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Wave Equation

Continuous PDE: xmin � x � xmax, with a = constant

@u(x; t)

@t
+ a

@u(x; t)

@x
= 0 (1)

1. PDE Theory requires an Initial Condition (IC) and Boundary

Conditions (BC)

2. IC: u(x; 0) = g(x), an arbitrary function of x, must satisfy BC

3. BC: The �rst order PDE in x requires only one BC, satisfying IC

(a) If a � 0, then u(xmin; t) = l(t)

(b) If a < 0, then u(xmax; t) = r(t)
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Discussion of BC: Non-Periodic

1. Scalar quantity u is given on one boundary, corresponding to a

wave entering the domain through this \inow" boundary.

(a) No boundary condition is speci�ed at the opposite side, the

\outow" boundary.

(b) This is consistent in terms of the well-posed-ness of a

�rst-order PDE.

(c) Hence the wave leaves the domain through the outow

boundary without distortion or reection.

(d) Note that the left-hand boundary is the inow boundary

when a is positive, while the right-hand boundary is the

inow boundary when a is negative.
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Discussion of BC: Periodic

1. The ow being simulated is periodic.

(a) At any given time, what enters on one side of the domain

must be the same as that which is leaving on the other.

(b) This is referred to as the biconvection problem.

(c) It is the simplest to study and serves to illustrate many of the

basic properties of numerical methods applied to problems

involving convection, without special consideration of

boundaries.

(d) We pay a great deal of attention to it in the initial chapters.
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Periodic Wave Equation

1. Next We Study The Properties of the Periodic Wave Equation

@u(x; t)

@t
+ a

@u(x; t)

@x
= 0 0 � x � 2� (2)

2. BC: u(0; t) = u(2�; t)

3. IC: u(x; 0) = g(x); g(0) = g(2�)
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Periodic Wave Form

1. The general solution to Eq.1 is:

u(x; t) = g(x� at)

with g(x) satisfying the IC

2. We will choose a speci�c form of the solution for periodic ow

3. Fourier Series: An Arbitrary Periodic (Harmonic) Function Can

Be Represented By A Fourier Series

g(x) =

MX

m=�N

fm(0)e
i�mx =

X

m

gm(x) (3)
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Examples of Periodic Fourier Functions

1. Simple Sine

sin(x) =
eix � e�ix

2i
M;N = 1; �1 = 1; �

�1 = �1

f1(0) =
1

2i
; f

�1(0) =
�1

2i

2. Sum of Sine and Cosine

2:0sin(3x) + 0:1cos(5x) = 2:0
e3ix � e�3ix

2i
+ 0:1

e5ix + e�5ix

2
M;N = 5; �3 = 3; �

�3 = �3; �5 = 5; �
�5 = �5;

f3(0) =
2:0

2i
; f

�3 =
�2:0

2i
; f5(0) =

0:1

2
; f

�5 =
0:1

2
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Linear Superposition Theory

1. Equation 1 is a linear equation in u(x; t) and must satisfy an

arbitrary g(x) from Eq.3

2. By the Theory of Linear Superposition, given two or more

solutions, e.g., u1(x; t); u2(x; t)

(a) If u1(x; t) Satis�es Eq.1 and u2(x; t) Satis�es Eq.1

(b) Then: The sum of u(x; t) = u1(x; t) + u2(x; t) also satis�es

Eq.1
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Generalize Solution

1. Eq.3 is a sum of various periodic functions ei�mx, each of which

taken separately leads to general solutions um(x; t) = gm(x� at)

(a) Simplify and generalize our solutions class by choosing the

general g(x) = ei�x

(b) Consider each wave component separately, (ie. general �)

2. General Solution for Periodic IC

u(x; t) =

MX

m=�N

fm(0)e
i�m(x�at) (4)

9



Separation of Variable Solution of Wave Equation

1. Using separation of variables assuming a general form

u(x; t) = ei�xf(t)

(arbitrary �)

2. Apply the general result @u(x;t)
@x

= i� u(x; t) to Eq.2

@ei�xf(t)

@t
+ ai�ei�xf(t) = 0
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PDE - ODE

1. The ODE for f(t) is

@f(t)

@t
+ a i� f(t) = 0

with solution

f(t) = f(0)e�aik t

giving

u(x; t) = cei�xe�ai� t; c = f(0)

2. So the General Solution to Eq.2, (for each �),

u(x; t) = cei�(x�a t) (5)
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General Solution

u(x; t) =
X

m

cme
i�(x�a t) (6)

1. This Will Be The Exact Solution Which We Will Use to

Evaluate the E�ect of

(a) Approximating @u
@x

with Numerical Finite Di�erences.

(b) Approximating @u
@t

with Various Time Advance Schemes.
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