q2 = Cov(Q1,Q2)+ [EQ1]

′

[EQ2] .

In other words, the joint pmf p(q1, q2) that minimizes
mean squared error infers joint probabilities that maximize
the covariance, or equivalently, the correlation between Q1

and Q2. The interpretation is that distance between the
pmf’s of two grid cells is determined by assuming they
are as correlated as possible while still satisfying the con-
straints imposed by their individual pmf’s: we give the
benefit of the doubt to the assumption that the cells are
as related as possible.

Fig. 5. Map of dissimilarity of grid cell pmf’s relative to the
grid cell containing Hawaii. Units are squared distance between 35-
dimensional data points. Note that there is no data for a few grid
cells in North America, southern Africa, and central Asia.

Fig. 6. Map of dissimilarity of grid cell pmf’s relative to the
grid cell containing Nauru. Units are squared distance between 35-
dimensional data points. Note that there is no data for a few grid
cells in North America, southern Africa, and central Asia.

To Illustrate how these ideas are relevant to science
analysis, we computed ∆(P1, P2) for all unique (∆ is
symmetric in its arguments), pairwise combinations of
P1 = Plat,lon and P2 = Plat′,lon′ , lat, lat′ = 1, 2, . . . , 36,
lon, lon′ = 1,2, . . . ,72, where lat and latprime index lati-
tude and lon and lon′ index longitude in the 5◦ × 5◦ spa-
tial grid. Figures 5 and 6 show maps of ∆(P1,P2) using
two different grid cells, one containing Hawaii which is lo-
cated at 1◦N, 167◦E, and and one containing the island
of Nauru in the tropical western Pacific at 20◦N, 155◦W,
as P1. Thus, the color scales show how dissimilar all the
other cells are to these two. The next section provides a
discussion of these results, and we note here that visual

inspection of these maps is not what we mean by data
mining. We mean using ∆ as a basis for quantifying the
relationships among grid cells by producing, for example,
a tree diagram showing how similar cell distributions are
across levels of resolution. This work is in progress.

V. Science Discussion

The maps in Figures 5 and 6 show how dissimilar grid
cells are to the grid cell containing Hawaii (Figure 5) and
Nauru (Figure 6). Both Hawaii and Nauru are outfitted
with radiosondes and ground instruments so their charac-
teristics are well understood. Figures 7 and 8 are visualiza-
tions of the eight most populous clusters in each of those
cells. The three line plots show vertical profiles of temper-
ature, water vapor, and cloud fraction. The fourth panel
shows the numbers of members in the eight largest clusters,
both in total on the left, and by pentad in the six columns
to the right of the total. The colors associated with the
clusters cycle as black, blue, red and green, and correspond
to the black, blue, red and green solid lines in the line plots
for the four most populous clusters, and black, blue, red
and green dashed lines for the next most populous clus-
ters. Admittedly, the differences can be difficult to see in
the plots.

Fig. 7. Visualization of the eight most populous clusters representing
the grid cell containing Hawaii. The three line plots show vertical
profiles of temperature, water vapor, and cloud fraction. The fourth
panel shows the numbers of members in the eight largest clusters,
both in total on the left, and by pentad in the six columns to the
right of the total. The colors associated with the clusters cycle as
black, blue, red and green, and correspond to the black, blue, red
and green solid lines in the line plots for the four most populous
clusters, and black, blue, red and green dashed lines for the next
most populous clusters.

We make the following observations. First, there is al-
most no variation in the temperature profiles at either loca-
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Fig. 8. Visualization of the eight most populous clusters representing
the grid cell containing Nauru. See Figure 7 caption for explanation.

tion. Second, at Hawaii the three clusters with the highest
total counts represent a shallow, humid layer with clouds at
about 2 km. These are typical trade-wind cumulus clouds.
Third, the fourth largest clusters is a moist layer at about
6 km. It represents storms moving through the area in late
January. Note that all 146 original data points in this clus-
ter come from the last two pentads in the month (January
20-25, and 26-31). Fourth, at Nauru, there are two domi-
nant clusters with high water vapor amount up to several
kilometers altitude. The primary difference between them
is the height of the cloud layers. Fifth, the periodicity in
cluster counts by pentad is consistent with the movement
of a series of convective complexes through the area, which
is typical. The less populous clusters represent clear, dry
conditions between complexes.

The dark areas in Figures 5 and 6 are those we would
expect to have conditions similar to Hawaii and Nauru, re-
spectively. Hawaii and Nauru are moderately dissimilar to
one another, and we now have a sense of what that means
after looking at Figures 7 and 8. Looking at Figure 5, there
were a few surprises. For example, climatology would lead
us to believe that the Caribbean area would be quite sim-
ilar to Hawaii, but this is less so than we expected. Other
interesting features in the maps are the locations where
there appear to be cells rather dramatically different than
their neighbors.

VI. Conclusion

We have discussed and demonstrated the use of a proba-
bilistic metric for determining how dissimilar two grid cells
are based on estimates of the multivariate pmf’s describing
their data. Here we’ve provide just a toy example based

on visual inspection of dissimilarity maps and plots of clus-
ter representatives. The real goal is to use the metric to
quantify the large scale (5◦×5◦ relationships among pmf’s.
This is work in progress. Even with such a quantification,
the real benefit of this methodology can only be realized
through careful interpretation by scientists. The grid cell
pmf’s are the data signatures of underlying physical pro-
cesses, and the important work lies in connecting the two.
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